1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/* Copyright (C) 2010 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_PRIORITYQUEUE
#define INCLUDED_PRIORITYQUEUE
/*
* Priority queues for pathfinder.
* (These probably aren't suitable for more general uses.)
*/
#ifdef NDEBUG
#define PRIORITYQUEUE_DEBUG 0
#else
#define PRIORITYQUEUE_DEBUG 1
#endif
template <typename Item, typename CMP>
struct QueueItemPriority
{
bool operator()(const Item& a, const Item& b)
{
if (CMP()(b.rank, a.rank)) // higher costs are lower priority
return true;
if (CMP()(a.rank, b.rank))
return false;
// Need to tie-break to get a consistent ordering
// TODO: Should probably tie-break on g or h or something, but don't bother for now
if (a.id < b.id)
return true;
if (b.id < a.id)
return false;
#if PRIORITYQUEUE_DEBUG
debug_warn(L"duplicate tiles in queue");
#endif
return false;
}
};
/**
* Priority queue implemented as a binary heap.
* This is quite dreadfully slow in MSVC's debug STL implementation,
* so we shouldn't use it unless we reimplement the heap functions more efficiently.
*/
template <typename ID, typename R, typename CMP = std::less<R> >
class PriorityQueueHeap
{
public:
struct Item
{
ID id;
R rank; // f = g+h (estimated total cost of path through here)
};
void push(const Item& item)
{
m_Heap.push_back(item);
push_heap(m_Heap.begin(), m_Heap.end(), QueueItemPriority<Item, CMP>());
}
Item* find(ID id)
{
for (size_t n = 0; n < m_Heap.size(); ++n)
{
if (m_Heap[n].id == id)
return &m_Heap[n];
}
return NULL;
}
void promote(ID id, R newrank)
{
for (size_t n = 0; n < m_Heap.size(); ++n)
{
if (m_Heap[n].id == id)
{
#if PRIORITYQUEUE_DEBUG
ENSURE(m_Heap[n].rank > newrank);
#endif
m_Heap[n].rank = newrank;
push_heap(m_Heap.begin(), m_Heap.begin()+n+1, QueueItemPriority<Item, CMP>());
return;
}
}
}
Item pop()
{
#if PRIORITYQUEUE_DEBUG
ENSURE(m_Heap.size());
#endif
Item r = m_Heap.front();
pop_heap(m_Heap.begin(), m_Heap.end(), QueueItemPriority<Item, CMP>());
m_Heap.pop_back();
return r;
}
bool empty()
{
return m_Heap.empty();
}
size_t size()
{
return m_Heap.size();
}
std::vector<Item> m_Heap;
};
/**
* Priority queue implemented as an unsorted array.
* This means pop() is O(n), but push and promote are O(1), and n is typically small
* (average around 50-100 in some rough tests).
* It seems fractionally slower than a binary heap in optimised builds, but is
* much simpler and less susceptible to MSVC's painfully slow debug STL.
*/
template <typename ID, typename R, typename CMP = std::less<R> >
class PriorityQueueList
{
public:
struct Item
{
ID id;
R rank; // f = g+h (estimated total cost of path through here)
};
void push(const Item& item)
{
m_List.push_back(item);
}
Item* find(ID id)
{
for (size_t n = 0; n < m_List.size(); ++n)
{
if (m_List[n].id == id)
return &m_List[n];
}
return NULL;
}
void promote(ID id, R newrank)
{
find(id)->rank = newrank;
}
Item pop()
{
#if PRIORITYQUEUE_DEBUG
ENSURE(m_List.size());
#endif
// Loop backwards looking for the best (it's most likely to be one
// we've recently pushed, so going backwards saves a bit of copying)
Item best = m_List.back();
size_t bestidx = m_List.size()-1;
for (ssize_t i = (ssize_t)bestidx-1; i >= 0; --i)
{
if (QueueItemPriority<Item, CMP>()(best, m_List[i]))
{
bestidx = i;
best = m_List[i];
}
}
// Swap the matched element with the last in the list, then pop the new last
m_List[bestidx] = m_List[m_List.size()-1];
m_List.pop_back();
return best;
}
bool empty()
{
return m_List.empty();
}
size_t size()
{
return m_List.size();
}
std::vector<Item> m_List;
};
#endif // INCLUDED_PRIORITYQUEUE
|