1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/* Copyright (C) 2009 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "Quaternion.h"
#include "MathUtil.h"
const float EPSILON=0.0001f;
CQuaternion::CQuaternion() :
m_W(1)
{
}
CQuaternion::CQuaternion(float x, float y, float z, float w) :
m_V(x, y, z), m_W(w)
{
}
CQuaternion CQuaternion::operator + (const CQuaternion &quat) const
{
CQuaternion Temp;
Temp.m_W = m_W + quat.m_W;
Temp.m_V = m_V + quat.m_V;
return Temp;
}
CQuaternion &CQuaternion::operator += (const CQuaternion &quat)
{
*this = *this + quat;
return *this;
}
CQuaternion CQuaternion::operator - (const CQuaternion &quat) const
{
CQuaternion Temp;
Temp.m_W = m_W - quat.m_W;
Temp.m_V = m_V - quat.m_V;
return Temp;
}
CQuaternion &CQuaternion::operator -= (const CQuaternion &quat)
{
*this = *this - quat;
return *this;
}
CQuaternion CQuaternion::operator * (const CQuaternion &quat) const
{
CQuaternion Temp;
Temp.m_W = (m_W * quat.m_W) - (m_V.Dot(quat.m_V));
Temp.m_V = (m_V.Cross(quat.m_V)) + (quat.m_V * m_W) + (m_V * quat.m_W);
return Temp;
}
CQuaternion &CQuaternion::operator *= (const CQuaternion &quat)
{
*this = *this * quat;
return *this;
}
CQuaternion CQuaternion::operator * (float factor) const
{
CQuaternion Temp;
Temp.m_W = m_W * factor;
Temp.m_V = m_V * factor;
return Temp;
}
float CQuaternion::Dot(const CQuaternion& quat) const
{
return
m_V.X * quat.m_V.X +
m_V.Y * quat.m_V.Y +
m_V.Z * quat.m_V.Z +
m_W * quat.m_W;
}
void CQuaternion::FromEulerAngles (float x, float y, float z)
{
float cr, cp, cy;
float sr, sp, sy;
CQuaternion QRoll, QPitch, QYaw;
cr = cosf(x * 0.5f);
cp = cosf(y * 0.5f);
cy = cosf(z * 0.5f);
sr = sinf(x * 0.5f);
sp = sinf(y * 0.5f);
sy = sinf(z * 0.5f);
QRoll.m_V = CVector3D(sr, 0, 0);
QRoll.m_W = cr;
QPitch.m_V = CVector3D(0, sp, 0);
QPitch.m_W = cp;
QYaw.m_V = CVector3D(0, 0, sy);
QYaw.m_W = cy;
(*this) = QYaw * QPitch * QRoll;
}
CVector3D CQuaternion::ToEulerAngles()
{
float heading, attitude, bank;
float sqw = m_W * m_W;
float sqx = m_V.X*m_V.X;
float sqy = m_V.Y*m_V.Y;
float sqz = m_V.Z*m_V.Z;
float unit = sqx + sqy + sqz + sqw; // if normalised is one, otherwise is correction factor
float test = m_V.X*m_V.Y + m_V.Z*m_W;
if (test > (.5f-EPSILON)*unit)
{ // singularity at north pole
heading = 2 * atan2( m_V.X, m_W);
attitude = (float)M_PI/2;
bank = 0;
}
else if (test < (-.5f+EPSILON)*unit)
{ // singularity at south pole
heading = -2 * atan2(m_V.X, m_W);
attitude = -(float)M_PI/2;
bank = 0;
}
else
{
heading = atan2(2.f * (m_V.X*m_V.Y + m_V.Z*m_W),(sqx - sqy - sqz + sqw));
bank = atan2(2.f * (m_V.Y*m_V.Z + m_V.X*m_W),(-sqx - sqy + sqz + sqw));
attitude = asin(-2.f * (m_V.X*m_V.Z - m_V.Y*m_W));
}
return CVector3D(bank, attitude, heading);
}
CMatrix3D CQuaternion::ToMatrix () const
{
CMatrix3D result;
ToMatrix(result);
return result;
}
void CQuaternion::ToMatrix(CMatrix3D& result) const
{
float wx, wy, wz, xx, xy, xz, yy, yz, zz;
// calculate coefficients
xx = m_V.X * m_V.X * 2.f;
xy = m_V.X * m_V.Y * 2.f;
xz = m_V.X * m_V.Z * 2.f;
yy = m_V.Y * m_V.Y * 2.f;
yz = m_V.Y * m_V.Z * 2.f;
zz = m_V.Z * m_V.Z * 2.f;
wx = m_W * m_V.X * 2.f;
wy = m_W * m_V.Y * 2.f;
wz = m_W * m_V.Z * 2.f;
result._11 = 1.0f - (yy + zz);
result._12 = xy - wz;
result._13 = xz + wy;
result._14 = 0;
result._21 = xy + wz;
result._22 = 1.0f - (xx + zz);
result._23 = yz - wx;
result._24 = 0;
result._31 = xz - wy;
result._32 = yz + wx;
result._33 = 1.0f - (xx + yy);
result._34 = 0;
result._41 = 0;
result._42 = 0;
result._43 = 0;
result._44 = 1;
}
void CQuaternion::Slerp(const CQuaternion& from, const CQuaternion& to, float ratio)
{
float to1[4];
float omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = from.Dot(to);
// adjust signs (if necessary)
if (cosom < 0.0)
{
cosom = -cosom;
to1[0] = -to.m_V.X;
to1[1] = -to.m_V.Y;
to1[2] = -to.m_V.Z;
to1[3] = -to.m_W;
}
else
{
to1[0] = to.m_V.X;
to1[1] = to.m_V.Y;
to1[2] = to.m_V.Z;
to1[3] = to.m_W;
}
// calculate coefficients
if ((1.0f - cosom) > EPSILON)
{
// standard case (slerp)
omega = acosf(cosom);
sinom = sinf(omega);
scale0 = sinf((1.0f - ratio) * omega) / sinom;
scale1 = sinf(ratio * omega) / sinom;
}
else
{
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0f - ratio;
scale1 = ratio;
}
// calculate final values
m_V.X = scale0 * from.m_V.X + scale1 * to1[0];
m_V.Y = scale0 * from.m_V.Y + scale1 * to1[1];
m_V.Z = scale0 * from.m_V.Z + scale1 * to1[2];
m_W = scale0 * from.m_W + scale1 * to1[3];
}
void CQuaternion::Nlerp(const CQuaternion& from, const CQuaternion& to, float ratio)
{
float c = from.Dot(to);
if (c < 0.f)
*this = from - (to + from) * ratio;
else
*this = from + (to - from) * ratio;
Normalize();
}
///////////////////////////////////////////////////////////////////////////////////////////////
// FromAxisAngle: create a quaternion from axis/angle representation of a rotation
void CQuaternion::FromAxisAngle(const CVector3D& axis, float angle)
{
float sinHalfTheta=(float) sin(angle/2);
float cosHalfTheta=(float) cos(angle/2);
m_V.X=axis.X*sinHalfTheta;
m_V.Y=axis.Y*sinHalfTheta;
m_V.Z=axis.Z*sinHalfTheta;
m_W=cosHalfTheta;
}
///////////////////////////////////////////////////////////////////////////////////////////////
// ToAxisAngle: convert the quaternion to axis/angle representation of a rotation
void CQuaternion::ToAxisAngle(CVector3D& axis, float& angle)
{
CQuaternion q = *this;
q.Normalize();
angle = acosf(q.m_W) * 2.f;
float sin_a = sqrtf(1.f - q.m_W * q.m_W);
if (fabsf(sin_a) < 0.0005f) sin_a = 1.f;
axis.X = q.m_V.X / sin_a;
axis.Y = q.m_V.Y / sin_a;
axis.Z = q.m_V.Z / sin_a;
}
///////////////////////////////////////////////////////////////////////////////////////////////
// Normalize: normalize this quaternion
void CQuaternion::Normalize()
{
float lensqrd=SQR(m_V.X)+SQR(m_V.Y)+SQR(m_V.Z)+SQR(m_W);
if (lensqrd>0) {
float invlen=1.0f/sqrtf(lensqrd);
m_V*=invlen;
m_W*=invlen;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
CVector3D CQuaternion::Rotate(const CVector3D& vec) const
{
// v' = q * v * q^-1
// (where v is the quat. with w=0, xyz=vec)
return (*this * CQuaternion(vec.X, vec.Y, vec.Z, 0.f) * GetInverse()).m_V;
}
CQuaternion CQuaternion::GetInverse() const
{
// (x,y,z,w)^-1 = (-x/l^2, -y/l^2, -z/l^2, w/l^2) where l^2=x^2+y^2+z^2+w^2
// Since we're only using quaternions for rotation, they should always have unit
// length, so assume l=1
return CQuaternion(-m_V.X, -m_V.Y, -m_V.Z, m_W);
}
|