File: Geometry.cpp

package info (click to toggle)
0ad 0.0.17-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 51,248 kB
  • ctags: 46,933
  • sloc: cpp: 223,208; ansic: 31,240; python: 16,343; perl: 4,083; sh: 1,011; makefile: 915; xml: 733; java: 621; ruby: 229; erlang: 53; sql: 40
file content (335 lines) | stat: -rw-r--r-- 10,782 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/* Copyright (C) 2012 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "precompiled.h"

#include "Geometry.h"

#include "maths/FixedVector2D.h"

using namespace Geometry;

// TODO: all of these things could be optimised quite easily

bool Geometry::PointIsInSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
	fixed du = point.Dot(u);
	if (-halfSize.X <= du && du <= halfSize.X)
	{
		fixed dv = point.Dot(v);
		if (-halfSize.Y <= dv && dv <= halfSize.Y)
			return true;
	}
	return false;
}

CFixedVector2D Geometry::GetHalfBoundingBox(CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
	return CFixedVector2D(
		u.X.Multiply(halfSize.X).Absolute() + v.X.Multiply(halfSize.Y).Absolute(),
		u.Y.Multiply(halfSize.X).Absolute() + v.Y.Multiply(halfSize.Y).Absolute()
	);
}

float Geometry::ChordToCentralAngle(const float chordLength, const float radius)
{
	return acosf(1.f - SQR(chordLength)/(2.f*SQR(radius))); // cfr. law of cosines
}

fixed Geometry::DistanceToSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
	/*
	 * Relative to its own coordinate system, we have a square like:
	 *
	 *  A  :    B    :  C
	 *     :         :
	 * - - ########### - -
	 *     #         #
	 *     # I       #
	 *  D  #    0    #  E     v
	 *     #         #        ^
	 *     #         #        |
	 * - - ########### - -      -->u
	 *     :         :
	 *  F  :    G    :  H
	 *
	 * where 0 is the center, u and v are unit axes,
	 * and the square is hw*2 by hh*2 units in size.
	 *
	 * Points in the BIG regions should check distance to horizontal edges.
	 * Points in the DIE regions should check distance to vertical edges.
	 * Points in the ACFH regions should check distance to the corresponding corner.
	 *
	 * So we just need to check all of the regions to work out which calculations to apply.
	 *
	 */

	// du, dv are the location of the point in the square's coordinate system
	fixed du = point.Dot(u);
	fixed dv = point.Dot(v);

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	// TODO: I haven't actually tested this

	if (-hw < du && du < hw) // regions B, I, G
	{
		fixed closest = (dv.Absolute() - hh).Absolute(); // horizontal edges

		if (-hh < dv && dv < hh) // region I
			closest = std::min(closest, (du.Absolute() - hw).Absolute()); // vertical edges

		return closest;
	}
	else if (-hh < dv && dv < hh) // regions D, E
	{
		return (du.Absolute() - hw).Absolute(); // vertical edges
	}
	else // regions A, C, F, H
	{
		CFixedVector2D corner;
		if (du < fixed::Zero()) // A, F
			corner -= u.Multiply(hw);
		else // C, H
			corner += u.Multiply(hw);
		if (dv < fixed::Zero()) // F, H
			corner -= v.Multiply(hh);
		else // A, C
			corner += v.Multiply(hh);

		return (corner - point).Length();
	}
}

CFixedVector2D Geometry::NearestPointOnSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
	/*
	 * Relative to its own coordinate system, we have a square like:
	 *
	 *  A  :         :  C
	 *     :         :
	 * - - #### B #### - -
	 *     #\       /#
	 *     # \     / #
	 *     D  --0--  E        v
	 *     # /     \ #        ^
	 *     #/       \#        |
	 * - - #### G #### - -      -->u
	 *     :         :
	 *  F  :         :  H
	 *
	 * where 0 is the center, u and v are unit axes,
	 * and the square is hw*2 by hh*2 units in size.
	 *
	 * Points in the BDEG regions are nearest to the corresponding edge.
	 * Points in the ACFH regions are nearest to the corresponding corner.
	 *
	 * So we just need to check all of the regions to work out which calculations to apply.
	 *
	 */

	// du, dv are the location of the point in the square's coordinate system
	fixed du = point.Dot(u);
	fixed dv = point.Dot(v);

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	if (-hw < du && du < hw) // regions B, G; or regions D, E inside the square
	{
		if (-hh < dv && dv < hh && (du.Absolute() - hw).Absolute() < (dv.Absolute() - hh).Absolute()) // regions D, E
		{
			if (du >= fixed::Zero()) // E
				return u.Multiply(hw) + v.Multiply(dv);
			else // D
				return -u.Multiply(hw) + v.Multiply(dv);
		}
		else // B, G
		{
			if (dv >= fixed::Zero()) // B
				return v.Multiply(hh) + u.Multiply(du);
			else // G
				return -v.Multiply(hh) + u.Multiply(du);
		}
	}
	else if (-hh < dv && dv < hh) // regions D, E outside the square
	{
		if (du >= fixed::Zero()) // E
			return u.Multiply(hw) + v.Multiply(dv);
		else // D
			return -u.Multiply(hw) + v.Multiply(dv);
	}
	else // regions A, C, F, H
	{
		CFixedVector2D corner;
		if (du < fixed::Zero()) // A, F
			corner -= u.Multiply(hw);
		else // C, H
			corner += u.Multiply(hw);
		if (dv < fixed::Zero()) // F, H
			corner -= v.Multiply(hh);
		else // A, C
			corner += v.Multiply(hh);

		return corner;
	}
}

bool Geometry::TestRaySquare(CFixedVector2D a, CFixedVector2D b, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
	/*
	 * We only consider collisions to be when the ray goes from outside to inside the shape (and possibly out again).
	 * Various cases to consider:
	 *   'a' inside, 'b' inside -> no collision
	 *   'a' inside, 'b' outside -> no collision
	 *   'a' outside, 'b' inside -> collision
	 *   'a' outside, 'b' outside -> depends; use separating axis theorem:
	 *     if the ray's bounding box is outside the square -> no collision
	 *     if the whole square is on the same side of the ray -> no collision
	 *     otherwise -> collision
	 * (Points on the edge are considered 'inside'.)
	 */

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	fixed au = a.Dot(u);
	fixed av = a.Dot(v);

	if (-hw <= au && au <= hw && -hh <= av && av <= hh)
		return false; // a is inside

	fixed bu = b.Dot(u);
	fixed bv = b.Dot(v);

	if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
		return true; // a is outside, b is inside

	if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
		return false; // ab is entirely above/below/side the square

	CFixedVector2D abp = (b - a).Perpendicular();
	fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
	fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
	if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
		return true; // ray intersects the corner

	bool sign = (s0 < fixed::Zero());
	if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
		return true; // ray cuts through the square

	return false;
}

bool Geometry::TestRayAASquare(CFixedVector2D a, CFixedVector2D b, CFixedVector2D halfSize)
{
	// Exactly like TestRaySquare with u=(1,0), v=(0,1)

	// Assume the compiler is clever enough to inline and simplify all this
	// (TODO: stop assuming that)
	CFixedVector2D u (fixed::FromInt(1), fixed::Zero());
	CFixedVector2D v (fixed::Zero(), fixed::FromInt(1));

	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	fixed au = a.Dot(u);
	fixed av = a.Dot(v);

	if (-hw <= au && au <= hw && -hh <= av && av <= hh)
		return false; // a is inside

	fixed bu = b.Dot(u);
	fixed bv = b.Dot(v);

	if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
		return true; // a is outside, b is inside

	if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
		return false; // ab is entirely above/below/side the square

	CFixedVector2D abp = (b - a).Perpendicular();
	fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
	fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
	fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
	if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
		return true; // ray intersects the corner

	bool sign = (s0 < fixed::Zero());
	if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
		return true; // ray cuts through the square

	return false;
}

/**
 * Separating axis test; returns true if the square defined by u/v/halfSize at the origin
 * is not entirely on the clockwise side of a line in direction 'axis' passing through 'a'
 */
static bool SquareSAT(CFixedVector2D a, CFixedVector2D axis, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
	fixed hw = halfSize.X;
	fixed hh = halfSize.Y;

	CFixedVector2D p = axis.Perpendicular();
	if (p.Dot((u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
		return true;
	if (p.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
		return true;

	return false;
}

bool Geometry::TestSquareSquare(
		CFixedVector2D c0, CFixedVector2D u0, CFixedVector2D v0, CFixedVector2D halfSize0,
		CFixedVector2D c1, CFixedVector2D u1, CFixedVector2D v1, CFixedVector2D halfSize1)
{
	// TODO: need to test this carefully

	CFixedVector2D corner0a = c0 + u0.Multiply(halfSize0.X) + v0.Multiply(halfSize0.Y);
	CFixedVector2D corner0b = c0 - u0.Multiply(halfSize0.X) - v0.Multiply(halfSize0.Y);
	CFixedVector2D corner1a = c1 + u1.Multiply(halfSize1.X) + v1.Multiply(halfSize1.Y);
	CFixedVector2D corner1b = c1 - u1.Multiply(halfSize1.X) - v1.Multiply(halfSize1.Y);

	// Do a SAT test for each square vs each edge of the other square
	if (!SquareSAT(corner0a - c1, -u0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner0a - c1, v0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner0b - c1, u0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner0b - c1, -v0, u1, v1, halfSize1))
		return false;
	if (!SquareSAT(corner1a - c0, -u1, u0, v0, halfSize0))
		return false;
	if (!SquareSAT(corner1a - c0, v1, u0, v0, halfSize0))
		return false;
	if (!SquareSAT(corner1b - c0, u1, u0, v0, halfSize0))
		return false;
	if (!SquareSAT(corner1b - c0, -v1, u0, v0, halfSize0))
		return false;

	return true;
}