File: Render.cpp

package info (click to toggle)
0ad 0.0.17-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 51,248 kB
  • ctags: 46,933
  • sloc: cpp: 223,208; ansic: 31,240; python: 16,343; perl: 4,083; sh: 1,011; makefile: 915; xml: 733; java: 621; ruby: 229; erlang: 53; sql: 40
file content (570 lines) | stat: -rw-r--r-- 20,016 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/* Copyright (C) 2012 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "precompiled.h"

#include "Render.h"

#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/BoundingBoxOriented.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "maths/Vector2D.h"
#include "ps/Profile.h"
#include "simulation2/Simulation2.h"
#include "simulation2/components/ICmpTerrain.h"
#include "simulation2/components/ICmpWaterManager.h"
#include "simulation2/helpers/Geometry.h"

void SimRender::ConstructLineOnGround(const CSimContext& context, const std::vector<float>& xz,
		SOverlayLine& overlay, bool floating, float heightOffset)
{
	PROFILE("ConstructLineOnGround");

	overlay.m_Coords.clear();

	CmpPtr<ICmpTerrain> cmpTerrain(context, SYSTEM_ENTITY);
	if (!cmpTerrain)
		return;

	if (xz.size() < 2)
		return;

	float water = 0.f;
	if (floating)
	{
		CmpPtr<ICmpWaterManager> cmpWaterManager(context, SYSTEM_ENTITY);
		if (cmpWaterManager)
			water = cmpWaterManager->GetExactWaterLevel(xz[0], xz[1]);
	}

	overlay.m_Coords.reserve(xz.size()/2 * 3);

	for (size_t i = 0; i < xz.size(); i += 2)
	{
		float px = xz[i];
		float pz = xz[i+1];
		float py = std::max(water, cmpTerrain->GetExactGroundLevel(px, pz)) + heightOffset;
		overlay.m_Coords.push_back(px);
		overlay.m_Coords.push_back(py);
		overlay.m_Coords.push_back(pz);
	}
}

void SimRender::ConstructCircleOnGround(const CSimContext& context, float x, float z, float radius,
		SOverlayLine& overlay, bool floating, float heightOffset)
{
	overlay.m_Coords.clear();

	CmpPtr<ICmpTerrain> cmpTerrain(context, SYSTEM_ENTITY);
	if (!cmpTerrain)
		return;

	float water = 0.f;
	if (floating)
	{
		CmpPtr<ICmpWaterManager> cmpWaterManager(context, SYSTEM_ENTITY);
		if (cmpWaterManager)
			water = cmpWaterManager->GetExactWaterLevel(x, z);
	}

	// Adapt the circle resolution to look reasonable for small and largeish radiuses
	size_t numPoints = clamp((size_t)(radius*4.0f), (size_t)12, (size_t)48);

	overlay.m_Coords.reserve((numPoints + 1) * 3);

	for (size_t i = 0; i <= numPoints; ++i) // use '<=' so it's a closed loop
	{
		float a = (float)i * 2 * (float)M_PI / (float)numPoints;
		float px = x + radius * sinf(a);
		float pz = z + radius * cosf(a);
		float py = std::max(water, cmpTerrain->GetExactGroundLevel(px, pz)) + heightOffset;
		overlay.m_Coords.push_back(px);
		overlay.m_Coords.push_back(py);
		overlay.m_Coords.push_back(pz);
	}
}

// This method splits up a straight line into a number of line segments each having a length ~= TERRAIN_TILE_SIZE
static void SplitLine(std::vector<std::pair<float, float> >& coords, float x1, float y1, float x2, float y2)
{
	float length = sqrtf(SQR(x1 - x2) + SQR(y1 - y2));
	size_t pieces = ((int)length) / TERRAIN_TILE_SIZE;
	if (pieces > 0)
	{
		float xPieceLength = (x1 - x2) / (float)pieces;
		float yPieceLength = (y1 - y2) / (float)pieces;
		for (size_t i = 1; i <= (pieces - 1); ++i)
		{
			coords.push_back(std::make_pair(x1 - (xPieceLength * (float)i), y1 - (yPieceLength * (float)i)));
		}
	}
	coords.push_back(std::make_pair(x2, y2));
}

void SimRender::ConstructSquareOnGround(const CSimContext& context, float x, float z, float w, float h, float a,
		SOverlayLine& overlay, bool floating, float heightOffset)
{
	overlay.m_Coords.clear();

	CmpPtr<ICmpTerrain> cmpTerrain(context, SYSTEM_ENTITY);
	if (!cmpTerrain)
		return;

	float water = 0.f;
	if (floating)
	{
		CmpPtr<ICmpWaterManager> cmpWaterManager(context, SYSTEM_ENTITY);
		if (cmpWaterManager)
			water = cmpWaterManager->GetExactWaterLevel(x, z);
	}

	float c = cosf(a);
	float s = sinf(a);

	std::vector<std::pair<float, float> > coords;

	// Add the first vertex, since SplitLine will be adding only the second end-point of the each line to
	// the coordinates list. We don't have to worry about the other lines, since the end-point of one line
	// will be the starting point of the next
	coords.push_back(std::make_pair(x - w/2*c + h/2*s, z + w/2*s + h/2*c));

	SplitLine(coords, x - w/2*c + h/2*s, z + w/2*s + h/2*c, x - w/2*c - h/2*s, z + w/2*s - h/2*c);
	SplitLine(coords, x - w/2*c - h/2*s, z + w/2*s - h/2*c, x + w/2*c - h/2*s, z - w/2*s - h/2*c);
	SplitLine(coords, x + w/2*c - h/2*s, z - w/2*s - h/2*c, x + w/2*c + h/2*s, z - w/2*s + h/2*c);
	SplitLine(coords, x + w/2*c + h/2*s, z - w/2*s + h/2*c, x - w/2*c + h/2*s, z + w/2*s + h/2*c);

	overlay.m_Coords.reserve(coords.size() * 3);

	for (size_t i = 0; i < coords.size(); ++i)
	{
		float px = coords[i].first;
		float pz = coords[i].second;
		float py = std::max(water, cmpTerrain->GetExactGroundLevel(px, pz)) + heightOffset;
		overlay.m_Coords.push_back(px);
		overlay.m_Coords.push_back(py);
		overlay.m_Coords.push_back(pz);
	}
}

void SimRender::ConstructBoxOutline(const CBoundingBoxAligned& bound, SOverlayLine& overlayLine)
{
	overlayLine.m_Coords.clear(); 

	if (bound.IsEmpty())
		return;

	const CVector3D& pMin = bound[0];
	const CVector3D& pMax = bound[1];
	
	// floor square 
	overlayLine.PushCoords(pMin.X, pMin.Y, pMin.Z);
	overlayLine.PushCoords(pMax.X, pMin.Y, pMin.Z);
	overlayLine.PushCoords(pMax.X, pMin.Y, pMax.Z);
	overlayLine.PushCoords(pMin.X, pMin.Y, pMax.Z);
	overlayLine.PushCoords(pMin.X, pMin.Y, pMin.Z);
	// roof square 
	overlayLine.PushCoords(pMin.X, pMax.Y, pMin.Z);
	overlayLine.PushCoords(pMax.X, pMax.Y, pMin.Z);
	overlayLine.PushCoords(pMax.X, pMax.Y, pMax.Z);
	overlayLine.PushCoords(pMin.X, pMax.Y, pMax.Z);
	overlayLine.PushCoords(pMin.X, pMax.Y, pMin.Z);
}

void SimRender::ConstructBoxOutline(const CBoundingBoxOriented& box, SOverlayLine& overlayLine)
{
	overlayLine.m_Coords.clear();

	if (box.IsEmpty())
		return;

	CVector3D corners[8];
	box.GetCorner(-1, -1, -1, corners[0]);
	box.GetCorner( 1, -1, -1, corners[1]);
	box.GetCorner( 1, -1,  1, corners[2]);
	box.GetCorner(-1, -1,  1, corners[3]);
	box.GetCorner(-1,  1, -1, corners[4]);
	box.GetCorner( 1,  1, -1, corners[5]);
	box.GetCorner( 1,  1,  1, corners[6]);
	box.GetCorner(-1,  1,  1, corners[7]);

	overlayLine.PushCoords(corners[0]);
	overlayLine.PushCoords(corners[1]);
	overlayLine.PushCoords(corners[2]);
	overlayLine.PushCoords(corners[3]);
	overlayLine.PushCoords(corners[0]);

	overlayLine.PushCoords(corners[4]);
	overlayLine.PushCoords(corners[5]);
	overlayLine.PushCoords(corners[6]);
	overlayLine.PushCoords(corners[7]);
	overlayLine.PushCoords(corners[4]);
}

void SimRender::ConstructGimbal(const CVector3D& center, float radius, SOverlayLine& out, size_t numSteps)
{
	ENSURE(numSteps > 0 && numSteps % 4 == 0); // must be a positive multiple of 4
	
	out.m_Coords.clear();

	size_t fullCircleSteps = numSteps;
	const float angleIncrement = 2.f*M_PI/fullCircleSteps;

	const CVector3D X_UNIT(1, 0, 0);
	const CVector3D Y_UNIT(0, 1, 0);
	const CVector3D Z_UNIT(0, 0, 1);
	CVector3D rotationVector(0, 0, radius); // directional vector based in the center that we will be rotating to get the gimbal points

	// first draw a quarter of XZ gimbal; then complete the XY gimbal; then continue the XZ gimbal and finally add the YZ gimbal
	// (that way we can keep a single continuous line)
	
	// -- XZ GIMBAL (PART 1/2) -----------------------------------------------

	CQuaternion xzRotation;
	xzRotation.FromAxisAngle(Y_UNIT, angleIncrement);

	for (size_t i = 0; i < fullCircleSteps/4; ++i) // complete only a quarter of the way
	{
		out.PushCoords(center + rotationVector);
		rotationVector = xzRotation.Rotate(rotationVector);
	}

	// -- XY GIMBAL ----------------------------------------------------------

	// now complete the XY gimbal while the XZ gimbal is interrupted
	CQuaternion xyRotation;
	xyRotation.FromAxisAngle(Z_UNIT, angleIncrement);

	for (size_t i = 0; i < fullCircleSteps; ++i) // note the <; the last point of the XY gimbal isn't added, because the XZ gimbal will add it
	{
		out.PushCoords(center + rotationVector);
		rotationVector = xyRotation.Rotate(rotationVector);
	}

	// -- XZ GIMBAL (PART 2/2) -----------------------------------------------

	// resume the XZ gimbal to completion
	for (size_t i = fullCircleSteps/4; i < fullCircleSteps; ++i) // exclude the last point of the circle so the YZ gimbal can add it
	{
		out.PushCoords(center + rotationVector);
		rotationVector = xzRotation.Rotate(rotationVector);
	}

	// -- YZ GIMBAL ----------------------------------------------------------

	CQuaternion yzRotation;
	yzRotation.FromAxisAngle(X_UNIT, angleIncrement);

	for (size_t i = 0; i <= fullCircleSteps; ++i)
	{
		out.PushCoords(center + rotationVector);
		rotationVector = yzRotation.Rotate(rotationVector);
	}
}

void SimRender::ConstructAxesMarker(const CMatrix3D& coordSystem, SOverlayLine& outX, SOverlayLine& outY, SOverlayLine& outZ)
{
	outX.m_Coords.clear();
	outY.m_Coords.clear();
	outZ.m_Coords.clear();

	outX.m_Color = CColor(1, 0, 0, .5f); // X axis; red
	outY.m_Color = CColor(0, 1, 0, .5f); // Y axis; green
	outZ.m_Color = CColor(0, 0, 1, .5f); // Z axis; blue

	outX.m_Thickness = 2;
	outY.m_Thickness = 2;
	outZ.m_Thickness = 2;

	CVector3D origin = coordSystem.GetTranslation();
	outX.PushCoords(origin);
	outY.PushCoords(origin);
	outZ.PushCoords(origin);

	outX.PushCoords(origin + CVector3D(coordSystem(0,0), coordSystem(1,0), coordSystem(2,0)));
	outY.PushCoords(origin + CVector3D(coordSystem(0,1), coordSystem(1,1), coordSystem(2,1)));
	outZ.PushCoords(origin + CVector3D(coordSystem(0,2), coordSystem(1,2), coordSystem(2,2)));
}

void SimRender::SmoothPointsAverage(std::vector<CVector2D>& points, bool closed)
{
	PROFILE("SmoothPointsAverage");

	size_t n = points.size();
	if (n < 2)
		return; // avoid out-of-bounds array accesses, and leave the points unchanged

	std::vector<CVector2D> newPoints;
	newPoints.resize(points.size());

	// Handle the end points appropriately
	if (closed)
	{
		newPoints[0] = (points[n-1] + points[0] + points[1]) / 3.f;
		newPoints[n-1] = (points[n-2] + points[n-1] + points[0]) / 3.f;
	}
	else
	{
		newPoints[0] = points[0];
		newPoints[n-1] = points[n-1];
	}

	// Average all the intermediate points
	for (size_t i = 1; i < n-1; ++i)
		newPoints[i] = (points[i-1] + points[i] + points[i+1]) / 3.f;

	points.swap(newPoints);
}

static CVector2D EvaluateSpline(float t, CVector2D a0, CVector2D a1, CVector2D a2, CVector2D a3, float offset)
{
	// Compute position on spline
	CVector2D p = a0*(t*t*t) + a1*(t*t) + a2*t + a3;

	// Compute unit-vector direction of spline
	CVector2D dp = (a0*(3*t*t) + a1*(2*t) + a2).Normalized();

	// Offset position perpendicularly
	return p + CVector2D(dp.Y*-offset, dp.X*offset);
}

void SimRender::InterpolatePointsRNS(std::vector<CVector2D>& points, bool closed, float offset, int segmentSamples /* = 4 */)
{
	PROFILE("InterpolatePointsRNS");
	ENSURE(segmentSamples > 0);

	std::vector<CVector2D> newPoints;

	// (This does some redundant computations for adjacent vertices,
	// but it's fairly fast (<1ms typically) so we don't worry about it yet)

	// TODO: Instead of doing a fixed number of line segments between each
	// control point, it should probably be somewhat adaptive to get a nicer
	// curve with fewer points

	size_t n = points.size();

	if (closed)
	{
		if (n < 1)
			return; // we need at least a single point to not crash
	}
	else
	{
		if (n < 2)
			return; // in non-closed mode, we need at least n=2 to not crash
	}

	size_t imax = closed ? n : n-1;
	newPoints.reserve(imax*segmentSamples);

	// these are primarily used inside the loop, but for open paths we need them outside the loop once to compute the last point
	CVector2D a0;
	CVector2D a1;
	CVector2D a2;
	CVector2D a3;

	for (size_t i = 0; i < imax; ++i)
	{
		// Get the relevant points for this spline segment; each step interpolates the segment between p1 and p2; p0 and p3 are the points
		// before p1 and after p2, respectively; they're needed to compute tangents and whatnot.
		CVector2D p0; // normally points[(i-1+n)%n], but it's a bit more complicated due to open/closed paths -- see below
		CVector2D p1 = points[i];
		CVector2D p2 = points[(i+1)%n];
		CVector2D p3; // normally points[(i+2)%n], but it's a bit more complicated due to open/closed paths -- see below

		if (!closed && (i == 0))
			// p0's point index is out of bounds, and we can't wrap around because we're in non-closed mode -- create an artificial point
			// that extends p1 -> p0 (i.e. the first segment's direction)
			p0 = points[0] + (points[0] - points[1]);
		else
			// standard wrap-around case
			p0 = points[(i-1+n)%n]; // careful; don't use (i-1)%n here, as the result is machine-dependent for negative operands (e.g. if i==0, the result could be either -1 or n-1)


		if (!closed && (i == n-2))
			// p3's point index is out of bounds; create an artificial point that extends p_(n-2) -> p_(n-1) (i.e. the last segment's direction)
			// (note that p2's index should not be out of bounds, because in non-closed mode imax is reduced by 1)
			p3 = points[n-1] + (points[n-1] - points[n-2]);
		else
			// standard wrap-around case
			p3 = points[(i+2)%n];


		// Do the RNS computation (based on GPG4 "Nonuniform Splines")
		float l1 = (p2 - p1).Length(); // length of spline segment (i)..(i+1)
		CVector2D s0 = (p1 - p0).Normalized(); // unit vector of spline segment (i-1)..(i)
		CVector2D s1 = (p2 - p1).Normalized(); // unit vector of spline segment (i)..(i+1)
		CVector2D s2 = (p3 - p2).Normalized(); // unit vector of spline segment (i+1)..(i+2)
		CVector2D v1 = (s0 + s1).Normalized() * l1; // spline velocity at i
		CVector2D v2 = (s1 + s2).Normalized() * l1; // spline velocity at i+1

		// Compute standard cubic spline parameters
		a0 = p1*2 + p2*-2 + v1 + v2;
		a1 = p1*-3 + p2*3 + v1*-2 + v2*-1;
		a2 = v1;
		a3 = p1;

		// Interpolate at regular points across the interval
		for (int sample = 0; sample < segmentSamples; sample++)
			newPoints.push_back(EvaluateSpline(sample/((float) segmentSamples), a0, a1, a2, a3, offset));

	}

	if (!closed)
		// if the path is open, we should take care to include the last control point
		// NOTE: we can't just do push_back(points[n-1]) here because that ignores the offset
		newPoints.push_back(EvaluateSpline(1.f, a0, a1, a2, a3, offset));

	points.swap(newPoints);
}

void SimRender::ConstructDashedLine(const std::vector<CVector2D>& keyPoints, SDashedLine& dashedLineOut, const float dashLength, const float blankLength)
{
	// sanity checks
	if (dashLength <= 0)
		return;

	if (blankLength <= 0)
		return;

	if (keyPoints.size() < 2)
		return;

	dashedLineOut.m_Points.clear();
	dashedLineOut.m_StartIndices.clear();

	// walk the line, counting the total length so far at each node point. When the length exceeds dashLength, cut the last segment at the
	// required length and continue for blankLength along the line to start a new dash segment.

	// TODO: we should probably extend this function to also allow for closed lines. I was thinking of slightly scaling the dash/blank length
	// so that it fits the length of the curve, but that requires knowing the length of the curve upfront which is sort of expensive to compute
	// (O(n) and lots of square roots).

	bool buildingDash = true; // true if we're building a dash, false if a blank
	float curDashLength = 0; // builds up the current dash/blank's length as we walk through the line nodes
	CVector2D dashLastPoint = keyPoints[0]; // last point of the current dash/blank being built.

	// register the first starting node of the first dash
	dashedLineOut.m_Points.push_back(keyPoints[0]);
	dashedLineOut.m_StartIndices.push_back(0);

	// index of the next key point on the path. Must always point to a node that is further along the path than dashLastPoint, so we can
	// properly take a direction vector along the path.
	size_t i = 0;

	while(i < keyPoints.size() - 1)
	{
		// get length of this segment
		CVector2D segmentVector = keyPoints[i + 1] - dashLastPoint; // vector from our current point along the path to nextNode
		float segmentLength = segmentVector.Length();

		float targetLength = (buildingDash ? dashLength : blankLength);
		if (curDashLength + segmentLength > targetLength)
		{
			// segment is longer than the dash length we still have to go, so we'll need to cut it; create a cut point along the segment
			// line that is of just the required length to complete the dash, then make it the base point for the next dash/blank.
			float cutLength = targetLength - curDashLength;
			CVector2D cutPoint = dashLastPoint + (segmentVector.Normalized() * cutLength);

			// start a new dash or blank in the next iteration
			curDashLength = 0;
			buildingDash = !buildingDash; // flip from dash to blank and vice-versa
			dashLastPoint = cutPoint;

			// don't increment i, we haven't fully traversed this segment yet so we still need to use the same point to take the
			// direction vector with in the next iteration

			// this cut point is either the end of the current dash or the beginning of a new dash; either way, we're gonna need it
			// in the points array.
			dashedLineOut.m_Points.push_back(cutPoint);

			if (buildingDash)
			{
				// if we're gonna be building a new dash, then cutPoint is now the base point of that new dash, so let's register its
				// index as a start index of a dash.
				dashedLineOut.m_StartIndices.push_back(dashedLineOut.m_Points.size() - 1);
			}

		}
		else
		{
			// the segment from lastDashPoint to keyPoints[i+1] doesn't suffice to complete the dash, so we need to add keyPoints[i+1]
			// to this dash's points and continue from there

			if (buildingDash)
				// still building the dash, add it to the output (we don't need to store the blanks)
				dashedLineOut.m_Points.push_back(keyPoints[i+1]);

			curDashLength += segmentLength;
			dashLastPoint = keyPoints[i+1];
			i++;

		}

	}

}

void SimRender::AngularStepFromChordLen(const float maxChordLength, const float radius, float& out_stepAngle, unsigned& out_numSteps)
{
	float maxAngle = Geometry::ChordToCentralAngle(maxChordLength, radius);
	out_numSteps = ceilf(float(2*M_PI)/maxAngle);
	out_stepAngle = float(2*M_PI)/out_numSteps;
}

// TODO: this serves a similar purpose to SplitLine above, but is more general. Also, SplitLine seems to be implemented more
// efficiently, might be nice to take some cues from it
void SimRender::SubdividePoints(std::vector<CVector2D>& points, float maxSegmentLength, bool closed)
{
	size_t numControlPoints = points.size();
	if (numControlPoints < 2)
		return;

	ENSURE(maxSegmentLength > 0);

	size_t endIndex = numControlPoints;
	if (!closed && numControlPoints > 2)
		endIndex--;

	std::vector<CVector2D> newPoints;

	for (size_t i = 0; i < endIndex; i++)
	{
		const CVector2D& curPoint = points[i];
		const CVector2D& nextPoint = points[(i+1) % numControlPoints];
		const CVector2D line(nextPoint - curPoint);
		CVector2D lineDirection = line.Normalized();

		// include control point i + a list of intermediate points between i and i + 1 (excluding i+1 itself)
		newPoints.push_back(curPoint);

		// calculate how many intermediate points are needed so that each segment is of length <= maxSegmentLength
		float lineLength = line.Length();
		size_t numSegments = (size_t) ceilf(lineLength / maxSegmentLength);
		float segmentLength = lineLength / numSegments;

		for (size_t s = 1; s < numSegments; ++s) // start at one, we already included curPoint
		{
			newPoints.push_back(curPoint + lineDirection * (s * segmentLength));
		}
	}

	points.swap(newPoints);
}