1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
/* Copyright (C) 2012 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "Render.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/BoundingBoxOriented.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "maths/Vector2D.h"
#include "ps/Profile.h"
#include "simulation2/Simulation2.h"
#include "simulation2/components/ICmpTerrain.h"
#include "simulation2/components/ICmpWaterManager.h"
#include "simulation2/helpers/Geometry.h"
void SimRender::ConstructLineOnGround(const CSimContext& context, const std::vector<float>& xz,
SOverlayLine& overlay, bool floating, float heightOffset)
{
PROFILE("ConstructLineOnGround");
overlay.m_Coords.clear();
CmpPtr<ICmpTerrain> cmpTerrain(context, SYSTEM_ENTITY);
if (!cmpTerrain)
return;
if (xz.size() < 2)
return;
float water = 0.f;
if (floating)
{
CmpPtr<ICmpWaterManager> cmpWaterManager(context, SYSTEM_ENTITY);
if (cmpWaterManager)
water = cmpWaterManager->GetExactWaterLevel(xz[0], xz[1]);
}
overlay.m_Coords.reserve(xz.size()/2 * 3);
for (size_t i = 0; i < xz.size(); i += 2)
{
float px = xz[i];
float pz = xz[i+1];
float py = std::max(water, cmpTerrain->GetExactGroundLevel(px, pz)) + heightOffset;
overlay.m_Coords.push_back(px);
overlay.m_Coords.push_back(py);
overlay.m_Coords.push_back(pz);
}
}
void SimRender::ConstructCircleOnGround(const CSimContext& context, float x, float z, float radius,
SOverlayLine& overlay, bool floating, float heightOffset)
{
overlay.m_Coords.clear();
CmpPtr<ICmpTerrain> cmpTerrain(context, SYSTEM_ENTITY);
if (!cmpTerrain)
return;
float water = 0.f;
if (floating)
{
CmpPtr<ICmpWaterManager> cmpWaterManager(context, SYSTEM_ENTITY);
if (cmpWaterManager)
water = cmpWaterManager->GetExactWaterLevel(x, z);
}
// Adapt the circle resolution to look reasonable for small and largeish radiuses
size_t numPoints = clamp((size_t)(radius*4.0f), (size_t)12, (size_t)48);
overlay.m_Coords.reserve((numPoints + 1) * 3);
for (size_t i = 0; i <= numPoints; ++i) // use '<=' so it's a closed loop
{
float a = (float)i * 2 * (float)M_PI / (float)numPoints;
float px = x + radius * sinf(a);
float pz = z + radius * cosf(a);
float py = std::max(water, cmpTerrain->GetExactGroundLevel(px, pz)) + heightOffset;
overlay.m_Coords.push_back(px);
overlay.m_Coords.push_back(py);
overlay.m_Coords.push_back(pz);
}
}
// This method splits up a straight line into a number of line segments each having a length ~= TERRAIN_TILE_SIZE
static void SplitLine(std::vector<std::pair<float, float> >& coords, float x1, float y1, float x2, float y2)
{
float length = sqrtf(SQR(x1 - x2) + SQR(y1 - y2));
size_t pieces = ((int)length) / TERRAIN_TILE_SIZE;
if (pieces > 0)
{
float xPieceLength = (x1 - x2) / (float)pieces;
float yPieceLength = (y1 - y2) / (float)pieces;
for (size_t i = 1; i <= (pieces - 1); ++i)
{
coords.push_back(std::make_pair(x1 - (xPieceLength * (float)i), y1 - (yPieceLength * (float)i)));
}
}
coords.push_back(std::make_pair(x2, y2));
}
void SimRender::ConstructSquareOnGround(const CSimContext& context, float x, float z, float w, float h, float a,
SOverlayLine& overlay, bool floating, float heightOffset)
{
overlay.m_Coords.clear();
CmpPtr<ICmpTerrain> cmpTerrain(context, SYSTEM_ENTITY);
if (!cmpTerrain)
return;
float water = 0.f;
if (floating)
{
CmpPtr<ICmpWaterManager> cmpWaterManager(context, SYSTEM_ENTITY);
if (cmpWaterManager)
water = cmpWaterManager->GetExactWaterLevel(x, z);
}
float c = cosf(a);
float s = sinf(a);
std::vector<std::pair<float, float> > coords;
// Add the first vertex, since SplitLine will be adding only the second end-point of the each line to
// the coordinates list. We don't have to worry about the other lines, since the end-point of one line
// will be the starting point of the next
coords.push_back(std::make_pair(x - w/2*c + h/2*s, z + w/2*s + h/2*c));
SplitLine(coords, x - w/2*c + h/2*s, z + w/2*s + h/2*c, x - w/2*c - h/2*s, z + w/2*s - h/2*c);
SplitLine(coords, x - w/2*c - h/2*s, z + w/2*s - h/2*c, x + w/2*c - h/2*s, z - w/2*s - h/2*c);
SplitLine(coords, x + w/2*c - h/2*s, z - w/2*s - h/2*c, x + w/2*c + h/2*s, z - w/2*s + h/2*c);
SplitLine(coords, x + w/2*c + h/2*s, z - w/2*s + h/2*c, x - w/2*c + h/2*s, z + w/2*s + h/2*c);
overlay.m_Coords.reserve(coords.size() * 3);
for (size_t i = 0; i < coords.size(); ++i)
{
float px = coords[i].first;
float pz = coords[i].second;
float py = std::max(water, cmpTerrain->GetExactGroundLevel(px, pz)) + heightOffset;
overlay.m_Coords.push_back(px);
overlay.m_Coords.push_back(py);
overlay.m_Coords.push_back(pz);
}
}
void SimRender::ConstructBoxOutline(const CBoundingBoxAligned& bound, SOverlayLine& overlayLine)
{
overlayLine.m_Coords.clear();
if (bound.IsEmpty())
return;
const CVector3D& pMin = bound[0];
const CVector3D& pMax = bound[1];
// floor square
overlayLine.PushCoords(pMin.X, pMin.Y, pMin.Z);
overlayLine.PushCoords(pMax.X, pMin.Y, pMin.Z);
overlayLine.PushCoords(pMax.X, pMin.Y, pMax.Z);
overlayLine.PushCoords(pMin.X, pMin.Y, pMax.Z);
overlayLine.PushCoords(pMin.X, pMin.Y, pMin.Z);
// roof square
overlayLine.PushCoords(pMin.X, pMax.Y, pMin.Z);
overlayLine.PushCoords(pMax.X, pMax.Y, pMin.Z);
overlayLine.PushCoords(pMax.X, pMax.Y, pMax.Z);
overlayLine.PushCoords(pMin.X, pMax.Y, pMax.Z);
overlayLine.PushCoords(pMin.X, pMax.Y, pMin.Z);
}
void SimRender::ConstructBoxOutline(const CBoundingBoxOriented& box, SOverlayLine& overlayLine)
{
overlayLine.m_Coords.clear();
if (box.IsEmpty())
return;
CVector3D corners[8];
box.GetCorner(-1, -1, -1, corners[0]);
box.GetCorner( 1, -1, -1, corners[1]);
box.GetCorner( 1, -1, 1, corners[2]);
box.GetCorner(-1, -1, 1, corners[3]);
box.GetCorner(-1, 1, -1, corners[4]);
box.GetCorner( 1, 1, -1, corners[5]);
box.GetCorner( 1, 1, 1, corners[6]);
box.GetCorner(-1, 1, 1, corners[7]);
overlayLine.PushCoords(corners[0]);
overlayLine.PushCoords(corners[1]);
overlayLine.PushCoords(corners[2]);
overlayLine.PushCoords(corners[3]);
overlayLine.PushCoords(corners[0]);
overlayLine.PushCoords(corners[4]);
overlayLine.PushCoords(corners[5]);
overlayLine.PushCoords(corners[6]);
overlayLine.PushCoords(corners[7]);
overlayLine.PushCoords(corners[4]);
}
void SimRender::ConstructGimbal(const CVector3D& center, float radius, SOverlayLine& out, size_t numSteps)
{
ENSURE(numSteps > 0 && numSteps % 4 == 0); // must be a positive multiple of 4
out.m_Coords.clear();
size_t fullCircleSteps = numSteps;
const float angleIncrement = 2.f*M_PI/fullCircleSteps;
const CVector3D X_UNIT(1, 0, 0);
const CVector3D Y_UNIT(0, 1, 0);
const CVector3D Z_UNIT(0, 0, 1);
CVector3D rotationVector(0, 0, radius); // directional vector based in the center that we will be rotating to get the gimbal points
// first draw a quarter of XZ gimbal; then complete the XY gimbal; then continue the XZ gimbal and finally add the YZ gimbal
// (that way we can keep a single continuous line)
// -- XZ GIMBAL (PART 1/2) -----------------------------------------------
CQuaternion xzRotation;
xzRotation.FromAxisAngle(Y_UNIT, angleIncrement);
for (size_t i = 0; i < fullCircleSteps/4; ++i) // complete only a quarter of the way
{
out.PushCoords(center + rotationVector);
rotationVector = xzRotation.Rotate(rotationVector);
}
// -- XY GIMBAL ----------------------------------------------------------
// now complete the XY gimbal while the XZ gimbal is interrupted
CQuaternion xyRotation;
xyRotation.FromAxisAngle(Z_UNIT, angleIncrement);
for (size_t i = 0; i < fullCircleSteps; ++i) // note the <; the last point of the XY gimbal isn't added, because the XZ gimbal will add it
{
out.PushCoords(center + rotationVector);
rotationVector = xyRotation.Rotate(rotationVector);
}
// -- XZ GIMBAL (PART 2/2) -----------------------------------------------
// resume the XZ gimbal to completion
for (size_t i = fullCircleSteps/4; i < fullCircleSteps; ++i) // exclude the last point of the circle so the YZ gimbal can add it
{
out.PushCoords(center + rotationVector);
rotationVector = xzRotation.Rotate(rotationVector);
}
// -- YZ GIMBAL ----------------------------------------------------------
CQuaternion yzRotation;
yzRotation.FromAxisAngle(X_UNIT, angleIncrement);
for (size_t i = 0; i <= fullCircleSteps; ++i)
{
out.PushCoords(center + rotationVector);
rotationVector = yzRotation.Rotate(rotationVector);
}
}
void SimRender::ConstructAxesMarker(const CMatrix3D& coordSystem, SOverlayLine& outX, SOverlayLine& outY, SOverlayLine& outZ)
{
outX.m_Coords.clear();
outY.m_Coords.clear();
outZ.m_Coords.clear();
outX.m_Color = CColor(1, 0, 0, .5f); // X axis; red
outY.m_Color = CColor(0, 1, 0, .5f); // Y axis; green
outZ.m_Color = CColor(0, 0, 1, .5f); // Z axis; blue
outX.m_Thickness = 2;
outY.m_Thickness = 2;
outZ.m_Thickness = 2;
CVector3D origin = coordSystem.GetTranslation();
outX.PushCoords(origin);
outY.PushCoords(origin);
outZ.PushCoords(origin);
outX.PushCoords(origin + CVector3D(coordSystem(0,0), coordSystem(1,0), coordSystem(2,0)));
outY.PushCoords(origin + CVector3D(coordSystem(0,1), coordSystem(1,1), coordSystem(2,1)));
outZ.PushCoords(origin + CVector3D(coordSystem(0,2), coordSystem(1,2), coordSystem(2,2)));
}
void SimRender::SmoothPointsAverage(std::vector<CVector2D>& points, bool closed)
{
PROFILE("SmoothPointsAverage");
size_t n = points.size();
if (n < 2)
return; // avoid out-of-bounds array accesses, and leave the points unchanged
std::vector<CVector2D> newPoints;
newPoints.resize(points.size());
// Handle the end points appropriately
if (closed)
{
newPoints[0] = (points[n-1] + points[0] + points[1]) / 3.f;
newPoints[n-1] = (points[n-2] + points[n-1] + points[0]) / 3.f;
}
else
{
newPoints[0] = points[0];
newPoints[n-1] = points[n-1];
}
// Average all the intermediate points
for (size_t i = 1; i < n-1; ++i)
newPoints[i] = (points[i-1] + points[i] + points[i+1]) / 3.f;
points.swap(newPoints);
}
static CVector2D EvaluateSpline(float t, CVector2D a0, CVector2D a1, CVector2D a2, CVector2D a3, float offset)
{
// Compute position on spline
CVector2D p = a0*(t*t*t) + a1*(t*t) + a2*t + a3;
// Compute unit-vector direction of spline
CVector2D dp = (a0*(3*t*t) + a1*(2*t) + a2).Normalized();
// Offset position perpendicularly
return p + CVector2D(dp.Y*-offset, dp.X*offset);
}
void SimRender::InterpolatePointsRNS(std::vector<CVector2D>& points, bool closed, float offset, int segmentSamples /* = 4 */)
{
PROFILE("InterpolatePointsRNS");
ENSURE(segmentSamples > 0);
std::vector<CVector2D> newPoints;
// (This does some redundant computations for adjacent vertices,
// but it's fairly fast (<1ms typically) so we don't worry about it yet)
// TODO: Instead of doing a fixed number of line segments between each
// control point, it should probably be somewhat adaptive to get a nicer
// curve with fewer points
size_t n = points.size();
if (closed)
{
if (n < 1)
return; // we need at least a single point to not crash
}
else
{
if (n < 2)
return; // in non-closed mode, we need at least n=2 to not crash
}
size_t imax = closed ? n : n-1;
newPoints.reserve(imax*segmentSamples);
// these are primarily used inside the loop, but for open paths we need them outside the loop once to compute the last point
CVector2D a0;
CVector2D a1;
CVector2D a2;
CVector2D a3;
for (size_t i = 0; i < imax; ++i)
{
// Get the relevant points for this spline segment; each step interpolates the segment between p1 and p2; p0 and p3 are the points
// before p1 and after p2, respectively; they're needed to compute tangents and whatnot.
CVector2D p0; // normally points[(i-1+n)%n], but it's a bit more complicated due to open/closed paths -- see below
CVector2D p1 = points[i];
CVector2D p2 = points[(i+1)%n];
CVector2D p3; // normally points[(i+2)%n], but it's a bit more complicated due to open/closed paths -- see below
if (!closed && (i == 0))
// p0's point index is out of bounds, and we can't wrap around because we're in non-closed mode -- create an artificial point
// that extends p1 -> p0 (i.e. the first segment's direction)
p0 = points[0] + (points[0] - points[1]);
else
// standard wrap-around case
p0 = points[(i-1+n)%n]; // careful; don't use (i-1)%n here, as the result is machine-dependent for negative operands (e.g. if i==0, the result could be either -1 or n-1)
if (!closed && (i == n-2))
// p3's point index is out of bounds; create an artificial point that extends p_(n-2) -> p_(n-1) (i.e. the last segment's direction)
// (note that p2's index should not be out of bounds, because in non-closed mode imax is reduced by 1)
p3 = points[n-1] + (points[n-1] - points[n-2]);
else
// standard wrap-around case
p3 = points[(i+2)%n];
// Do the RNS computation (based on GPG4 "Nonuniform Splines")
float l1 = (p2 - p1).Length(); // length of spline segment (i)..(i+1)
CVector2D s0 = (p1 - p0).Normalized(); // unit vector of spline segment (i-1)..(i)
CVector2D s1 = (p2 - p1).Normalized(); // unit vector of spline segment (i)..(i+1)
CVector2D s2 = (p3 - p2).Normalized(); // unit vector of spline segment (i+1)..(i+2)
CVector2D v1 = (s0 + s1).Normalized() * l1; // spline velocity at i
CVector2D v2 = (s1 + s2).Normalized() * l1; // spline velocity at i+1
// Compute standard cubic spline parameters
a0 = p1*2 + p2*-2 + v1 + v2;
a1 = p1*-3 + p2*3 + v1*-2 + v2*-1;
a2 = v1;
a3 = p1;
// Interpolate at regular points across the interval
for (int sample = 0; sample < segmentSamples; sample++)
newPoints.push_back(EvaluateSpline(sample/((float) segmentSamples), a0, a1, a2, a3, offset));
}
if (!closed)
// if the path is open, we should take care to include the last control point
// NOTE: we can't just do push_back(points[n-1]) here because that ignores the offset
newPoints.push_back(EvaluateSpline(1.f, a0, a1, a2, a3, offset));
points.swap(newPoints);
}
void SimRender::ConstructDashedLine(const std::vector<CVector2D>& keyPoints, SDashedLine& dashedLineOut, const float dashLength, const float blankLength)
{
// sanity checks
if (dashLength <= 0)
return;
if (blankLength <= 0)
return;
if (keyPoints.size() < 2)
return;
dashedLineOut.m_Points.clear();
dashedLineOut.m_StartIndices.clear();
// walk the line, counting the total length so far at each node point. When the length exceeds dashLength, cut the last segment at the
// required length and continue for blankLength along the line to start a new dash segment.
// TODO: we should probably extend this function to also allow for closed lines. I was thinking of slightly scaling the dash/blank length
// so that it fits the length of the curve, but that requires knowing the length of the curve upfront which is sort of expensive to compute
// (O(n) and lots of square roots).
bool buildingDash = true; // true if we're building a dash, false if a blank
float curDashLength = 0; // builds up the current dash/blank's length as we walk through the line nodes
CVector2D dashLastPoint = keyPoints[0]; // last point of the current dash/blank being built.
// register the first starting node of the first dash
dashedLineOut.m_Points.push_back(keyPoints[0]);
dashedLineOut.m_StartIndices.push_back(0);
// index of the next key point on the path. Must always point to a node that is further along the path than dashLastPoint, so we can
// properly take a direction vector along the path.
size_t i = 0;
while(i < keyPoints.size() - 1)
{
// get length of this segment
CVector2D segmentVector = keyPoints[i + 1] - dashLastPoint; // vector from our current point along the path to nextNode
float segmentLength = segmentVector.Length();
float targetLength = (buildingDash ? dashLength : blankLength);
if (curDashLength + segmentLength > targetLength)
{
// segment is longer than the dash length we still have to go, so we'll need to cut it; create a cut point along the segment
// line that is of just the required length to complete the dash, then make it the base point for the next dash/blank.
float cutLength = targetLength - curDashLength;
CVector2D cutPoint = dashLastPoint + (segmentVector.Normalized() * cutLength);
// start a new dash or blank in the next iteration
curDashLength = 0;
buildingDash = !buildingDash; // flip from dash to blank and vice-versa
dashLastPoint = cutPoint;
// don't increment i, we haven't fully traversed this segment yet so we still need to use the same point to take the
// direction vector with in the next iteration
// this cut point is either the end of the current dash or the beginning of a new dash; either way, we're gonna need it
// in the points array.
dashedLineOut.m_Points.push_back(cutPoint);
if (buildingDash)
{
// if we're gonna be building a new dash, then cutPoint is now the base point of that new dash, so let's register its
// index as a start index of a dash.
dashedLineOut.m_StartIndices.push_back(dashedLineOut.m_Points.size() - 1);
}
}
else
{
// the segment from lastDashPoint to keyPoints[i+1] doesn't suffice to complete the dash, so we need to add keyPoints[i+1]
// to this dash's points and continue from there
if (buildingDash)
// still building the dash, add it to the output (we don't need to store the blanks)
dashedLineOut.m_Points.push_back(keyPoints[i+1]);
curDashLength += segmentLength;
dashLastPoint = keyPoints[i+1];
i++;
}
}
}
void SimRender::AngularStepFromChordLen(const float maxChordLength, const float radius, float& out_stepAngle, unsigned& out_numSteps)
{
float maxAngle = Geometry::ChordToCentralAngle(maxChordLength, radius);
out_numSteps = ceilf(float(2*M_PI)/maxAngle);
out_stepAngle = float(2*M_PI)/out_numSteps;
}
// TODO: this serves a similar purpose to SplitLine above, but is more general. Also, SplitLine seems to be implemented more
// efficiently, might be nice to take some cues from it
void SimRender::SubdividePoints(std::vector<CVector2D>& points, float maxSegmentLength, bool closed)
{
size_t numControlPoints = points.size();
if (numControlPoints < 2)
return;
ENSURE(maxSegmentLength > 0);
size_t endIndex = numControlPoints;
if (!closed && numControlPoints > 2)
endIndex--;
std::vector<CVector2D> newPoints;
for (size_t i = 0; i < endIndex; i++)
{
const CVector2D& curPoint = points[i];
const CVector2D& nextPoint = points[(i+1) % numControlPoints];
const CVector2D line(nextPoint - curPoint);
CVector2D lineDirection = line.Normalized();
// include control point i + a list of intermediate points between i and i + 1 (excluding i+1 itself)
newPoints.push_back(curPoint);
// calculate how many intermediate points are needed so that each segment is of length <= maxSegmentLength
float lineLength = line.Length();
size_t numSegments = (size_t) ceilf(lineLength / maxSegmentLength);
float segmentLength = lineLength / numSegments;
for (size_t s = 1; s < numSegments; ++s) // start at one, we already included curPoint
{
newPoints.push_back(curPoint + lineDirection * (s * segmentLength));
}
}
points.swap(newPoints);
}
|