File: CCmpPathfinder_Vertex.cpp

package info (click to toggle)
0ad 0.0.17-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 51,248 kB
  • ctags: 46,933
  • sloc: cpp: 223,208; ansic: 31,240; python: 16,343; perl: 4,083; sh: 1,011; makefile: 915; xml: 733; java: 621; ruby: 229; erlang: 53; sql: 40
file content (894 lines) | stat: -rw-r--r-- 29,790 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/* Copyright (C) 2012 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

/**
 * @file
 * Vertex-based algorithm for CCmpPathfinder.
 * Computes paths around the corners of rectangular obstructions.
 *
 * Useful search term for this algorithm: "points of visibility".
 *
 * Since we sometimes want to use this for avoiding moving units, there is no
 * pre-computation - the whole visibility graph is effectively regenerated for
 * each path, and it does A* over that graph.
 *
 * This scales very poorly in the number of obstructions, so it should be used
 * with a limited range and not exceedingly frequently.
 */

#include "precompiled.h"

#include "CCmpPathfinder_Common.h"

#include "lib/timer.h"
#include "ps/Profile.h"
#include "simulation2/components/ICmpObstructionManager.h"
#include "simulation2/helpers/PriorityQueue.h"
#include "simulation2/helpers/Render.h"

/* Quadrant optimisation:
 * (loosely based on GPG2 "Optimizing Points-of-Visibility Pathfinding")
 *
 * Consider the vertex ("@") at a corner of an axis-aligned rectangle ("#"):
 *
 * TL  :  TR
 *     :
 * ####@ - - -
 * #####
 * #####
 * BL ##  BR
 *
 * The area around the vertex is split into TopLeft, BottomRight etc quadrants.
 *
 * If the shortest path reaches this vertex, it cannot continue to a vertex in
 * the BL quadrant (it would be blocked by the shape).
 * Since the shortest path is wrapped tightly around the edges of obstacles,
 * if the path approached this vertex from the TL quadrant,
 * it cannot continue to the TL or TR quadrants (the path could be shorter if it
 * skipped this vertex).
 * Therefore it must continue to a vertex in the BR quadrant (so this vertex is in
 * *that* vertex's TL quadrant).
 *
 * That lets us significantly reduce the search space by quickly discarding vertexes
 * from the wrong quadrants.
 *
 * (This causes badness if the path starts from inside the shape, so we add some hacks
 * for that case.)
 *
 * (For non-axis-aligned rectangles it's harder to do this computation, so we'll
 * not bother doing any discarding for those.)
 */
static const u8 QUADRANT_NONE = 0;
static const u8 QUADRANT_BL = 1;
static const u8 QUADRANT_TR = 2;
static const u8 QUADRANT_TL = 4;
static const u8 QUADRANT_BR = 8;
static const u8 QUADRANT_BLTR = QUADRANT_BL|QUADRANT_TR;
static const u8 QUADRANT_TLBR = QUADRANT_TL|QUADRANT_BR;
static const u8 QUADRANT_ALL = QUADRANT_BLTR|QUADRANT_TLBR;

// A vertex around the corners of an obstruction
// (paths will be sequences of these vertexes)
struct Vertex
{
	enum
	{
		UNEXPLORED,
		OPEN,
		CLOSED,
	};

	CFixedVector2D p;
	fixed g, h;
	u16 pred;
	u8 status;
	u8 quadInward : 4; // the quadrant which is inside the shape (or NONE)
	u8 quadOutward : 4; // the quadrants of the next point on the path which this vertex must be in, given 'pred'
};

// Obstruction edges (paths will not cross any of these).
// When used in the 'edges' list, defines the two points of the edge.
// When used in the 'edgesAA' list, defines the opposing corners of an axis-aligned square
// (from which four individual edges can be trivially computed), requiring p0 <= p1
struct Edge
{
	CFixedVector2D p0, p1;
};

// Axis-aligned obstruction edges.
// p0 defines one end; c1 is either the X or Y coordinate of the other end,
// depending on the context in which this is used.
struct EdgeAA
{
	CFixedVector2D p0;
	fixed c1;
};

// When computing vertexes to insert into the search graph,
// add a small delta so that the vertexes of an edge don't get interpreted
// as crossing the edge (given minor numerical inaccuracies)
static const entity_pos_t EDGE_EXPAND_DELTA = entity_pos_t::FromInt(1)/4;

/**
 * Check whether a ray from 'a' to 'b' crosses any of the edges.
 * (Edges are one-sided so it's only considered a cross if going from front to back.)
 */
inline static bool CheckVisibility(CFixedVector2D a, CFixedVector2D b, const std::vector<Edge>& edges)
{
	CFixedVector2D abn = (b - a).Perpendicular();

	// Edges of general non-axis-aligned shapes
	for (size_t i = 0; i < edges.size(); ++i)
	{
		CFixedVector2D p0 = edges[i].p0;
		CFixedVector2D p1 = edges[i].p1;

		CFixedVector2D d = (p1 - p0).Perpendicular();

		// If 'a' is behind the edge, we can't cross
		fixed q = (a - p0).Dot(d);
		if (q < fixed::Zero())
			continue;

		// If 'b' is in front of the edge, we can't cross
		fixed r = (b - p0).Dot(d);
		if (r > fixed::Zero())
			continue;

		// The ray is crossing the infinitely-extended edge from in front to behind.
		// Check the finite edge is crossing the infinitely-extended ray too.
		// (Given the previous tests, it can only be crossing in one direction.)
		fixed s = (p0 - a).Dot(abn);
		if (s > fixed::Zero())
			continue;

		fixed t = (p1 - a).Dot(abn);
		if (t < fixed::Zero())
			continue;

		return false;
	}

	return true;
}

// Handle the axis-aligned shape edges separately (for performance):
// (These are specialised versions of the general unaligned edge code.
// They assume the caller has already excluded edges for which 'a' is
// on the wrong side.)

inline static bool CheckVisibilityLeft(CFixedVector2D a, CFixedVector2D b, const std::vector<EdgeAA>& edges)
{
	if (a.X >= b.X)
		return true;

	CFixedVector2D abn = (b - a).Perpendicular();

	for (size_t i = 0; i < edges.size(); ++i)
	{
		if (b.X < edges[i].p0.X)
			continue;

		CFixedVector2D p0 (edges[i].p0.X, edges[i].c1);
		fixed s = (p0 - a).Dot(abn);
		if (s > fixed::Zero())
			continue;

		CFixedVector2D p1 (edges[i].p0.X, edges[i].p0.Y);
		fixed t = (p1 - a).Dot(abn);
		if (t < fixed::Zero())
			continue;

		return false;
	}

	return true;
}

inline static bool CheckVisibilityRight(CFixedVector2D a, CFixedVector2D b, const std::vector<EdgeAA>& edges)
{
	if (a.X <= b.X)
		return true;

	CFixedVector2D abn = (b - a).Perpendicular();

	for (size_t i = 0; i < edges.size(); ++i)
	{
		if (b.X > edges[i].p0.X)
			continue;

		CFixedVector2D p0 (edges[i].p0.X, edges[i].c1);
		fixed s = (p0 - a).Dot(abn);
		if (s > fixed::Zero())
			continue;

		CFixedVector2D p1 (edges[i].p0.X, edges[i].p0.Y);
		fixed t = (p1 - a).Dot(abn);
		if (t < fixed::Zero())
			continue;

		return false;
	}

	return true;
}

inline static bool CheckVisibilityBottom(CFixedVector2D a, CFixedVector2D b, const std::vector<EdgeAA>& edges)
{
	if (a.Y >= b.Y)
		return true;

	CFixedVector2D abn = (b - a).Perpendicular();

	for (size_t i = 0; i < edges.size(); ++i)
	{
		if (b.Y < edges[i].p0.Y)
			continue;

		CFixedVector2D p0 (edges[i].p0.X, edges[i].p0.Y);
		fixed s = (p0 - a).Dot(abn);
		if (s > fixed::Zero())
			continue;

		CFixedVector2D p1 (edges[i].c1, edges[i].p0.Y);
		fixed t = (p1 - a).Dot(abn);
		if (t < fixed::Zero())
			continue;

		return false;
	}

	return true;
}

inline static bool CheckVisibilityTop(CFixedVector2D a, CFixedVector2D b, const std::vector<EdgeAA>& edges)
{
	if (a.Y <= b.Y)
		return true;

	CFixedVector2D abn = (b - a).Perpendicular();

	for (size_t i = 0; i < edges.size(); ++i)
	{
		if (b.Y > edges[i].p0.Y)
			continue;

		CFixedVector2D p0 (edges[i].p0.X, edges[i].p0.Y);
		fixed s = (p0 - a).Dot(abn);
		if (s > fixed::Zero())
			continue;

		CFixedVector2D p1 (edges[i].c1, edges[i].p0.Y);
		fixed t = (p1 - a).Dot(abn);
		if (t < fixed::Zero())
			continue;

		return false;
	}

	return true;
}


static CFixedVector2D NearestPointOnGoal(CFixedVector2D pos, const CCmpPathfinder::Goal& goal)
{
	CFixedVector2D g(goal.x, goal.z);

	switch (goal.type)
	{
	case CCmpPathfinder::Goal::POINT:
	{
		return g;
	}

 	case CCmpPathfinder::Goal::CIRCLE:
	{
		CFixedVector2D d = pos - g;
		if (d.IsZero())
			d = CFixedVector2D(fixed::FromInt(1), fixed::Zero()); // some arbitrary direction
		d.Normalize(goal.hw);
		return g + d;
	}

	case CCmpPathfinder::Goal::SQUARE:
	{
		CFixedVector2D halfSize(goal.hw, goal.hh);
		CFixedVector2D d = pos - g;
		return g + Geometry::NearestPointOnSquare(d, goal.u, goal.v, halfSize);
	}

	default:
		debug_warn(L"invalid type");
		return CFixedVector2D();
	}
}

CFixedVector2D CCmpPathfinder::GetNearestPointOnGoal(CFixedVector2D pos, const CCmpPathfinder::Goal& goal)
{
	return NearestPointOnGoal(pos, goal);
	// (It's intentional that we don't put the implementation inside this
	// function, to avoid the (admittedly unmeasured and probably trivial)
	// cost of a virtual call inside ComputeShortPath)
}

typedef PriorityQueueHeap<u16, fixed> PriorityQueue;

struct TileEdge
{
	u16 i, j;
	enum { TOP, BOTTOM, LEFT, RIGHT } dir;
};

static void AddTerrainEdges(std::vector<Edge>& edgesAA, std::vector<Vertex>& vertexes,
	u16 i0, u16 j0, u16 i1, u16 j1, fixed r,
	ICmpPathfinder::pass_class_t passClass, const Grid<TerrainTile>& terrain)
{
	PROFILE("AddTerrainEdges");

	std::vector<TileEdge> tileEdges;

	// Find all edges between tiles of differently passability statuses
	for (u16 j = j0; j <= j1; ++j)
	{
		for (u16 i = i0; i <= i1; ++i)
		{
			if (!IS_TERRAIN_PASSABLE(terrain.get(i, j), passClass))
			{
				bool any = false; // whether we're adding any edges of this tile

				if (j > 0 && IS_TERRAIN_PASSABLE(terrain.get(i, j-1), passClass))
				{
					TileEdge e = { i, j, TileEdge::BOTTOM };
					tileEdges.push_back(e);
					any = true;
				}

				if (j < terrain.m_H-1 && IS_TERRAIN_PASSABLE(terrain.get(i, j+1), passClass))
				{
					TileEdge e = { i, j, TileEdge::TOP };
					tileEdges.push_back(e);
					any = true;
				}

				if (i > 0 && IS_TERRAIN_PASSABLE(terrain.get(i-1, j), passClass))
				{
					TileEdge e = { i, j, TileEdge::LEFT };
					tileEdges.push_back(e);
					any = true;
				}

				if (i < terrain.m_W-1 && IS_TERRAIN_PASSABLE(terrain.get(i+1, j), passClass))
				{
					TileEdge e = { i, j, TileEdge::RIGHT };
					tileEdges.push_back(e);
					any = true;
				}

				// If we want to add any edge, then add the whole square to the axis-aligned-edges list.
				// (The inner edges are redundant but it's easier than trying to split the squares apart.)
				if (any)
				{
					CFixedVector2D v0 = CFixedVector2D(fixed::FromInt(i * (int)TERRAIN_TILE_SIZE) - r, fixed::FromInt(j * (int)TERRAIN_TILE_SIZE) - r);
					CFixedVector2D v1 = CFixedVector2D(fixed::FromInt((i+1) * (int)TERRAIN_TILE_SIZE) + r, fixed::FromInt((j+1) * (int)TERRAIN_TILE_SIZE) + r);
					Edge e = { v0, v1 };
					edgesAA.push_back(e);
				}
			}
		}
	}

	// TODO: maybe we should precompute these terrain edges since they'll rarely change?

	// TODO: for efficiency (minimising the A* search space), we should coalesce adjoining edges

	// Add all the tile outer edges to the search vertex lists
	for (size_t n = 0; n < tileEdges.size(); ++n)
	{
		u16 i = tileEdges[n].i;
		u16 j = tileEdges[n].j;
		CFixedVector2D v0, v1;
		Vertex vert;
		vert.status = Vertex::UNEXPLORED;
		vert.quadOutward = QUADRANT_ALL;

		switch (tileEdges[n].dir)
		{
		case TileEdge::BOTTOM:
		{
			v0 = CFixedVector2D(fixed::FromInt(i * (int)TERRAIN_TILE_SIZE) - r, fixed::FromInt(j * (int)TERRAIN_TILE_SIZE) - r);
			v1 = CFixedVector2D(fixed::FromInt((i+1) * (int)TERRAIN_TILE_SIZE) + r, fixed::FromInt(j * (int)TERRAIN_TILE_SIZE) - r);
			vert.p.X = v0.X - EDGE_EXPAND_DELTA; vert.p.Y = v0.Y - EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_TR; vertexes.push_back(vert);
			vert.p.X = v1.X + EDGE_EXPAND_DELTA; vert.p.Y = v1.Y - EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_TL; vertexes.push_back(vert);
			break;
		}
		case TileEdge::TOP:
		{
			v0 = CFixedVector2D(fixed::FromInt((i+1) * (int)TERRAIN_TILE_SIZE) + r, fixed::FromInt((j+1) * (int)TERRAIN_TILE_SIZE) + r);
			v1 = CFixedVector2D(fixed::FromInt(i * (int)TERRAIN_TILE_SIZE) - r, fixed::FromInt((j+1) * (int)TERRAIN_TILE_SIZE) + r);
			vert.p.X = v0.X + EDGE_EXPAND_DELTA; vert.p.Y = v0.Y + EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_BL; vertexes.push_back(vert);
			vert.p.X = v1.X - EDGE_EXPAND_DELTA; vert.p.Y = v1.Y + EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_BR; vertexes.push_back(vert);
			break;
		}
		case TileEdge::LEFT:
		{
			v0 = CFixedVector2D(fixed::FromInt(i * (int)TERRAIN_TILE_SIZE) - r, fixed::FromInt((j+1) * (int)TERRAIN_TILE_SIZE) + r);
			v1 = CFixedVector2D(fixed::FromInt(i * (int)TERRAIN_TILE_SIZE) - r, fixed::FromInt(j * (int)TERRAIN_TILE_SIZE) - r);
			vert.p.X = v0.X - EDGE_EXPAND_DELTA; vert.p.Y = v0.Y + EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_BR; vertexes.push_back(vert);
			vert.p.X = v1.X - EDGE_EXPAND_DELTA; vert.p.Y = v1.Y - EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_TR; vertexes.push_back(vert);
			break;
		}
		case TileEdge::RIGHT:
		{
			v0 = CFixedVector2D(fixed::FromInt((i+1) * (int)TERRAIN_TILE_SIZE) + r, fixed::FromInt(j * (int)TERRAIN_TILE_SIZE) - r);
			v1 = CFixedVector2D(fixed::FromInt((i+1) * (int)TERRAIN_TILE_SIZE) + r, fixed::FromInt((j+1) * (int)TERRAIN_TILE_SIZE) + r);
			vert.p.X = v0.X + EDGE_EXPAND_DELTA; vert.p.Y = v0.Y - EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_TL; vertexes.push_back(vert);
			vert.p.X = v1.X + EDGE_EXPAND_DELTA; vert.p.Y = v1.Y + EDGE_EXPAND_DELTA; vert.quadInward = QUADRANT_BL; vertexes.push_back(vert);
			break;
		}
		}
	}
}

static void SplitAAEdges(CFixedVector2D a,
		const std::vector<Edge>& edgesAA,
		std::vector<EdgeAA>& edgesLeft, std::vector<EdgeAA>& edgesRight,
		std::vector<EdgeAA>& edgesBottom, std::vector<EdgeAA>& edgesTop)
{
	edgesLeft.reserve(edgesAA.size());
	edgesRight.reserve(edgesAA.size());
	edgesBottom.reserve(edgesAA.size());
	edgesTop.reserve(edgesAA.size());

	for (size_t i = 0; i < edgesAA.size(); ++i)
	{
		if (a.X <= edgesAA[i].p0.X)
		{
			EdgeAA e = { edgesAA[i].p0, edgesAA[i].p1.Y };
			edgesLeft.push_back(e);
		}
		if (a.X >= edgesAA[i].p1.X)
		{
			EdgeAA e = { edgesAA[i].p1, edgesAA[i].p0.Y };
			edgesRight.push_back(e);
		}
		if (a.Y <= edgesAA[i].p0.Y)
		{
			EdgeAA e = { edgesAA[i].p0, edgesAA[i].p1.X };
			edgesBottom.push_back(e);
		}
		if (a.Y >= edgesAA[i].p1.Y)
		{
			EdgeAA e = { edgesAA[i].p1, edgesAA[i].p0.X };
			edgesTop.push_back(e);
		}
	}
}

/**
 * Functor for sorting edges by approximate proximity to a fixed point.
 */
struct EdgeSort
{
	CFixedVector2D src;
	EdgeSort(CFixedVector2D src) : src(src) { }
	bool operator()(const Edge& a, const Edge& b)
	{
		if ((a.p0 - src).CompareLength(b.p0 - src) < 0)
			return true;
		return false;
	}
};

void CCmpPathfinder::ComputeShortPath(const IObstructionTestFilter& filter,
	entity_pos_t x0, entity_pos_t z0, entity_pos_t r,
	entity_pos_t range, const Goal& goal, pass_class_t passClass, Path& path)
{
	UpdateGrid(); // TODO: only need to bother updating if the terrain changed

	PROFILE3("ComputeShortPath");
//	ScopeTimer UID__(L"ComputeShortPath");

	m_DebugOverlayShortPathLines.clear();

	if (m_DebugOverlay)
	{
		// Render the goal shape
		m_DebugOverlayShortPathLines.push_back(SOverlayLine());
		m_DebugOverlayShortPathLines.back().m_Color = CColor(1, 0, 0, 1);
		switch (goal.type)
		{
		case CCmpPathfinder::Goal::POINT:
		{
			SimRender::ConstructCircleOnGround(GetSimContext(), goal.x.ToFloat(), goal.z.ToFloat(), 0.2f, m_DebugOverlayShortPathLines.back(), true);
			break;
		}
		case CCmpPathfinder::Goal::CIRCLE:
		{
			SimRender::ConstructCircleOnGround(GetSimContext(), goal.x.ToFloat(), goal.z.ToFloat(), goal.hw.ToFloat(), m_DebugOverlayShortPathLines.back(), true);
			break;
		}
		case CCmpPathfinder::Goal::SQUARE:
		{
			float a = atan2f(goal.v.X.ToFloat(), goal.v.Y.ToFloat());
			SimRender::ConstructSquareOnGround(GetSimContext(), goal.x.ToFloat(), goal.z.ToFloat(), goal.hw.ToFloat()*2, goal.hh.ToFloat()*2, a, m_DebugOverlayShortPathLines.back(), true);
			break;
		}
		}
	}

	// List of collision edges - paths must never cross these.
	// (Edges are one-sided so intersections are fine in one direction, but not the other direction.)
	std::vector<Edge> edges;
	std::vector<Edge> edgesAA; // axis-aligned squares

	// Create impassable edges at the max-range boundary, so we can't escape the region
	// where we're meant to be searching
	fixed rangeXMin = x0 - range;
	fixed rangeXMax = x0 + range;
	fixed rangeZMin = z0 - range;
	fixed rangeZMax = z0 + range;
	{
		// (The edges are the opposite direction to usual, so it's an inside-out square)
		Edge e0 = { CFixedVector2D(rangeXMin, rangeZMin), CFixedVector2D(rangeXMin, rangeZMax) };
		Edge e1 = { CFixedVector2D(rangeXMin, rangeZMax), CFixedVector2D(rangeXMax, rangeZMax) };
		Edge e2 = { CFixedVector2D(rangeXMax, rangeZMax), CFixedVector2D(rangeXMax, rangeZMin) };
		Edge e3 = { CFixedVector2D(rangeXMax, rangeZMin), CFixedVector2D(rangeXMin, rangeZMin) };
		edges.push_back(e0);
		edges.push_back(e1);
		edges.push_back(e2);
		edges.push_back(e3);
	}

	// List of obstruction vertexes (plus start/end points); we'll try to find paths through
	// the graph defined by these vertexes
	std::vector<Vertex> vertexes;

	// Add the start point to the graph
	CFixedVector2D posStart(x0, z0);
	fixed hStart = (posStart - NearestPointOnGoal(posStart, goal)).Length();
	Vertex start = { posStart, fixed::Zero(), hStart, 0, Vertex::OPEN, QUADRANT_NONE, QUADRANT_ALL };
	vertexes.push_back(start);
	const size_t START_VERTEX_ID = 0;

	// Add the goal vertex to the graph.
	// Since the goal isn't always a point, this a special magic virtual vertex which moves around - whenever
	// we look at it from another vertex, it is moved to be the closest point on the goal shape to that vertex.
	Vertex end = { CFixedVector2D(goal.x, goal.z), fixed::Zero(), fixed::Zero(), 0, Vertex::UNEXPLORED, QUADRANT_NONE, QUADRANT_ALL };
	vertexes.push_back(end);
	const size_t GOAL_VERTEX_ID = 1;

	// Add terrain obstructions
	{
		u16 i0, j0, i1, j1;
		NearestTile(rangeXMin, rangeZMin, i0, j0);
		NearestTile(rangeXMax, rangeZMax, i1, j1);
		AddTerrainEdges(edgesAA, vertexes, i0, j0, i1, j1, r, passClass, *m_Grid);
	}

	// Find all the obstruction squares that might affect us
	CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
	std::vector<ICmpObstructionManager::ObstructionSquare> squares;
	cmpObstructionManager->GetObstructionsInRange(filter, rangeXMin - r, rangeZMin - r, rangeXMax + r, rangeZMax + r, squares);

	// Resize arrays to reduce reallocations
	vertexes.reserve(vertexes.size() + squares.size()*4);
	edgesAA.reserve(edgesAA.size() + squares.size()); // (assume most squares are AA)

	// Convert each obstruction square into collision edges and search graph vertexes
	for (size_t i = 0; i < squares.size(); ++i)
	{
		CFixedVector2D center(squares[i].x, squares[i].z);
		CFixedVector2D u = squares[i].u;
		CFixedVector2D v = squares[i].v;

		// Expand the vertexes by the moving unit's collision radius, to find the
		// closest we can get to it

		CFixedVector2D hd0(squares[i].hw + r + EDGE_EXPAND_DELTA, squares[i].hh + r + EDGE_EXPAND_DELTA);
		CFixedVector2D hd1(squares[i].hw + r + EDGE_EXPAND_DELTA, -(squares[i].hh + r + EDGE_EXPAND_DELTA));

		// Check whether this is an axis-aligned square
		bool aa = (u.X == fixed::FromInt(1) && u.Y == fixed::Zero() && v.X == fixed::Zero() && v.Y == fixed::FromInt(1));

		Vertex vert;
		vert.status = Vertex::UNEXPLORED;
		vert.quadInward = QUADRANT_NONE;
		vert.quadOutward = QUADRANT_ALL;
		vert.p.X = center.X - hd0.Dot(u); vert.p.Y = center.Y + hd0.Dot(v); if (aa) vert.quadInward = QUADRANT_BR; vertexes.push_back(vert);
		vert.p.X = center.X - hd1.Dot(u); vert.p.Y = center.Y + hd1.Dot(v); if (aa) vert.quadInward = QUADRANT_TR; vertexes.push_back(vert);
		vert.p.X = center.X + hd0.Dot(u); vert.p.Y = center.Y - hd0.Dot(v); if (aa) vert.quadInward = QUADRANT_TL; vertexes.push_back(vert);
		vert.p.X = center.X + hd1.Dot(u); vert.p.Y = center.Y - hd1.Dot(v); if (aa) vert.quadInward = QUADRANT_BL; vertexes.push_back(vert);

		// Add the edges:

		CFixedVector2D h0(squares[i].hw + r, squares[i].hh + r);
		CFixedVector2D h1(squares[i].hw + r, -(squares[i].hh + r));

		CFixedVector2D ev0(center.X - h0.Dot(u), center.Y + h0.Dot(v));
		CFixedVector2D ev1(center.X - h1.Dot(u), center.Y + h1.Dot(v));
		CFixedVector2D ev2(center.X + h0.Dot(u), center.Y - h0.Dot(v));
		CFixedVector2D ev3(center.X + h1.Dot(u), center.Y - h1.Dot(v));
		if (aa)
		{
			Edge e = { ev1, ev3 };
			edgesAA.push_back(e);
		}
		else
		{
			Edge e0 = { ev0, ev1 };
			Edge e1 = { ev1, ev2 };
			Edge e2 = { ev2, ev3 };
			Edge e3 = { ev3, ev0 };
			edges.push_back(e0);
			edges.push_back(e1);
			edges.push_back(e2);
			edges.push_back(e3);
		}

		// TODO: should clip out vertexes and edges that are outside the range,
		// to reduce the search space
	}

	ENSURE(vertexes.size() < 65536); // we store array indexes as u16

	if (m_DebugOverlay)
	{
		// Render the obstruction edges
		for (size_t i = 0; i < edges.size(); ++i)
		{
			m_DebugOverlayShortPathLines.push_back(SOverlayLine());
			m_DebugOverlayShortPathLines.back().m_Color = CColor(0, 1, 1, 1);
			std::vector<float> xz;
			xz.push_back(edges[i].p0.X.ToFloat());
			xz.push_back(edges[i].p0.Y.ToFloat());
			xz.push_back(edges[i].p1.X.ToFloat());
			xz.push_back(edges[i].p1.Y.ToFloat());
			SimRender::ConstructLineOnGround(GetSimContext(), xz, m_DebugOverlayShortPathLines.back(), true);
		}

		for (size_t i = 0; i < edgesAA.size(); ++i)
		{
			m_DebugOverlayShortPathLines.push_back(SOverlayLine());
			m_DebugOverlayShortPathLines.back().m_Color = CColor(0, 1, 1, 1);
			std::vector<float> xz;
			xz.push_back(edgesAA[i].p0.X.ToFloat());
			xz.push_back(edgesAA[i].p0.Y.ToFloat());
			xz.push_back(edgesAA[i].p0.X.ToFloat());
			xz.push_back(edgesAA[i].p1.Y.ToFloat());
			xz.push_back(edgesAA[i].p1.X.ToFloat());
			xz.push_back(edgesAA[i].p1.Y.ToFloat());
			xz.push_back(edgesAA[i].p1.X.ToFloat());
			xz.push_back(edgesAA[i].p0.Y.ToFloat());
			xz.push_back(edgesAA[i].p0.X.ToFloat());
			xz.push_back(edgesAA[i].p0.Y.ToFloat());
			SimRender::ConstructLineOnGround(GetSimContext(), xz, m_DebugOverlayShortPathLines.back(), true);
		}
	}

	// Do an A* search over the vertex/visibility graph:

	// Since we are just measuring Euclidean distance the heuristic is admissible,
	// so we never have to re-examine a node once it's been moved to the closed set.

	// To save time in common cases, we don't precompute a graph of valid edges between vertexes;
	// we do it lazily instead. When the search algorithm reaches a vertex, we examine every other
	// vertex and see if we can reach it without hitting any collision edges, and ignore the ones
	// we can't reach. Since the algorithm can only reach a vertex once (and then it'll be marked
	// as closed), we won't be doing any redundant visibility computations.

	PROFILE_START("A*");

	PriorityQueue open;
	PriorityQueue::Item qiStart = { START_VERTEX_ID, start.h };
	open.push(qiStart);

	u16 idBest = START_VERTEX_ID;
	fixed hBest = start.h;

	while (!open.empty())
	{
		// Move best tile from open to closed
		PriorityQueue::Item curr = open.pop();
		vertexes[curr.id].status = Vertex::CLOSED;

		// If we've reached the destination, stop
		if (curr.id == GOAL_VERTEX_ID)
		{
			idBest = curr.id;
			break;
		}

		// Sort the edges so ones nearer this vertex are checked first by CheckVisibility,
		// since they're more likely to block the rays
		std::sort(edgesAA.begin(), edgesAA.end(), EdgeSort(vertexes[curr.id].p));

		std::vector<EdgeAA> edgesLeft;
		std::vector<EdgeAA> edgesRight;
		std::vector<EdgeAA> edgesBottom;
		std::vector<EdgeAA> edgesTop;
		SplitAAEdges(vertexes[curr.id].p, edgesAA, edgesLeft, edgesRight, edgesBottom, edgesTop);

		// Check the lines to every other vertex
		for (size_t n = 0; n < vertexes.size(); ++n)
		{
			if (vertexes[n].status == Vertex::CLOSED)
				continue;

			// If this is the magical goal vertex, move it to near the current vertex
			CFixedVector2D npos;
			if (n == GOAL_VERTEX_ID)
			{
				npos = NearestPointOnGoal(vertexes[curr.id].p, goal);

				// To prevent integer overflows later on, we need to ensure all vertexes are
				// 'close' to the source. The goal might be far away (not a good idea but
				// sometimes it happens), so clamp it to the current search range
				npos.X = clamp(npos.X, rangeXMin, rangeXMax);
				npos.Y = clamp(npos.Y, rangeZMin, rangeZMax);
			}
			else
			{
				npos = vertexes[n].p;
			}

			// Work out which quadrant(s) we're approaching the new vertex from
			u8 quad = 0;
			if (vertexes[curr.id].p.X <= npos.X && vertexes[curr.id].p.Y <= npos.Y) quad |= QUADRANT_BL;
			if (vertexes[curr.id].p.X >= npos.X && vertexes[curr.id].p.Y >= npos.Y) quad |= QUADRANT_TR;
			if (vertexes[curr.id].p.X <= npos.X && vertexes[curr.id].p.Y >= npos.Y) quad |= QUADRANT_TL;
			if (vertexes[curr.id].p.X >= npos.X && vertexes[curr.id].p.Y <= npos.Y) quad |= QUADRANT_BR;

			// Check that the new vertex is in the right quadrant for the old vertex
			if (!(vertexes[curr.id].quadOutward & quad))
			{
				// Hack: Always head towards the goal if possible, to avoid missing it if it's
				// inside another unit
				if (n != GOAL_VERTEX_ID)
				{
					continue;
				}
			}

			bool visible =
				CheckVisibilityLeft(vertexes[curr.id].p, npos, edgesLeft) &&
				CheckVisibilityRight(vertexes[curr.id].p, npos, edgesRight) &&
				CheckVisibilityBottom(vertexes[curr.id].p, npos, edgesBottom) &&
				CheckVisibilityTop(vertexes[curr.id].p, npos, edgesTop) &&
				CheckVisibility(vertexes[curr.id].p, npos, edges);

			/*
			// Render the edges that we examine
			m_DebugOverlayShortPathLines.push_back(SOverlayLine());
			m_DebugOverlayShortPathLines.back().m_Color = visible ? CColor(0, 1, 0, 0.5) : CColor(1, 0, 0, 0.5);
			std::vector<float> xz;
			xz.push_back(vertexes[curr.id].p.X.ToFloat());
			xz.push_back(vertexes[curr.id].p.Y.ToFloat());
			xz.push_back(npos.X.ToFloat());
			xz.push_back(npos.Y.ToFloat());
			SimRender::ConstructLineOnGround(GetSimContext(), xz, m_DebugOverlayShortPathLines.back(), false);
			//*/

			if (visible)
			{
				fixed g = vertexes[curr.id].g + (vertexes[curr.id].p - npos).Length();

				// If this is a new tile, compute the heuristic distance
				if (vertexes[n].status == Vertex::UNEXPLORED)
				{
					// Add it to the open list:
					vertexes[n].status = Vertex::OPEN;
					vertexes[n].g = g;
					vertexes[n].h = DistanceToGoal(npos, goal);
					vertexes[n].pred = curr.id;

					// If this is an axis-aligned shape, the path must continue in the same quadrant
					// direction (but not go into the inside of the shape).
					// Hack: If we started *inside* a shape then perhaps headed to its corner (e.g. the unit
					// was very near another unit), don't restrict further pathing.
					if (vertexes[n].quadInward && !(curr.id == START_VERTEX_ID && g < fixed::FromInt(8)))
						vertexes[n].quadOutward = ((~vertexes[n].quadInward) & quad) & 0xF;

					if (n == GOAL_VERTEX_ID)
						vertexes[n].p = npos; // remember the new best goal position

					PriorityQueue::Item t = { (u16)n, g + vertexes[n].h };
					open.push(t);

					// Remember the heuristically best vertex we've seen so far, in case we never actually reach the target
					if (vertexes[n].h < hBest)
					{
						idBest = (u16)n;
						hBest = vertexes[n].h;
					}
				}
				else // must be OPEN
				{
					// If we've already seen this tile, and the new path to this tile does not have a
					// better cost, then stop now
					if (g >= vertexes[n].g)
						continue;

					// Otherwise, we have a better path, so replace the old one with the new cost/parent
					vertexes[n].g = g;
					vertexes[n].pred = curr.id;

					// If this is an axis-aligned shape, the path must continue in the same quadrant
					// direction (but not go into the inside of the shape).
					if (vertexes[n].quadInward)
						vertexes[n].quadOutward = ((~vertexes[n].quadInward) & quad) & 0xF;

					if (n == GOAL_VERTEX_ID)
						vertexes[n].p = npos; // remember the new best goal position

					open.promote((u16)n, g + vertexes[n].h);
				}
			}
		}
	}

	// Reconstruct the path (in reverse)
	for (u16 id = idBest; id != START_VERTEX_ID; id = vertexes[id].pred)
	{
		Waypoint w = { vertexes[id].p.X, vertexes[id].p.Y };
		path.m_Waypoints.push_back(w);
	}

	PROFILE_END("A*");
}

bool CCmpPathfinder::CheckMovement(const IObstructionTestFilter& filter,
	entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r,
	pass_class_t passClass)
{
	CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
	if (!cmpObstructionManager)
		return false;

	if (cmpObstructionManager->TestLine(filter, x0, z0, x1, z1, r))
		return false;

	// Test against terrain:

	// (TODO: this could probably be a tiny bit faster by not reusing all the vertex computation code)

	UpdateGrid();

	std::vector<Edge> edgesAA;
	std::vector<Vertex> vertexes;

	u16 i0, j0, i1, j1;
	NearestTile(std::min(x0, x1) - r, std::min(z0, z1) - r, i0, j0);
	NearestTile(std::max(x0, x1) + r, std::max(z0, z1) + r, i1, j1);
	AddTerrainEdges(edgesAA, vertexes, i0, j0, i1, j1, r, passClass, *m_Grid);

	CFixedVector2D a(x0, z0);
	CFixedVector2D b(x1, z1);

	std::vector<EdgeAA> edgesLeft;
	std::vector<EdgeAA> edgesRight;
	std::vector<EdgeAA> edgesBottom;
	std::vector<EdgeAA> edgesTop;
	SplitAAEdges(a, edgesAA, edgesLeft, edgesRight, edgesBottom, edgesTop);

	bool visible =
		CheckVisibilityLeft(a, b, edgesLeft) &&
		CheckVisibilityRight(a, b, edgesRight) &&
		CheckVisibilityBottom(a, b, edgesBottom) &&
		CheckVisibilityTop(a, b, edgesTop);

	return visible;
}