1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/* Copyright (C) 2012 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "Geometry.h"
#include "maths/FixedVector2D.h"
using namespace Geometry;
// TODO: all of these things could be optimised quite easily
bool Geometry::PointIsInSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
fixed du = point.Dot(u);
if (-halfSize.X <= du && du <= halfSize.X)
{
fixed dv = point.Dot(v);
if (-halfSize.Y <= dv && dv <= halfSize.Y)
return true;
}
return false;
}
CFixedVector2D Geometry::GetHalfBoundingBox(CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
return CFixedVector2D(
u.X.Multiply(halfSize.X).Absolute() + v.X.Multiply(halfSize.Y).Absolute(),
u.Y.Multiply(halfSize.X).Absolute() + v.Y.Multiply(halfSize.Y).Absolute()
);
}
float Geometry::ChordToCentralAngle(const float chordLength, const float radius)
{
return acosf(1.f - SQR(chordLength)/(2.f*SQR(radius))); // cfr. law of cosines
}
fixed Geometry::DistanceToSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
/*
* Relative to its own coordinate system, we have a square like:
*
* A : B : C
* : :
* - - ########### - -
* # #
* # I #
* D # 0 # E v
* # # ^
* # # |
* - - ########### - - -->u
* : :
* F : G : H
*
* where 0 is the center, u and v are unit axes,
* and the square is hw*2 by hh*2 units in size.
*
* Points in the BIG regions should check distance to horizontal edges.
* Points in the DIE regions should check distance to vertical edges.
* Points in the ACFH regions should check distance to the corresponding corner.
*
* So we just need to check all of the regions to work out which calculations to apply.
*
*/
// du, dv are the location of the point in the square's coordinate system
fixed du = point.Dot(u);
fixed dv = point.Dot(v);
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
// TODO: I haven't actually tested this
if (-hw < du && du < hw) // regions B, I, G
{
fixed closest = (dv.Absolute() - hh).Absolute(); // horizontal edges
if (-hh < dv && dv < hh) // region I
closest = std::min(closest, (du.Absolute() - hw).Absolute()); // vertical edges
return closest;
}
else if (-hh < dv && dv < hh) // regions D, E
{
return (du.Absolute() - hw).Absolute(); // vertical edges
}
else // regions A, C, F, H
{
CFixedVector2D corner;
if (du < fixed::Zero()) // A, F
corner -= u.Multiply(hw);
else // C, H
corner += u.Multiply(hw);
if (dv < fixed::Zero()) // F, H
corner -= v.Multiply(hh);
else // A, C
corner += v.Multiply(hh);
return (corner - point).Length();
}
}
CFixedVector2D Geometry::NearestPointOnSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
/*
* Relative to its own coordinate system, we have a square like:
*
* A : : C
* : :
* - - #### B #### - -
* #\ /#
* # \ / #
* D --0-- E v
* # / \ # ^
* #/ \# |
* - - #### G #### - - -->u
* : :
* F : : H
*
* where 0 is the center, u and v are unit axes,
* and the square is hw*2 by hh*2 units in size.
*
* Points in the BDEG regions are nearest to the corresponding edge.
* Points in the ACFH regions are nearest to the corresponding corner.
*
* So we just need to check all of the regions to work out which calculations to apply.
*
*/
// du, dv are the location of the point in the square's coordinate system
fixed du = point.Dot(u);
fixed dv = point.Dot(v);
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (-hw < du && du < hw) // regions B, G; or regions D, E inside the square
{
if (-hh < dv && dv < hh && (du.Absolute() - hw).Absolute() < (dv.Absolute() - hh).Absolute()) // regions D, E
{
if (du >= fixed::Zero()) // E
return u.Multiply(hw) + v.Multiply(dv);
else // D
return -u.Multiply(hw) + v.Multiply(dv);
}
else // B, G
{
if (dv >= fixed::Zero()) // B
return v.Multiply(hh) + u.Multiply(du);
else // G
return -v.Multiply(hh) + u.Multiply(du);
}
}
else if (-hh < dv && dv < hh) // regions D, E outside the square
{
if (du >= fixed::Zero()) // E
return u.Multiply(hw) + v.Multiply(dv);
else // D
return -u.Multiply(hw) + v.Multiply(dv);
}
else // regions A, C, F, H
{
CFixedVector2D corner;
if (du < fixed::Zero()) // A, F
corner -= u.Multiply(hw);
else // C, H
corner += u.Multiply(hw);
if (dv < fixed::Zero()) // F, H
corner -= v.Multiply(hh);
else // A, C
corner += v.Multiply(hh);
return corner;
}
}
bool Geometry::TestRaySquare(CFixedVector2D a, CFixedVector2D b, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
/*
* We only consider collisions to be when the ray goes from outside to inside the shape (and possibly out again).
* Various cases to consider:
* 'a' inside, 'b' inside -> no collision
* 'a' inside, 'b' outside -> no collision
* 'a' outside, 'b' inside -> collision
* 'a' outside, 'b' outside -> depends; use separating axis theorem:
* if the ray's bounding box is outside the square -> no collision
* if the whole square is on the same side of the ray -> no collision
* otherwise -> collision
* (Points on the edge are considered 'inside'.)
*/
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
fixed au = a.Dot(u);
fixed av = a.Dot(v);
if (-hw <= au && au <= hw && -hh <= av && av <= hh)
return false; // a is inside
fixed bu = b.Dot(u);
fixed bv = b.Dot(v);
if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
return true; // a is outside, b is inside
if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
return false; // ab is entirely above/below/side the square
CFixedVector2D abp = (b - a).Perpendicular();
fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
return true; // ray intersects the corner
bool sign = (s0 < fixed::Zero());
if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
return true; // ray cuts through the square
return false;
}
bool Geometry::TestRayAASquare(CFixedVector2D a, CFixedVector2D b, CFixedVector2D halfSize)
{
// Exactly like TestRaySquare with u=(1,0), v=(0,1)
// Assume the compiler is clever enough to inline and simplify all this
// (TODO: stop assuming that)
CFixedVector2D u (fixed::FromInt(1), fixed::Zero());
CFixedVector2D v (fixed::Zero(), fixed::FromInt(1));
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
fixed au = a.Dot(u);
fixed av = a.Dot(v);
if (-hw <= au && au <= hw && -hh <= av && av <= hh)
return false; // a is inside
fixed bu = b.Dot(u);
fixed bv = b.Dot(v);
if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
return true; // a is outside, b is inside
if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
return false; // ab is entirely above/below/side the square
CFixedVector2D abp = (b - a).Perpendicular();
fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
return true; // ray intersects the corner
bool sign = (s0 < fixed::Zero());
if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
return true; // ray cuts through the square
return false;
}
/**
* Separating axis test; returns true if the square defined by u/v/halfSize at the origin
* is not entirely on the clockwise side of a line in direction 'axis' passing through 'a'
*/
static bool SquareSAT(CFixedVector2D a, CFixedVector2D axis, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize)
{
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
CFixedVector2D p = axis.Perpendicular();
if (p.Dot((u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
return true;
if (p.Dot((u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
return true;
if (p.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero())
return true;
if (p.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero())
return true;
return false;
}
bool Geometry::TestSquareSquare(
CFixedVector2D c0, CFixedVector2D u0, CFixedVector2D v0, CFixedVector2D halfSize0,
CFixedVector2D c1, CFixedVector2D u1, CFixedVector2D v1, CFixedVector2D halfSize1)
{
// TODO: need to test this carefully
CFixedVector2D corner0a = c0 + u0.Multiply(halfSize0.X) + v0.Multiply(halfSize0.Y);
CFixedVector2D corner0b = c0 - u0.Multiply(halfSize0.X) - v0.Multiply(halfSize0.Y);
CFixedVector2D corner1a = c1 + u1.Multiply(halfSize1.X) + v1.Multiply(halfSize1.Y);
CFixedVector2D corner1b = c1 - u1.Multiply(halfSize1.X) - v1.Multiply(halfSize1.Y);
// Do a SAT test for each square vs each edge of the other square
if (!SquareSAT(corner0a - c1, -u0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0a - c1, v0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0b - c1, u0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0b - c1, -v0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner1a - c0, -u1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1a - c0, v1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1b - c0, u1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1b - c0, -v1, u0, v0, halfSize0))
return false;
return true;
}
|