File: CCmpRallyPointRenderer.cpp

package info (click to toggle)
0ad 0.0.17-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 51,248 kB
  • ctags: 46,933
  • sloc: cpp: 223,208; ansic: 31,240; python: 16,343; perl: 4,083; sh: 1,011; makefile: 915; xml: 733; java: 621; ruby: 229; erlang: 53; sql: 40
file content (1241 lines) | stat: -rw-r--r-- 50,482 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
/* Copyright (C) 2014 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "precompiled.h"
#include "ICmpRallyPointRenderer.h"

#include "simulation2/MessageTypes.h"
#include "simulation2/components/ICmpFootprint.h"
#include "simulation2/components/ICmpObstructionManager.h"
#include "simulation2/components/ICmpOwnership.h"
#include "simulation2/components/ICmpPathfinder.h"
#include "simulation2/components/ICmpPlayer.h"
#include "simulation2/components/ICmpPlayerManager.h"
#include "simulation2/components/ICmpPosition.h"
#include "simulation2/components/ICmpRangeManager.h"
#include "simulation2/components/ICmpTerrain.h"
#include "simulation2/components/ICmpVisual.h"
#include "simulation2/components/ICmpWaterManager.h"
#include "simulation2/helpers/Render.h"
#include "simulation2/helpers/Geometry.h"
#include "simulation2/system/Component.h"

#include "ps/CLogger.h"
#include "graphics/Overlay.h"
#include "graphics/TextureManager.h"
#include "renderer/Renderer.h"

struct SVisibilitySegment
{
	bool m_Visible;
	size_t m_StartIndex;
	size_t m_EndIndex; // inclusive

	SVisibilitySegment(bool visible, size_t startIndex, size_t endIndex) 
		: m_Visible(visible), m_StartIndex(startIndex), m_EndIndex(endIndex)
	{}

	bool operator==(const SVisibilitySegment& other) const
	{
		return (m_Visible == other.m_Visible && m_StartIndex == other.m_StartIndex && m_EndIndex == other.m_EndIndex);
	}

	bool operator!=(const SVisibilitySegment& other) const
	{
		return !(*this == other);
	}

	bool IsSinglePoint()
	{
		return (m_StartIndex == m_EndIndex);
	}
};

class CCmpRallyPointRenderer : public ICmpRallyPointRenderer
{
	// import some types for less verbosity
	typedef ICmpPathfinder::Path Path;
	typedef ICmpPathfinder::Goal Goal;
	typedef ICmpPathfinder::Waypoint Waypoint;
	typedef ICmpRangeManager::CLosQuerier CLosQuerier;
	typedef SOverlayTexturedLine::LineCapType LineCapType;

public:
	static void ClassInit(CComponentManager& componentManager)
	{
		componentManager.SubscribeToMessageType(MT_OwnershipChanged);
		componentManager.SubscribeToMessageType(MT_TurnStart);
		componentManager.SubscribeToMessageType(MT_Destroy);
		componentManager.SubscribeToMessageType(MT_PositionChanged);
	}

	DEFAULT_COMPONENT_ALLOCATOR(RallyPointRenderer)

protected:

	/// Display position of the rally points. Note that this are merely the display positions; they not necessarily the same as the 
	/// actual positions used in the simulation at any given time. In particular, we need this separate copy to support
	/// instantaneously rendering the rally point markers/lines when the user sets one in-game (instead of waiting until the 
	/// network-synchronization code sets it on the RallyPoint component, which might take up to half a second).
	std::vector<CFixedVector2D> m_RallyPoints;
	/// Full path to the rally points as returned by the pathfinder, with some post-processing applied to reduce zig/zagging.
	std::vector<std::vector<CVector2D> > m_Path;
	/// Visibility segments of the rally point paths; splits the path into SoD/non-SoD segments.
	std::deque<std::deque<SVisibilitySegment> > m_VisibilitySegments;

	bool m_Displayed; ///< Should we render the rally points and the path lines? (set from JS when e.g. the unit is selected/deselected)
	bool m_SmoothPath; ///< Smooth the path before rendering?

	std::vector<entity_id_t> m_MarkerEntityIds; ///< Entity IDs of the rally point markers.
	size_t m_LastMarkerCount;
	player_id_t m_LastOwner; ///< Last seen owner of this entity (used to keep track of ownership changes).
	std::wstring m_MarkerTemplate;  ///< Template name of the rally point markers.

	/// Marker connector line settings (loaded from XML)
	float m_LineThickness;
	CColor m_LineColor;
	CColor m_LineDashColor;
	LineCapType m_LineStartCapType;
	LineCapType m_LineEndCapType;
	std::wstring m_LineTexturePath;
	std::wstring m_LineTextureMaskPath;
	std::string m_LinePassabilityClass; ///< Pathfinder passability class to use for computing the (long-range) marker line path.
	std::string m_LineCostClass; ///< Pathfinder cost class to use for computing the (long-range) marker line path.

	CTexturePtr m_Texture;
	CTexturePtr m_TextureMask;

	/// Textured overlay lines to be used for rendering the marker line. There can be multiple because we may need to render 
	/// dashes for segments that are inside the SoD.
	std::vector<std::vector<SOverlayTexturedLine> > m_TexturedOverlayLines;

	/// Draw little overlay circles to indicate where the exact path points are?
	bool m_EnableDebugNodeOverlay;
	std::vector<std::vector<SOverlayLine> > m_DebugNodeOverlays;

public:

	static std::string GetSchema()
	{
		return
			"<a:help>Displays a rally point marker where created units will gather when spawned</a:help>"
			"<a:example>"
				"<MarkerTemplate>special/rallypoint</MarkerTemplate>"
				"<LineThickness>0.75</LineThickness>"
				"<LineStartCap>round</LineStartCap>"
				"<LineEndCap>square</LineEndCap>"
				"<LineColour r='20' g='128' b='240'></LineColour>"
				"<LineDashColour r='158' g='11' b='15'></LineDashColour>"
				"<LineCostClass>default</LineCostClass>"
				"<LinePassabilityClass>default</LinePassabilityClass>"
			"</a:example>"
			"<element name='MarkerTemplate' a:help='Template name for the rally point marker entity (typically a waypoint flag actor)'>"
				"<text/>"
			"</element>"
			"<element name='LineTexture' a:help='Texture file to use for the rally point line'>"
				"<text />"
			"</element>"
			"<element name='LineTextureMask' a:help='Texture mask to indicate where overlay colors are to be applied (see LineColour and LineDashColour)'>"
				"<text />"
			"</element>"
			"<element name='LineThickness' a:help='Thickness of the marker line connecting the entity to the rally point marker'>"
				"<data type='decimal'/>"
			"</element>"
			"<element name='LineColour'>"
				"<attribute name='r'>"
					"<data type='integer'><param name='minInclusive'>0</param><param name='maxInclusive'>255</param></data>"
				"</attribute>"
				"<attribute name='g'>"
					"<data type='integer'><param name='minInclusive'>0</param><param name='maxInclusive'>255</param></data>"
				"</attribute>"
				"<attribute name='b'>"
					"<data type='integer'><param name='minInclusive'>0</param><param name='maxInclusive'>255</param></data>"
				"</attribute>"
			"</element>"
			"<element name='LineDashColour'>"
				"<attribute name='r'>"
					"<data type='integer'><param name='minInclusive'>0</param><param name='maxInclusive'>255</param></data>"
				"</attribute>"
				"<attribute name='g'>"
					"<data type='integer'><param name='minInclusive'>0</param><param name='maxInclusive'>255</param></data>"
				"</attribute>"
				"<attribute name='b'>"
					"<data type='integer'><param name='minInclusive'>0</param><param name='maxInclusive'>255</param></data>"
				"</attribute>"
			"</element>"
			"<element name='LineStartCap'>"
				"<choice>"
					"<value a:help='Abrupt line ending; line endings are not closed'>flat</value>"
					"<value a:help='Semi-circular line end cap'>round</value>"
					"<value a:help='Sharp, pointy line end cap'>sharp</value>"
					"<value a:help='Square line end cap'>square</value>"
				"</choice>"
			"</element>"
			"<element name='LineEndCap'>"
				"<choice>"
					"<value a:help='Abrupt line ending; line endings are not closed'>flat</value>"
					"<value a:help='Semi-circular line end cap'>round</value>"
					"<value a:help='Sharp, pointy line end cap'>sharp</value>"
					"<value a:help='Square line end cap'>square</value>"
				"</choice>"
			"</element>"
			"<element name='LinePassabilityClass' a:help='The pathfinder passability class to use for computing the rally point marker line path'>"
				"<text />"
			"</element>"
			"<element name='LineCostClass' a:help='The pathfinder cost class to use for computing the rally point marker line path'>"
				"<text />"
			"</element>";
	}

	virtual void Init(const CParamNode& paramNode);

	virtual void Deinit()
	{
	}

	virtual void Serialize(ISerializer& UNUSED(serialize))
	{
		// do NOT serialize anything; this is a rendering-only component, it does not and should not affect simulation state
	}

	virtual void Deserialize(const CParamNode& paramNode, IDeserializer& UNUSED(deserialize))
	{
		Init(paramNode);
	}

	virtual void HandleMessage(const CMessage& msg, bool UNUSED(global))
	{
		switch (msg.GetType())
		{
		case MT_RenderSubmit:
			{
				PROFILE3("RallyPoint::RenderSubmit");
				if (m_Displayed && IsSet())
				{
					const CMessageRenderSubmit& msgData = static_cast<const CMessageRenderSubmit&> (msg);
					RenderSubmit(msgData.collector);
				}
			}
			break;
		case MT_OwnershipChanged:
			{
				UpdateMarkers(); // update marker variation to new player's civilization
			}
			break;
		case MT_TurnStart:
			{
				UpdateOverlayLines(); // check for changes to the SoD and update the overlay lines accordingly
			}
			break;
		case MT_Destroy:
			{
				for (std::vector<entity_id_t>::iterator it = m_MarkerEntityIds.begin(); it < m_MarkerEntityIds.end(); ++it)
				{
					if (*it != INVALID_ENTITY)
					{
						GetSimContext().GetComponentManager().DestroyComponentsSoon(*it);
						*it = INVALID_ENTITY;
					}
				}
			}
			break;
		case MT_PositionChanged:
			{
				// Unlikely to happen in-game, but can occur in atlas
				// Just recompute the path from the entity to the first rally point
				RecomputeRallyPointPath_wrapper(0);
			}
			break;
		}
	}

	/*
	 * Must be called whenever m_Displayed or the size of m_RallyPoints change,
	 * to determine whether we need to respond to render messages.
	 */
	void UpdateMessageSubscriptions()
	{
		bool needRender = m_Displayed && IsSet();
		GetSimContext().GetComponentManager().DynamicSubscriptionNonsync(MT_RenderSubmit, this, needRender);
	}

	virtual void AddPosition_wrapper(CFixedVector2D pos)
	{
		AddPosition(pos, false);
	}

	virtual void SetPosition(CFixedVector2D pos)
	{
		if (!(m_RallyPoints.size() == 1 && m_RallyPoints.front() == pos))
		{
			m_RallyPoints.clear();
			AddPosition(pos, true);
			// Don't need to UpdateMessageSubscriptions here since AddPosition already calls it
		}
	}

	virtual void UpdatePosition(u32 rallyPointId, CFixedVector2D pos)
	{
		if (rallyPointId >= m_RallyPoints.size())
			return;

		m_RallyPoints[rallyPointId] = pos;

		UpdateMarkers();

		// Compute a new path for the current, and if existing the next rally point
		RecomputeRallyPointPath_wrapper(rallyPointId);
		if (rallyPointId+1 < m_RallyPoints.size())
			RecomputeRallyPointPath_wrapper(rallyPointId+1);
	}

	virtual void SetDisplayed(bool displayed)
	{
		if (m_Displayed != displayed)
		{
			m_Displayed = displayed;

			// move the markers out of oblivion and back into the real world, or vice-versa
			UpdateMarkers();

			// Check for changes to the SoD and update the overlay lines accordingly. We need to do this here because this method
			// only takes effect when the display flag is active; we need to pick up changes to the SoD that might have occurred 
			// while this rally point was not being displayed.
			UpdateOverlayLines();

			UpdateMessageSubscriptions();
		}
	}

	virtual void Reset()
	{
		m_RallyPoints.clear();
		RecomputeAllRallyPointPaths();
		UpdateMessageSubscriptions();
	}

	/**
	 * Returns true if at least one display rally point is set; i.e., if we have a point to render our marker/line at.
	 */
	bool IsSet()
	{
		return !m_RallyPoints.empty();
	}

private:

	/**
	 * Helper function for AddPosition_wrapper and SetPosition.
	 */
	void AddPosition(CFixedVector2D pos, bool recompute)
	{
		m_RallyPoints.push_back(pos);
		UpdateMarkers();

		if (recompute)
			RecomputeAllRallyPointPaths();
		else
			RecomputeRallyPointPath_wrapper(m_RallyPoints.size()-1);

		UpdateMessageSubscriptions();
	}

	/**
	 * Repositions the rally point markers; moves them outside of the world (ie. hides them), or positions them at the currently
	 * set rally points. Also updates the actor's variation according to the entity's current owning player's civilization.
	 * 
	 * Should be called whenever either the position of a rally point changes (including whether it is set or not), or the display
	 * flag changes, or the ownership of the entity changes.
	 */
	void UpdateMarkers();

	/**
	 * Recomputes all the full paths from this entity to the rally point and from the rally point to the next, and does all the necessary
	 * post-processing to make them prettier.
	 * 
	 * Should be called whenever all rally points' position changes.
	 */
	void RecomputeAllRallyPointPaths();

	/**
	 * Recomputes the full path for m_Path[ @p index], and does all the necessary post-processing to make it prettier.
	 * 
	 * Should be called whenever either the starting position or the rally point's position changes.
	 */
	void RecomputeRallyPointPath_wrapper(size_t index);

	/**
	 * Recomputes the full path from this entity/the previous rally point to the next rally point, and does all the necessary
	 * post-processing to make it prettier. This doesn't check if we have a valid position or if a rally point is set.
	 * 
	 * You shouldn't need to call this method directly.
	 */
	void RecomputeRallyPointPath(size_t index, CmpPtr<ICmpPosition>& cmpPosition, CmpPtr<ICmpFootprint>& cmpFootprint, CmpPtr<ICmpPathfinder> cmpPathfinder);

	/**
	 * Checks for changes to the SoD to the previously saved state, and reconstructs the visibility segments and overlay lines to 
	 * match if necessary. Does nothing if the rally point lines are not currently set to be displayed, or if no rally point is set.
	 */
	void UpdateOverlayLines();

	/**
	 * Sets up all overlay lines for rendering according to the current full path and visibility segments. Splits the line into solid 
	 * and dashed pieces (for the SoD). Should be called whenever the SoD has changed. If no full path is currently set, this method 
	 * does nothing.
	 */
	void ConstructAllOverlayLines();

	/**
	 * Sets up the overlay lines for rendering according to the full path and visibility segments at @p index. Splits the line into 
	 * solid and dashed pieces (for the SoD). Should be called whenever the SoD of the path at @p index has changed. 
	 */
	void ConstructOverlayLines(size_t index);

	/**
	 * Removes points from @p coords that are obstructed by the originating building's footprint, and links up the last point 
	 * nicely to the edge of the building's footprint. Only needed if the pathfinder can possibly return obstructed tile waypoints, 
	 * i.e. when pathfinding is started from an obstructed tile.
	 */
	void FixFootprintWaypoints(std::vector<CVector2D>& coords, CmpPtr<ICmpPosition> cmpPosition, CmpPtr<ICmpFootprint> cmpFootprint);

	/**
	 * Returns a list of indices of waypoints in the current path (m_Path[index]) where the LOS visibility changes, ordered from 
	 * building/previous rally point to rally point. Used to construct the overlay line segments and track changes to the SoD.
	 */
	void GetVisibilitySegments(std::deque<SVisibilitySegment>& out, size_t index);

	/**
	 * Simplifies the path by removing waypoints that lie between two points that are visible from one another. This is primarily 
	 * intended to reduce some unnecessary curviness of the path; the pathfinder returns a mathematically (near-)optimal path, which
	 * will happily curve and bend to reduce costs. Visually, it doesn't make sense for a rally point path to curve and bend when it
	 * could just as well have gone in a straight line; that's why we have this, to make it look more natural.
	 *
	 * @p coords array of path coordinates to simplify
	 * @p maxSegmentLinks if non-zero, indicates the maximum amount of consecutive node-to-node links that can be joined into a
	 *                    single link. If this value is set to e.g. 1, then no reductions will be performed. A value of 3 means that
	 *                    at most 3 consecutive node links will be joined into a single link.
	 * @p floating whether to consider nodes who are under the water level as floating on top of the water
	 */
	void ReduceSegmentsByVisibility(std::vector<CVector2D>& coords, unsigned maxSegmentLinks = 0, bool floating = true);

	/**
	 * Helper function to GetVisibilitySegments, factored out for testing. Merges single-point segments with its neighbouring 
	 * segments. You should not have to call this method directly.
	 */
	static void MergeVisibilitySegments(std::deque<SVisibilitySegment>& segments);

	void RenderSubmit(SceneCollector& collector);
};

REGISTER_COMPONENT_TYPE(RallyPointRenderer)

void CCmpRallyPointRenderer::Init(const CParamNode& paramNode)
{
	m_Displayed = false;
	m_SmoothPath = true;
	m_LastOwner = INVALID_PLAYER;
	m_LastMarkerCount = 0;
	m_EnableDebugNodeOverlay = false;

	// ---------------------------------------------------------------------------------------------
	// load some XML configuration data (schema guarantees that all these nodes are valid)

	m_MarkerTemplate = paramNode.GetChild("MarkerTemplate").ToString();

	const CParamNode& lineColor = paramNode.GetChild("LineColour");
	m_LineColor = CColor(
		lineColor.GetChild("@r").ToInt()/255.f,
		lineColor.GetChild("@g").ToInt()/255.f,
		lineColor.GetChild("@b").ToInt()/255.f,
		1.f
	);

	const CParamNode& lineDashColor = paramNode.GetChild("LineDashColour");
	m_LineDashColor = CColor(
		lineDashColor.GetChild("@r").ToInt()/255.f,
		lineDashColor.GetChild("@g").ToInt()/255.f,
		lineDashColor.GetChild("@b").ToInt()/255.f,
		1.f
	);

	m_LineThickness = paramNode.GetChild("LineThickness").ToFixed().ToFloat();
	m_LineTexturePath = paramNode.GetChild("LineTexture").ToString();
	m_LineTextureMaskPath = paramNode.GetChild("LineTextureMask").ToString();
	m_LineStartCapType = SOverlayTexturedLine::StrToLineCapType(paramNode.GetChild("LineStartCap").ToString());
	m_LineEndCapType = SOverlayTexturedLine::StrToLineCapType(paramNode.GetChild("LineEndCap").ToString());
	m_LineCostClass = paramNode.GetChild("LineCostClass").ToUTF8();
	m_LinePassabilityClass = paramNode.GetChild("LinePassabilityClass").ToUTF8();

	// ---------------------------------------------------------------------------------------------
	// load some textures

	if (CRenderer::IsInitialised())
	{
		CTextureProperties texturePropsBase(m_LineTexturePath);
		texturePropsBase.SetWrap(GL_CLAMP_TO_BORDER, GL_CLAMP_TO_EDGE);
		texturePropsBase.SetMaxAnisotropy(4.f);
		m_Texture = g_Renderer.GetTextureManager().CreateTexture(texturePropsBase);

		CTextureProperties texturePropsMask(m_LineTextureMaskPath);
		texturePropsMask.SetWrap(GL_CLAMP_TO_BORDER, GL_CLAMP_TO_EDGE);
		texturePropsMask.SetMaxAnisotropy(4.f);
		m_TextureMask = g_Renderer.GetTextureManager().CreateTexture(texturePropsMask);
	}
}

void CCmpRallyPointRenderer::UpdateMarkers()
{
	player_id_t previousOwner = m_LastOwner;
	for (size_t i = 0; i < m_RallyPoints.size(); ++i)
	{
		if (i >= m_MarkerEntityIds.size())
			m_MarkerEntityIds.push_back(INVALID_ENTITY);

		if (m_MarkerEntityIds[i] == INVALID_ENTITY)
		{
			// no marker exists yet, create one first
			CComponentManager& componentMgr = GetSimContext().GetComponentManager();

			// allocate a new entity for the marker
			if (!m_MarkerTemplate.empty())
			{
				m_MarkerEntityIds[i] = componentMgr.AllocateNewLocalEntity();
				if (m_MarkerEntityIds[i] != INVALID_ENTITY)
					m_MarkerEntityIds[i] = componentMgr.AddEntity(m_MarkerTemplate, m_MarkerEntityIds[i]);
			}
		}

		// the marker entity should be valid at this point, otherwise something went wrong trying to allocate it
		if (m_MarkerEntityIds[i] == INVALID_ENTITY)
			LOGERROR(L"Failed to create rally point marker entity");

		CmpPtr<ICmpPosition> markerCmpPosition(GetSimContext(), m_MarkerEntityIds[i]);
		if (markerCmpPosition)
		{
			if (m_Displayed && IsSet())
			{
				markerCmpPosition->JumpTo(m_RallyPoints[i].X, m_RallyPoints[i].Y);
			}
			else
			{
				markerCmpPosition->MoveOutOfWorld(); // hide it
			}
		}

		// set rally point flag selection based on player civilization
		CmpPtr<ICmpOwnership> cmpOwnership(GetEntityHandle());
		if (!cmpOwnership)
			continue;

		player_id_t ownerId = cmpOwnership->GetOwner();
		if (ownerId == INVALID_PLAYER || (ownerId == previousOwner && m_LastMarkerCount >= i))
			continue;

		m_LastOwner = ownerId;
		CmpPtr<ICmpPlayerManager> cmpPlayerManager(GetSystemEntity());
		// cmpPlayerManager should not be null as long as this method is called on-demand instead of at Init() time
		// (we can't rely on component initialization order in Init())
		if (!cmpPlayerManager)
			continue;

		CmpPtr<ICmpPlayer> cmpPlayer(GetSimContext(), cmpPlayerManager->GetPlayerByID(ownerId));
		if (!cmpPlayer)
			continue;

		CmpPtr<ICmpVisual> cmpVisualActor(GetSimContext(), m_MarkerEntityIds[i]);
		if (cmpVisualActor)
			cmpVisualActor->SetUnitEntitySelection(CStrW(cmpPlayer->GetCiv()).ToUTF8());
	}
	m_LastMarkerCount = m_RallyPoints.size() - 1;
}

void CCmpRallyPointRenderer::RecomputeAllRallyPointPaths()
{
	m_Path.clear();
	m_VisibilitySegments.clear();
	m_TexturedOverlayLines.clear();

	//// <DEBUG> ///////////////////////////////////////////////
	if (m_EnableDebugNodeOverlay)
		m_DebugNodeOverlays.clear();
	//// </DEBUG> //////////////////////////////////////////////

	if (!IsSet())
		return; // no use computing a path if the rally point isn't set

	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return; // no point going on if this entity doesn't have a position or is outside of the world

	CmpPtr<ICmpFootprint> cmpFootprint(GetEntityHandle());
	CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());

	for (size_t i = 0; i < m_RallyPoints.size(); ++i)
	{
		RecomputeRallyPointPath(i, cmpPosition, cmpFootprint, cmpPathfinder);
	}
}

void CCmpRallyPointRenderer::RecomputeRallyPointPath_wrapper(size_t index)
{
	if (!IsSet())
		return; // no use computing a path if the rally point isn't set

	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return; // no point going on if this entity doesn't have a position or is outside of the world

	CmpPtr<ICmpFootprint> cmpFootprint(GetEntityHandle());
	CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());

	RecomputeRallyPointPath(index, cmpPosition, cmpFootprint, cmpPathfinder);
}

void CCmpRallyPointRenderer::RecomputeRallyPointPath(size_t index, CmpPtr<ICmpPosition>& cmpPosition, CmpPtr<ICmpFootprint>& cmpFootprint, CmpPtr<ICmpPathfinder> cmpPathfinder)
{
	while (index >= m_Path.size())
	{
		std::vector<CVector2D> tmp;
		m_Path.push_back(tmp);
	}
	m_Path[index].clear();

	while (index >= m_VisibilitySegments.size())
	{
		std::deque<SVisibilitySegment> tmp;
		m_VisibilitySegments.push_back(tmp);
	}
	m_VisibilitySegments[index].clear();

	entity_pos_t pathStartX;
	entity_pos_t pathStartY;

	if (index == 0)
	{
		pathStartX = cmpPosition->GetPosition2D().X;
		pathStartY = cmpPosition->GetPosition2D().Y;
	}
	else
	{
		pathStartX = m_RallyPoints[index-1].X;
		pathStartY = m_RallyPoints[index-1].Y;
	}

	// Find a long path to the goal point -- this uses the tile-based pathfinder, which will return a
	// list of waypoints (i.e. a Path) from the building/previous rally point to the goal, where each
	// waypoint is centered at a tile. We'll have to do some post-processing on the path to get it smooth.
	Path path;
	std::vector<Waypoint>& waypoints = path.m_Waypoints;

	Goal goal = { Goal::POINT, m_RallyPoints[index].X, m_RallyPoints[index].Y };
	cmpPathfinder->ComputePath(
		pathStartX,
		pathStartY,
		goal,
		cmpPathfinder->GetPassabilityClass(m_LinePassabilityClass),
		cmpPathfinder->GetCostClass(m_LineCostClass),
		path
	);

	// Check if we got a path back; if not we probably have two markers less than one tile apart.
	if (path.m_Waypoints.size() < 2)
	{
		m_Path[index].push_back(CVector2D(goal.x.ToFloat(), goal.z.ToFloat()));
		m_Path[index].push_back(CVector2D(pathStartX.ToFloat(), pathStartY.ToFloat()));
		return;
	}

	// From here on, we choose to represent the waypoints as CVector2D floats to avoid to have to convert back and forth
	// between fixed-point Waypoint/CFixedVector2D and various other float-based formats used by interpolation and whatnot.
	// Since we'll only be further using these points for rendering purposes, using floats should be fine.

	// Make sure to add the actual goal point as the last point (the long pathfinder only finds paths to the tile closest to the 
	// goal, so we need to complete the last bit from the closest tile to the rally point itself)
	// NOTE: the points are returned in reverse order (from the goal to the start point), so we actually need to insert it at the 
	// front of the coordinate list. Hence, we'll do this first before appending the rest of the fixed waypoints as CVector2Ds.

	Waypoint& lastWaypoint = waypoints.back();
	if (lastWaypoint.x != goal.x || lastWaypoint.z != goal.z)
		m_Path[index].push_back(CVector2D(goal.x.ToFloat(), goal.z.ToFloat()));

	// add the rest of the waypoints
	for (size_t i = 0; i < waypoints.size(); ++i)
		m_Path[index].push_back(CVector2D(waypoints[i].x.ToFloat(), waypoints[i].z.ToFloat()));

	// add the start position
	m_Path[index].push_back(CVector2D(pathStartX.ToFloat(), pathStartY.ToFloat()));

	// -------------------------------------------------------------------------------------------
	// post-processing

	// Linearize the path;
	// Pass through the waypoints, averaging each waypoint with its next one except the last one. Because the path
	// goes from the marker to this entity/the previous flag and we want to keep the point at the marker's exact position,
	// loop backwards through the waypoints so that the marker waypoint is maintained.
	// TODO: see if we can do this at the same time as the waypoint -> coord conversion above
	for(size_t i = m_Path[index].size() - 2; i > 0; --i)
		m_Path[index][i] = (m_Path[index][i] + m_Path[index][i-1]) / 2.0f;

	// if there's a footprint and this path starts from this entity, remove any points returned by the pathfinder that may be on obstructed footprint tiles
	if (index == 0 && cmpFootprint)
		FixFootprintWaypoints(m_Path[index], cmpPosition, cmpFootprint);

	// Eliminate some consecutive waypoints that are visible from eachother. Reduce across a maximum distance of approx. 6 tiles 
	// (prevents segments that are too long to properly stick to the terrain)
	ReduceSegmentsByVisibility(m_Path[index], 6);

	//// <DEBUG> ///////////////////////////////////////////////
	if (m_EnableDebugNodeOverlay)
	{
		while (index >= m_DebugNodeOverlays.size())
		{
			std::vector<SOverlayLine> tmp;
			m_DebugNodeOverlays.push_back(tmp);
		}
		m_DebugNodeOverlays[index].clear();
	}
	if (m_EnableDebugNodeOverlay && m_SmoothPath)
	{
		// Create separate control point overlays so we can differentiate when using smoothing (offset them a little higher from the
		// terrain so we can still see them after the interpolated points are added)
		for (size_t j = 0; j < m_Path[index].size(); ++j)
		{
			SOverlayLine overlayLine;
			overlayLine.m_Color = CColor(1.0f, 0.0f, 0.0f, 1.0f);
			overlayLine.m_Thickness = 2;
			SimRender::ConstructSquareOnGround(GetSimContext(), m_Path[index][j].X, m_Path[index][j].Y, 0.2f, 0.2f, 1.0f, overlayLine, true);
			m_DebugNodeOverlays[index].push_back(overlayLine);
		}
	}
	//// </DEBUG> //////////////////////////////////////////////

	if (m_SmoothPath)
		// The number of points to interpolate goes hand in hand with the maximum amount of node links allowed to be joined together
		// by the visibility reduction. The more node links that can be joined together, the more interpolated points you need to 
		// generate to be able to deal with local terrain height changes.
		SimRender::InterpolatePointsRNS(m_Path[index], false, 0, 8); // no offset, keep line at its exact path

	// -------------------------------------------------------------------------------------------

	// find which point is the last visible point before going into the SoD, so we have a point to compare to on the next turn
	GetVisibilitySegments(m_VisibilitySegments[index], index); 

	// build overlay lines for the new path
	ConstructOverlayLines(index);
}

void CCmpRallyPointRenderer::ConstructAllOverlayLines()
{
	m_TexturedOverlayLines.clear();

	for (size_t i = 0; i < m_Path.size(); ++i)
		ConstructOverlayLines(i);
}

void CCmpRallyPointRenderer::ConstructOverlayLines(size_t index)
{
	// We need to create a new SOverlayTexturedLine every time we want to change the coordinates after having passed it to the 
	// renderer, because it does some fancy vertex buffering thing and caches them internally instead of recomputing them on every 
	// pass (which is only sensible).
	while (index >= m_TexturedOverlayLines.size())
	{
		std::vector<SOverlayTexturedLine> tmp;
		m_TexturedOverlayLines.push_back(tmp);
	}
	m_TexturedOverlayLines[index].clear();

	if (m_Path[index].size() < 2)
		return;

	CmpPtr<ICmpTerrain> cmpTerrain(GetSystemEntity());
	LineCapType dashesLineCapType = SOverlayTexturedLine::LINECAP_ROUND; // line caps to use for the dashed segments (and any other segment's edges that border it)

	for (std::deque<SVisibilitySegment>::const_iterator it = m_VisibilitySegments[index].begin(); it != m_VisibilitySegments[index].end(); ++it)
	{
		const SVisibilitySegment& segment = (*it);

		if (segment.m_Visible)
		{
			// does this segment border on the building or rally point flag on either side?
			bool bordersBuilding = (segment.m_EndIndex == m_Path[index].size() - 1);
			bool bordersFlag = (segment.m_StartIndex == 0);

			// construct solid textured overlay line along a subset of the full path points from startPointIdx to endPointIdx
			SOverlayTexturedLine overlayLine;
			overlayLine.m_Thickness = m_LineThickness;
			overlayLine.m_SimContext = &GetSimContext();
			overlayLine.m_TextureBase = m_Texture;
			overlayLine.m_TextureMask = m_TextureMask;
			overlayLine.m_Color = m_LineColor;
			overlayLine.m_Closed = false;
			// we should take care to only use m_LineXCap for the actual end points at the building and the rally point; any intermediate
			// end points (i.e., that border a dashed segment) should have the dashed cap
			// the path line is actually in reverse order as well, so let's swap out the start and end caps
			overlayLine.m_StartCapType = (bordersFlag ? m_LineEndCapType : dashesLineCapType);
			overlayLine.m_EndCapType = (bordersBuilding ? m_LineStartCapType : dashesLineCapType);
			overlayLine.m_AlwaysVisible = true;

			// push overlay line coordinates
			ENSURE(segment.m_EndIndex > segment.m_StartIndex);
			for (size_t j = segment.m_StartIndex; j <= segment.m_EndIndex; ++j) // end index is inclusive here
			{
				overlayLine.m_Coords.push_back(m_Path[index][j].X);
				overlayLine.m_Coords.push_back(m_Path[index][j].Y);
			}

			m_TexturedOverlayLines[index].push_back(overlayLine);
		}
		else
		{
			// construct dashed line from startPointIdx to endPointIdx; add textured overlay lines for it to the render list
			std::vector<CVector2D> straightLine;
			straightLine.push_back(m_Path[index][segment.m_StartIndex]);
			straightLine.push_back(m_Path[index][segment.m_EndIndex]);

			// We always want to the dashed line to end at either point with a full dash (i.e. not a cleared space), so that the dashed
			// area is visually obvious. This requires some calculations to see what size we should make the dashes and clears for them
			// to fit exactly.

			float maxDashSize = 3.f;
			float maxClearSize = 3.f;
			
			float dashSize = maxDashSize;
			float clearSize = maxClearSize;
			float pairDashRatio = (dashSize / (dashSize + clearSize)); // ratio of the dash's length to a (dash + clear) pair's length

			float distance = (m_Path[index][segment.m_StartIndex] - m_Path[index][segment.m_EndIndex]).Length(); // straight-line distance between the points

			// See how many pairs (dash + clear) of unmodified size can fit into the distance. Then check the remaining distance; if it's not exactly
			// a dash size's worth (which it probably won't be), then adjust the dash/clear sizes slightly so that it is.
			int numFitUnmodified = floor(distance/(dashSize + clearSize));
			float remainderDistance = distance - (numFitUnmodified * (dashSize + clearSize));

			// Now we want to make remainderDistance equal exactly one dash size (i.e. maxDashSize) by scaling dashSize and clearSize slightly. 
			// We have (remainderDistance - maxDashSize) of space to distribute over numFitUnmodified instances of (dashSize + clearSize) to make
			// it fit, so each (dashSize + clearSize) pair needs to adjust its length by (remainderDistance - maxDashSize)/numFitUnmodified 
			// (which will be positive or negative accordingly). This number can then be distributed further proportionally among the dash's 
			// length and the clear's length.

			// we always want to have at least one dash/clear pair (i.e., "|===|   |===|"); also, we need to avoid division by zero below.
			numFitUnmodified = std::max(1, numFitUnmodified);

			float pairwiseLengthDifference = (remainderDistance - maxDashSize)/numFitUnmodified; // can be either positive or negative
			dashSize += pairDashRatio * pairwiseLengthDifference;
			clearSize += (1 - pairDashRatio) * pairwiseLengthDifference;

			// ------------------------------------------------------------------------------------------------

			SDashedLine dashedLine;
			SimRender::ConstructDashedLine(straightLine, dashedLine, dashSize, clearSize);

			// build overlay lines for dashes
			size_t numDashes = dashedLine.m_StartIndices.size();
			for (size_t i=0; i < numDashes; i++)
			{
				SOverlayTexturedLine dashOverlay;

				dashOverlay.m_Thickness = m_LineThickness;
				dashOverlay.m_SimContext = &GetSimContext();
				dashOverlay.m_TextureBase = m_Texture;
				dashOverlay.m_TextureMask = m_TextureMask;
				dashOverlay.m_Color = m_LineDashColor;
				dashOverlay.m_Closed = false;
				dashOverlay.m_StartCapType = dashesLineCapType;
				dashOverlay.m_EndCapType = dashesLineCapType;
				dashOverlay.m_AlwaysVisible = true;
				// TODO: maybe adjust the elevation of the dashes to be a little lower, so that it slides underneath the actual path

				size_t dashStartIndex = dashedLine.m_StartIndices[i];
				size_t dashEndIndex = dashedLine.GetEndIndex(i);
				ENSURE(dashEndIndex > dashStartIndex);

				for (size_t n = dashStartIndex; n < dashEndIndex; n++)
				{
					dashOverlay.m_Coords.push_back(dashedLine.m_Points[n].X);
					dashOverlay.m_Coords.push_back(dashedLine.m_Points[n].Y);
				}

				m_TexturedOverlayLines[index].push_back(dashOverlay);
			}
			
		}
	}

	//// <DEBUG> //////////////////////////////////////////////
	if (m_EnableDebugNodeOverlay)
	{
		while (index >= m_DebugNodeOverlays.size())
		{
			std::vector<SOverlayLine> tmp;
			m_DebugNodeOverlays.push_back(tmp);
		}
		for (size_t j = 0; j < m_Path[index].size(); ++j)
		{
			SOverlayLine overlayLine;
			overlayLine.m_Color = CColor(1.0f, 1.0f, 1.0f, 1.0f);
			overlayLine.m_Thickness = 1;
			SimRender::ConstructCircleOnGround(GetSimContext(), m_Path[index][j].X, m_Path[index][j].Y, 0.075f, overlayLine, true);
			m_DebugNodeOverlays[index].push_back(overlayLine);
		}
	}
	//// </DEBUG> //////////////////////////////////////////////
}

void CCmpRallyPointRenderer::UpdateOverlayLines()
{
	// We should only do this if the rally point is currently being displayed and set inside the world, otherwise it's a massive 
	// waste of time to calculate all this stuff (this method is called every turn)
	if (!m_Displayed || !IsSet())
		return;

	// see if there have been any changes to the SoD by grabbing the visibility edge points and comparing them to the previous ones
	std::deque<std::deque<SVisibilitySegment> > newVisibilitySegments;
	for (size_t i = 0; i < m_Path.size(); ++i)
	{
		std::deque<SVisibilitySegment> tmp;
		newVisibilitySegments.push_back(tmp);
		GetVisibilitySegments(newVisibilitySegments[i], i);
	}

	// Check if the full path changed, then reconstruct all overlay lines, otherwise check if a segment changed and update that.
	if (m_VisibilitySegments.size() != newVisibilitySegments.size())
	{
		m_VisibilitySegments = newVisibilitySegments; // save the new visibility segments to compare against next time
		ConstructAllOverlayLines();
	}
	else
	{
		for (size_t i = 0; i < m_VisibilitySegments.size(); ++i)
		{
			if (m_VisibilitySegments[i] != newVisibilitySegments[i])
			{
				// The visibility segments have changed, reconstruct the overlay lines to match. NOTE: The path itself doesn't
				// change, only the overlay lines we construct from it.
				m_VisibilitySegments[i] = newVisibilitySegments[i]; // save the new visibility segments to compare against next time
				ConstructOverlayLines(i);
			}
		}
	}
}

void CCmpRallyPointRenderer::FixFootprintWaypoints(std::vector<CVector2D>& coords, CmpPtr<ICmpPosition> cmpPosition, CmpPtr<ICmpFootprint> cmpFootprint)
{
	ENSURE(cmpPosition);
	ENSURE(cmpFootprint);

	// -----------------------------------------------------------------------------------------------------
	// TODO: nasty fixed/float conversions everywhere

	// grab the shape and dimensions of the footprint
	entity_pos_t footprintSize0, footprintSize1, footprintHeight;
	ICmpFootprint::EShape footprintShape;
	cmpFootprint->GetShape(footprintShape, footprintSize0, footprintSize1, footprintHeight);

	// grab the center of the footprint
	CFixedVector2D center = cmpPosition->GetPosition2D();

	// -----------------------------------------------------------------------------------------------------

	switch (footprintShape)
	{
	case ICmpFootprint::SQUARE:
		{
			// in this case, footprintSize0 and 1 indicate the size along the X and Z axes, respectively.

			// the building's footprint could be rotated any which way, so let's get the rotation around the Y axis
			// and the rotated unit vectors in the X/Z plane of the shape's footprint
			// (the Footprint itself holds only the outline, the Position holds the orientation)

			fixed s, c; // sine and cosine of the Y axis rotation angle (aka the yaw)
			fixed a = cmpPosition->GetRotation().Y;
			sincos_approx(a, s, c);
			CFixedVector2D u(c, -s); // unit vector along the rotated X axis
			CFixedVector2D v(s, c); // unit vector along the rotated Z axis
			CFixedVector2D halfSize(footprintSize0/2, footprintSize1/2);

			// starting from the start position, check if any points are within the footprint of the building
			// (this is possible if the pathfinder was started from a point located within the footprint)
			for(int i = (int)(coords.size() - 1); i >= 0; i--)
			{
				const CVector2D& wp = coords[i];
				if (Geometry::PointIsInSquare(CFixedVector2D(fixed::FromFloat(wp.X), fixed::FromFloat(wp.Y)) - center, u, v, halfSize))
				{
					coords.erase(coords.begin() + i);
				}
				else
				{
					break; // point no longer inside footprint, from this point on neither will any of the following be
				}
			}

			// add a point right on the edge of the footprint (nearest to the last waypoint) so that it links up nicely with the rest of the path
			CFixedVector2D lastWaypoint(fixed::FromFloat(coords.back().X), fixed::FromFloat(coords.back().Y));
			CFixedVector2D footprintEdgePoint = Geometry::NearestPointOnSquare(lastWaypoint - center, u, v, halfSize); // relative to the shape origin (center)
			CVector2D footprintEdge((center.X + footprintEdgePoint.X).ToFloat(), (center.Y + footprintEdgePoint.Y).ToFloat());
			coords.push_back(footprintEdge);

		}
		break;
	case ICmpFootprint::CIRCLE:
		{
			// in this case, both footprintSize0 and 1 indicate the circle's radius

			for(int i = (int)(coords.size() - 1); i >= 0; i--)
			{
				const CVector2D& wp = coords[i];
				fixed pointDistance = (CFixedVector2D(fixed::FromFloat(wp.X), fixed::FromFloat(wp.Y)) - center).Length();
				if (pointDistance <= footprintSize0)
				{
					coords.erase(coords.begin() + i);
				}
				else
				{
					break; // point no longer inside footprint, from this point on neither will any of the following be
				}
			}

			// add a point right on the edge of the footprint so that it links up nicely with the rest of the path
			CVector2D centerVec2D(center.X.ToFloat(), center.Y.ToFloat());
			CVector2D centerToLast(coords.back() - centerVec2D);
			coords.push_back(centerVec2D + (centerToLast.Normalized() * footprintSize0.ToFloat()));
		}
		break;
	}
}

void CCmpRallyPointRenderer::ReduceSegmentsByVisibility(std::vector<CVector2D>& coords, unsigned maxSegmentLinks, bool floating)
{
	CmpPtr<ICmpPathfinder> cmpPathFinder(GetSystemEntity());
	CmpPtr<ICmpTerrain> cmpTerrain(GetSystemEntity());
	CmpPtr<ICmpWaterManager> cmpWaterManager(GetSystemEntity());
	ENSURE(cmpPathFinder && cmpTerrain && cmpWaterManager);

	if (coords.size() < 3)
		return;

	// The basic idea is this: starting from a base node, keep checking each individual point along the path to see if there's a visible
	// line between it and the base point. If so, keep going, otherwise, make the last visible point the new base node and start the same
	// process from there on until the entire line is checked. The output is the array of base nodes.

	std::vector<CVector2D> newCoords;
	StationaryOnlyObstructionFilter obstructionFilter;
	entity_pos_t lineRadius = fixed::FromFloat(m_LineThickness);
	ICmpPathfinder::pass_class_t passabilityClass = cmpPathFinder->GetPassabilityClass(m_LinePassabilityClass);

	newCoords.push_back(coords[0]); // save the first base node

	size_t baseNodeIdx = 0;
	size_t curNodeIdx = 1;

	float baseNodeY;
	entity_pos_t baseNodeX;
	entity_pos_t baseNodeZ;

	// set initial base node coords
	baseNodeX = fixed::FromFloat(coords[baseNodeIdx].X);
	baseNodeZ = fixed::FromFloat(coords[baseNodeIdx].Y);
	baseNodeY = cmpTerrain->GetExactGroundLevel(coords[baseNodeIdx].X, coords[baseNodeIdx].Y);
	if (floating)
		baseNodeY = std::max(baseNodeY, cmpWaterManager->GetExactWaterLevel(coords[baseNodeIdx].X, coords[baseNodeIdx].Y));

	while (curNodeIdx < coords.size())
	{
		ENSURE(curNodeIdx > baseNodeIdx); // this needs to be true at all times, otherwise we're checking visibility between a point and itself

		entity_pos_t curNodeX = fixed::FromFloat(coords[curNodeIdx].X);
		entity_pos_t curNodeZ = fixed::FromFloat(coords[curNodeIdx].Y);
		float curNodeY = cmpTerrain->GetExactGroundLevel(coords[curNodeIdx].X, coords[curNodeIdx].Y);
		if (floating)
			curNodeY = std::max(curNodeY, cmpWaterManager->GetExactWaterLevel(coords[curNodeIdx].X, coords[curNodeIdx].Y));

		// find out whether curNode is visible from baseNode (careful; this is in 2D only; terrain height differences are ignored!)
		bool curNodeVisible = cmpPathFinder->CheckMovement(obstructionFilter, baseNodeX, baseNodeZ, curNodeX, curNodeZ, lineRadius, passabilityClass);

		// since height differences are ignored by CheckMovement, let's call two points visible from one another only if they're at 
		// roughly the same terrain elevation
		curNodeVisible = curNodeVisible && (fabsf(curNodeY - baseNodeY) < 3.f); // TODO: this could probably use some tuning
		if (maxSegmentLinks > 0)
			// max. amount of node-to-node links to be eliminated (unsigned subtraction is valid because curNodeIdx is always > baseNodeIdx)
			curNodeVisible = curNodeVisible && ((curNodeIdx - baseNodeIdx) <= maxSegmentLinks);

		if (!curNodeVisible)
		{
			// current node is not visible from the base node, so the previous one was the last visible point from baseNode and should
			// hence become the new base node for further iterations.

			// if curNodeIdx is adjacent to the current baseNode (which is possible due to steep height differences, e.g. hills), then
			// we should take care not to stay stuck at the current base node
			if (curNodeIdx > baseNodeIdx + 1)
			{
				baseNodeIdx = curNodeIdx - 1;
			}
			else
			{
				// curNodeIdx == baseNodeIdx + 1
				baseNodeIdx = curNodeIdx;
				curNodeIdx++; // move the next candidate node one forward so that we don't test a point against itself in the next iteration
			}

			newCoords.push_back(coords[baseNodeIdx]); // add new base node to output list

			// update base node coordinates
			baseNodeX = fixed::FromFloat(coords[baseNodeIdx].X);
			baseNodeZ = fixed::FromFloat(coords[baseNodeIdx].Y);
			baseNodeY = cmpTerrain->GetExactGroundLevel(coords[baseNodeIdx].X, coords[baseNodeIdx].Y);
			if (floating)
				baseNodeY = std::max(baseNodeY, cmpWaterManager->GetExactWaterLevel(coords[baseNodeIdx].X, coords[baseNodeIdx].Y));
		}

		curNodeIdx++;
	}

	// we always need to add the last point back to the array; if e.g. all the points up to the last one are all visible from the current
	// base node, then the loop above just ends and no endpoint is ever added to the list.
	ENSURE(curNodeIdx == coords.size());
	newCoords.push_back(coords[coords.size() - 1]);

	coords.swap(newCoords);
}

void CCmpRallyPointRenderer::GetVisibilitySegments(std::deque<SVisibilitySegment>& out, size_t index)
{
	out.clear();

	if (m_Path[index].size() < 2)
		return;

	CmpPtr<ICmpRangeManager> cmpRangeMgr(GetSystemEntity());

	player_id_t currentPlayer = GetSimContext().GetCurrentDisplayedPlayer();
	CLosQuerier losQuerier(cmpRangeMgr->GetLosQuerier(currentPlayer));

	// go through the path node list, comparing each node's visibility with the previous one. If it changes, end the current segment and start
	// a new one at the next point.

	bool lastVisible = losQuerier.IsExplored(
		(fixed::FromFloat(m_Path[index][0].X) / (int) TERRAIN_TILE_SIZE).ToInt_RoundToNearest(),
		(fixed::FromFloat(m_Path[index][0].Y) / (int) TERRAIN_TILE_SIZE).ToInt_RoundToNearest()
	);
	size_t curSegmentStartIndex = 0; // starting node index of the current segment

	for (size_t k = 1; k < m_Path[index].size(); ++k)
	{
		// grab tile indices for this coord
		int i = (fixed::FromFloat(m_Path[index][k].X) / (int)TERRAIN_TILE_SIZE).ToInt_RoundToNearest();
		int j = (fixed::FromFloat(m_Path[index][k].Y) / (int)TERRAIN_TILE_SIZE).ToInt_RoundToNearest();

		bool nodeVisible = losQuerier.IsExplored(i, j);
		if (nodeVisible != lastVisible)
		{
			// visibility changed; write out the segment that was just completed and get ready for the new one
			out.push_back(SVisibilitySegment(lastVisible, curSegmentStartIndex, k - 1));

			//curSegmentStartIndex = k; // new segment starts here
			curSegmentStartIndex = k - 1;
			lastVisible = nodeVisible;
		}

	}

	// terminate the last segment
	out.push_back(SVisibilitySegment(lastVisible, curSegmentStartIndex, m_Path[index].size() - 1));

	MergeVisibilitySegments(out);
}

void CCmpRallyPointRenderer::MergeVisibilitySegments(std::deque<SVisibilitySegment>& segments)
{
	// Scan for single-point segments; if they are inbetween two other segments, delete them and merge the surrounding segments.
	// If they're at either end of the path, include them in their bordering segment (but only if those bordering segments aren't 
	// themselves single-point segments, because then we would want those to get absorbed by its surrounding ones first).

	// first scan for absorptions of single-point surrounded segments (i.e. excluding edge segments)
	size_t numSegments = segments.size();

	// WARNING: FOR LOOP TRICKERY AHEAD!
	for (size_t i = 1; i < numSegments - 1;)
	{
		SVisibilitySegment& segment = segments[i];
		if (segment.IsSinglePoint())
		{
			// since the segments' visibility alternates, the surrounding ones should have the same visibility
			ENSURE(segments[i-1].m_Visible == segments[i+1].m_Visible);

			segments[i-1].m_EndIndex = segments[i+1].m_EndIndex; // make previous segment span all the way across to the next
			segments.erase(segments.begin() + i); // erase this segment ...
			segments.erase(segments.begin() + i); // and the next (we removed [i], so [i+1] is now at position [i])
			numSegments -= 2; // we removed 2 segments, so update the loop condition
			// in the next iteration, i should still point to the segment right after the one that got expanded, which is now
			// at position i; so don't increment i here
		}
		else
		{
			++i;
		}
	}

	ENSURE(numSegments == segments.size());

	// check to see if the first segment needs to be merged with its neighbour
	if (segments.size() >= 2 && segments[0].IsSinglePoint())
	{
		int firstSegmentStartIndex = segments.front().m_StartIndex;
		ENSURE(firstSegmentStartIndex == 0);
		ENSURE(!segments[1].IsSinglePoint()); // at this point, the second segment should never be a single-point segment

		segments.erase(segments.begin());
		segments.front().m_StartIndex = firstSegmentStartIndex;
	}

	// check to see if the last segment needs to be merged with its neighbour
	if (segments.size() >= 2 && segments[segments.size()-1].IsSinglePoint())
	{
		int lastSegmentEndIndex = segments.back().m_EndIndex;
		ENSURE(!segments[segments.size()-2].IsSinglePoint()); // at this point, the second-to-last segment should never be a single-point segment

		segments.erase(segments.end());
		segments.back().m_EndIndex = lastSegmentEndIndex;
	}

	// --------------------------------------------------------------------------------------------------------
	// at this point, every segment should have at least 2 points
	for (size_t i = 0; i < segments.size(); ++i)
	{
		ENSURE(!segments[i].IsSinglePoint());
		ENSURE(segments[i].m_EndIndex > segments[i].m_StartIndex);
	}
}

void CCmpRallyPointRenderer::RenderSubmit(SceneCollector& collector)
{
	// we only get here if the rally point is set and should be displayed
	for (size_t i = 0; i < m_TexturedOverlayLines.size(); ++i)
	{
		for (size_t j = 0; j < m_TexturedOverlayLines[i].size(); ++j)
		{
			if (!m_TexturedOverlayLines[i][j].m_Coords.empty())
				collector.Submit(&m_TexturedOverlayLines[i][j]);
		}
	}

	if (m_EnableDebugNodeOverlay && !m_DebugNodeOverlays.empty())
	{
		for (size_t i = 0; i < m_DebugNodeOverlays.size(); ++i)
			for (size_t j = 0; j < m_DebugNodeOverlays[i].size(); ++j)
				collector.Submit(&m_DebugNodeOverlays[i][j]);
	}
}