1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
/* Copyright (C) 2016 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file
* Vertex-based algorithm for CCmpPathfinder.
* Computes paths around the corners of rectangular obstructions.
*
* Useful search term for this algorithm: "points of visibility".
*
* Since we sometimes want to use this for avoiding moving units, there is no
* pre-computation - the whole visibility graph is effectively regenerated for
* each path, and it does A* over that graph.
*
* This scales very poorly in the number of obstructions, so it should be used
* with a limited range and not exceedingly frequently.
*/
#include "precompiled.h"
#include "CCmpPathfinder_Common.h"
#include "lib/timer.h"
#include "ps/Profile.h"
#include "simulation2/components/ICmpObstructionManager.h"
#include "simulation2/helpers/PriorityQueue.h"
#include "simulation2/helpers/Render.h"
/* Quadrant optimisation:
* (loosely based on GPG2 "Optimizing Points-of-Visibility Pathfinding")
*
* Consider the vertex ("@") at a corner of an axis-aligned rectangle ("#"):
*
* TL : TR
* :
* ####@ - - -
* #####
* #####
* BL ## BR
*
* The area around the vertex is split into TopLeft, BottomRight etc quadrants.
*
* If the shortest path reaches this vertex, it cannot continue to a vertex in
* the BL quadrant (it would be blocked by the shape).
* Since the shortest path is wrapped tightly around the edges of obstacles,
* if the path approached this vertex from the TL quadrant,
* it cannot continue to the TL or TR quadrants (the path could be shorter if it
* skipped this vertex).
* Therefore it must continue to a vertex in the BR quadrant (so this vertex is in
* *that* vertex's TL quadrant).
*
* That lets us significantly reduce the search space by quickly discarding vertexes
* from the wrong quadrants.
*
* (This causes badness if the path starts from inside the shape, so we add some hacks
* for that case.)
*
* (For non-axis-aligned rectangles it's harder to do this computation, so we'll
* not bother doing any discarding for those.)
*/
static const u8 QUADRANT_NONE = 0;
static const u8 QUADRANT_BL = 1;
static const u8 QUADRANT_TR = 2;
static const u8 QUADRANT_TL = 4;
static const u8 QUADRANT_BR = 8;
static const u8 QUADRANT_BLTR = QUADRANT_BL|QUADRANT_TR;
static const u8 QUADRANT_TLBR = QUADRANT_TL|QUADRANT_BR;
static const u8 QUADRANT_ALL = QUADRANT_BLTR|QUADRANT_TLBR;
// When computing vertexes to insert into the search graph,
// add a small delta so that the vertexes of an edge don't get interpreted
// as crossing the edge (given minor numerical inaccuracies)
static const entity_pos_t EDGE_EXPAND_DELTA = entity_pos_t::FromInt(1)/16;
/**
* Check whether a ray from 'a' to 'b' crosses any of the edges.
* (Edges are one-sided so it's only considered a cross if going from front to back.)
*/
inline static bool CheckVisibility(const CFixedVector2D& a, const CFixedVector2D& b, const std::vector<Edge>& edges)
{
CFixedVector2D abn = (b - a).Perpendicular();
// Edges of general non-axis-aligned shapes
for (size_t i = 0; i < edges.size(); ++i)
{
CFixedVector2D p0 = edges[i].p0;
CFixedVector2D p1 = edges[i].p1;
CFixedVector2D d = (p1 - p0).Perpendicular();
// If 'a' is behind the edge, we can't cross
fixed q = (a - p0).Dot(d);
if (q < fixed::Zero())
continue;
// If 'b' is in front of the edge, we can't cross
fixed r = (b - p0).Dot(d);
if (r > fixed::Zero())
continue;
// The ray is crossing the infinitely-extended edge from in front to behind.
// Check the finite edge is crossing the infinitely-extended ray too.
// (Given the previous tests, it can only be crossing in one direction.)
fixed s = (p0 - a).Dot(abn);
if (s > fixed::Zero())
continue;
fixed t = (p1 - a).Dot(abn);
if (t < fixed::Zero())
continue;
return false;
}
return true;
}
// Handle the axis-aligned shape edges separately (for performance):
// (These are specialised versions of the general unaligned edge code.
// They assume the caller has already excluded edges for which 'a' is
// on the wrong side.)
inline static bool CheckVisibilityLeft(const CFixedVector2D& a, const CFixedVector2D& b, const std::vector<EdgeAA>& edges)
{
if (a.X >= b.X)
return true;
CFixedVector2D abn = (b - a).Perpendicular();
for (size_t i = 0; i < edges.size(); ++i)
{
if (b.X < edges[i].p0.X)
continue;
CFixedVector2D p0 (edges[i].p0.X, edges[i].c1);
fixed s = (p0 - a).Dot(abn);
if (s > fixed::Zero())
continue;
CFixedVector2D p1 (edges[i].p0.X, edges[i].p0.Y);
fixed t = (p1 - a).Dot(abn);
if (t < fixed::Zero())
continue;
return false;
}
return true;
}
inline static bool CheckVisibilityRight(const CFixedVector2D& a, const CFixedVector2D& b, const std::vector<EdgeAA>& edges)
{
if (a.X <= b.X)
return true;
CFixedVector2D abn = (b - a).Perpendicular();
for (size_t i = 0; i < edges.size(); ++i)
{
if (b.X > edges[i].p0.X)
continue;
CFixedVector2D p0 (edges[i].p0.X, edges[i].c1);
fixed s = (p0 - a).Dot(abn);
if (s > fixed::Zero())
continue;
CFixedVector2D p1 (edges[i].p0.X, edges[i].p0.Y);
fixed t = (p1 - a).Dot(abn);
if (t < fixed::Zero())
continue;
return false;
}
return true;
}
inline static bool CheckVisibilityBottom(const CFixedVector2D& a, const CFixedVector2D& b, const std::vector<EdgeAA>& edges)
{
if (a.Y >= b.Y)
return true;
CFixedVector2D abn = (b - a).Perpendicular();
for (size_t i = 0; i < edges.size(); ++i)
{
if (b.Y < edges[i].p0.Y)
continue;
CFixedVector2D p0 (edges[i].p0.X, edges[i].p0.Y);
fixed s = (p0 - a).Dot(abn);
if (s > fixed::Zero())
continue;
CFixedVector2D p1 (edges[i].c1, edges[i].p0.Y);
fixed t = (p1 - a).Dot(abn);
if (t < fixed::Zero())
continue;
return false;
}
return true;
}
inline static bool CheckVisibilityTop(const CFixedVector2D& a, const CFixedVector2D& b, const std::vector<EdgeAA>& edges)
{
if (a.Y <= b.Y)
return true;
CFixedVector2D abn = (b - a).Perpendicular();
for (size_t i = 0; i < edges.size(); ++i)
{
if (b.Y > edges[i].p0.Y)
continue;
CFixedVector2D p0 (edges[i].p0.X, edges[i].p0.Y);
fixed s = (p0 - a).Dot(abn);
if (s > fixed::Zero())
continue;
CFixedVector2D p1 (edges[i].c1, edges[i].p0.Y);
fixed t = (p1 - a).Dot(abn);
if (t < fixed::Zero())
continue;
return false;
}
return true;
}
typedef PriorityQueueHeap<u16, fixed, fixed> VertexPriorityQueue;
/**
* Add edges and vertexes to represent the boundaries between passable and impassable
* navcells (for impassable terrain).
* Navcells i0 <= i <= i1, j0 <= j <= j1 will be considered.
*/
static void AddTerrainEdges(std::vector<Edge>& edges, std::vector<Vertex>& vertexes,
int i0, int j0, int i1, int j1,
pass_class_t passClass, const Grid<NavcellData>& grid)
{
PROFILE("AddTerrainEdges");
// Clamp the coordinates so we won't attempt to sample outside of the grid.
// (This assumes the outermost ring of navcells (which are always impassable)
// won't have a boundary with any passable navcells. TODO: is that definitely
// safe enough?)
i0 = clamp(i0, 1, grid.m_W-2);
j0 = clamp(j0, 1, grid.m_H-2);
i1 = clamp(i1, 1, grid.m_W-2);
j1 = clamp(j1, 1, grid.m_H-2);
for (int j = j0; j <= j1; ++j)
{
for (int i = i0; i <= i1; ++i)
{
if (IS_PASSABLE(grid.get(i, j), passClass))
continue;
if (IS_PASSABLE(grid.get(i+1, j), passClass) && IS_PASSABLE(grid.get(i, j+1), passClass) && IS_PASSABLE(grid.get(i+1, j+1), passClass))
{
Vertex vert;
vert.status = Vertex::UNEXPLORED;
vert.quadOutward = QUADRANT_ALL;
vert.quadInward = QUADRANT_BL;
vert.p = CFixedVector2D(fixed::FromInt(i+1)+EDGE_EXPAND_DELTA, fixed::FromInt(j+1)+EDGE_EXPAND_DELTA).Multiply(Pathfinding::NAVCELL_SIZE);
vertexes.push_back(vert);
}
if (IS_PASSABLE(grid.get(i-1, j), passClass) && IS_PASSABLE(grid.get(i, j+1), passClass) && IS_PASSABLE(grid.get(i-1, j+1), passClass))
{
Vertex vert;
vert.status = Vertex::UNEXPLORED;
vert.quadOutward = QUADRANT_ALL;
vert.quadInward = QUADRANT_BR;
vert.p = CFixedVector2D(fixed::FromInt(i)-EDGE_EXPAND_DELTA, fixed::FromInt(j+1)+EDGE_EXPAND_DELTA).Multiply(Pathfinding::NAVCELL_SIZE);
vertexes.push_back(vert);
}
if (IS_PASSABLE(grid.get(i+1, j), passClass) && IS_PASSABLE(grid.get(i, j-1), passClass) && IS_PASSABLE(grid.get(i+1, j-1), passClass))
{
Vertex vert;
vert.status = Vertex::UNEXPLORED;
vert.quadOutward = QUADRANT_ALL;
vert.quadInward = QUADRANT_TL;
vert.p = CFixedVector2D(fixed::FromInt(i+1)+EDGE_EXPAND_DELTA, fixed::FromInt(j)-EDGE_EXPAND_DELTA).Multiply(Pathfinding::NAVCELL_SIZE);
vertexes.push_back(vert);
}
if (IS_PASSABLE(grid.get(i-1, j), passClass) && IS_PASSABLE(grid.get(i, j-1), passClass) && IS_PASSABLE(grid.get(i-1, j-1), passClass))
{
Vertex vert;
vert.status = Vertex::UNEXPLORED;
vert.quadOutward = QUADRANT_ALL;
vert.quadInward = QUADRANT_TR;
vert.p = CFixedVector2D(fixed::FromInt(i)-EDGE_EXPAND_DELTA, fixed::FromInt(j)-EDGE_EXPAND_DELTA).Multiply(Pathfinding::NAVCELL_SIZE);
vertexes.push_back(vert);
}
}
}
// XXX rewrite this stuff
std::vector<u16> segmentsR;
std::vector<u16> segmentsL;
for (int j = j0; j < j1; ++j)
{
segmentsR.clear();
segmentsL.clear();
for (int i = i0; i <= i1; ++i)
{
bool a = IS_PASSABLE(grid.get(i, j+1), passClass);
bool b = IS_PASSABLE(grid.get(i, j), passClass);
if (a && !b)
segmentsL.push_back(i);
if (b && !a)
segmentsR.push_back(i);
}
if (!segmentsR.empty())
{
segmentsR.push_back(0); // sentinel value to simplify the loop
u16 ia = segmentsR[0];
u16 ib = ia + 1;
for (size_t n = 1; n < segmentsR.size(); ++n)
{
if (segmentsR[n] == ib)
++ib;
else
{
CFixedVector2D v0 = CFixedVector2D(fixed::FromInt(ia), fixed::FromInt(j+1)).Multiply(Pathfinding::NAVCELL_SIZE);
CFixedVector2D v1 = CFixedVector2D(fixed::FromInt(ib), fixed::FromInt(j+1)).Multiply(Pathfinding::NAVCELL_SIZE);
edges.emplace_back(Edge{ v0, v1 });
ia = segmentsR[n];
ib = ia + 1;
}
}
}
if (!segmentsL.empty())
{
segmentsL.push_back(0); // sentinel value to simplify the loop
u16 ia = segmentsL[0];
u16 ib = ia + 1;
for (size_t n = 1; n < segmentsL.size(); ++n)
{
if (segmentsL[n] == ib)
++ib;
else
{
CFixedVector2D v0 = CFixedVector2D(fixed::FromInt(ib), fixed::FromInt(j+1)).Multiply(Pathfinding::NAVCELL_SIZE);
CFixedVector2D v1 = CFixedVector2D(fixed::FromInt(ia), fixed::FromInt(j+1)).Multiply(Pathfinding::NAVCELL_SIZE);
edges.emplace_back(Edge{ v0, v1 });
ia = segmentsL[n];
ib = ia + 1;
}
}
}
}
std::vector<u16> segmentsU;
std::vector<u16> segmentsD;
for (int i = i0; i < i1; ++i)
{
segmentsU.clear();
segmentsD.clear();
for (int j = j0; j <= j1; ++j)
{
bool a = IS_PASSABLE(grid.get(i+1, j), passClass);
bool b = IS_PASSABLE(grid.get(i, j), passClass);
if (a && !b)
segmentsU.push_back(j);
if (b && !a)
segmentsD.push_back(j);
}
if (!segmentsU.empty())
{
segmentsU.push_back(0); // sentinel value to simplify the loop
u16 ja = segmentsU[0];
u16 jb = ja + 1;
for (size_t n = 1; n < segmentsU.size(); ++n)
{
if (segmentsU[n] == jb)
++jb;
else
{
CFixedVector2D v0 = CFixedVector2D(fixed::FromInt(i+1), fixed::FromInt(ja)).Multiply(Pathfinding::NAVCELL_SIZE);
CFixedVector2D v1 = CFixedVector2D(fixed::FromInt(i+1), fixed::FromInt(jb)).Multiply(Pathfinding::NAVCELL_SIZE);
edges.emplace_back(Edge{ v0, v1 });
ja = segmentsU[n];
jb = ja + 1;
}
}
}
if (!segmentsD.empty())
{
segmentsD.push_back(0); // sentinel value to simplify the loop
u16 ja = segmentsD[0];
u16 jb = ja + 1;
for (size_t n = 1; n < segmentsD.size(); ++n)
{
if (segmentsD[n] == jb)
++jb;
else
{
CFixedVector2D v0 = CFixedVector2D(fixed::FromInt(i+1), fixed::FromInt(jb)).Multiply(Pathfinding::NAVCELL_SIZE);
CFixedVector2D v1 = CFixedVector2D(fixed::FromInt(i+1), fixed::FromInt(ja)).Multiply(Pathfinding::NAVCELL_SIZE);
edges.emplace_back(Edge{ v0, v1 });
ja = segmentsD[n];
jb = ja + 1;
}
}
}
}
}
static void SplitAAEdges(const CFixedVector2D& a,
const std::vector<Edge>& edges,
const std::vector<Square>& squares,
std::vector<Edge>& edgesUnaligned,
std::vector<EdgeAA>& edgesLeft, std::vector<EdgeAA>& edgesRight,
std::vector<EdgeAA>& edgesBottom, std::vector<EdgeAA>& edgesTop)
{
for (const Square& square : squares)
{
if (a.X <= square.p0.X)
edgesLeft.emplace_back(EdgeAA{ square.p0, square.p1.Y });
if (a.X >= square.p1.X)
edgesRight.emplace_back(EdgeAA{ square.p1, square.p0.Y });
if (a.Y <= square.p0.Y)
edgesBottom.emplace_back(EdgeAA{ square.p0, square.p1.X });
if (a.Y >= square.p1.Y)
edgesTop.emplace_back(EdgeAA{ square.p1, square.p0.X });
}
for (const Edge& edge : edges)
{
if (edge.p0.X == edge.p1.X)
{
if (edge.p1.Y < edge.p0.Y)
{
if (!(a.X <= edge.p0.X))
continue;
edgesLeft.emplace_back(EdgeAA{ edge.p1, edge.p0.Y });
}
else
{
if (!(a.X >= edge.p0.X))
continue;
edgesRight.emplace_back(EdgeAA{ edge.p1, edge.p0.Y });
}
}
else if (edge.p0.Y == edge.p1.Y)
{
if (edge.p0.X < edge.p1.X)
{
if (!(a.Y <= edge.p0.Y))
continue;
edgesBottom.emplace_back(EdgeAA{ edge.p0, edge.p1.X });
}
else
{
if (!(a.Y >= edge.p0.Y))
continue;
edgesTop.emplace_back(EdgeAA{ edge.p0, edge.p1.X });
}
}
else
edgesUnaligned.push_back(edge);
}
}
/**
* Functor for sorting edge-squares by approximate proximity to a fixed point.
*/
struct SquareSort
{
CFixedVector2D src;
SquareSort(CFixedVector2D src) : src(src) { }
bool operator()(const Square& a, const Square& b)
{
if ((a.p0 - src).CompareLength(b.p0 - src) < 0)
return true;
return false;
}
};
void CCmpPathfinder::ComputeShortPath(const IObstructionTestFilter& filter,
entity_pos_t x0, entity_pos_t z0, entity_pos_t clearance,
entity_pos_t range, const PathGoal& goal, pass_class_t passClass, WaypointPath& path)
{
PROFILE("ComputeShortPath");
m_DebugOverlayShortPathLines.clear();
if (m_DebugOverlay)
{
// Render the goal shape
m_DebugOverlayShortPathLines.push_back(SOverlayLine());
m_DebugOverlayShortPathLines.back().m_Color = CColor(1, 0, 0, 1);
switch (goal.type)
{
case PathGoal::POINT:
{
SimRender::ConstructCircleOnGround(GetSimContext(), goal.x.ToFloat(), goal.z.ToFloat(), 0.2f, m_DebugOverlayShortPathLines.back(), true);
break;
}
case PathGoal::CIRCLE:
case PathGoal::INVERTED_CIRCLE:
{
SimRender::ConstructCircleOnGround(GetSimContext(), goal.x.ToFloat(), goal.z.ToFloat(), goal.hw.ToFloat(), m_DebugOverlayShortPathLines.back(), true);
break;
}
case PathGoal::SQUARE:
case PathGoal::INVERTED_SQUARE:
{
float a = atan2f(goal.v.X.ToFloat(), goal.v.Y.ToFloat());
SimRender::ConstructSquareOnGround(GetSimContext(), goal.x.ToFloat(), goal.z.ToFloat(), goal.hw.ToFloat()*2, goal.hh.ToFloat()*2, a, m_DebugOverlayShortPathLines.back(), true);
break;
}
}
}
// List of collision edges - paths must never cross these.
// (Edges are one-sided so intersections are fine in one direction, but not the other direction.)
edges.clear();
edgeSquares.clear(); // axis-aligned squares; equivalent to 4 edges
// Create impassable edges at the max-range boundary, so we can't escape the region
// where we're meant to be searching
fixed rangeXMin = x0 - range;
fixed rangeXMax = x0 + range;
fixed rangeZMin = z0 - range;
fixed rangeZMax = z0 + range;
// we don't actually add the "search space" edges as edges, since we may want to cross them
// in some cases (such as if we need to go around an obstruction that's partly out of the search range)
// List of obstruction vertexes (plus start/end points); we'll try to find paths through
// the graph defined by these vertexes
vertexes.clear();
// Add the start point to the graph
CFixedVector2D posStart(x0, z0);
fixed hStart = (posStart - goal.NearestPointOnGoal(posStart)).Length();
Vertex start = { posStart, fixed::Zero(), hStart, 0, Vertex::OPEN, QUADRANT_NONE, QUADRANT_ALL };
vertexes.push_back(start);
const size_t START_VERTEX_ID = 0;
// Add the goal vertex to the graph.
// Since the goal isn't always a point, this a special magic virtual vertex which moves around - whenever
// we look at it from another vertex, it is moved to be the closest point on the goal shape to that vertex.
Vertex end = { CFixedVector2D(goal.x, goal.z), fixed::Zero(), fixed::Zero(), 0, Vertex::UNEXPLORED, QUADRANT_NONE, QUADRANT_ALL };
vertexes.push_back(end);
const size_t GOAL_VERTEX_ID = 1;
// Add terrain obstructions
{
u16 i0, j0, i1, j1;
Pathfinding::NearestNavcell(rangeXMin, rangeZMin, i0, j0, m_MapSize*Pathfinding::NAVCELLS_PER_TILE, m_MapSize*Pathfinding::NAVCELLS_PER_TILE);
Pathfinding::NearestNavcell(rangeXMax, rangeZMax, i1, j1, m_MapSize*Pathfinding::NAVCELLS_PER_TILE, m_MapSize*Pathfinding::NAVCELLS_PER_TILE);
AddTerrainEdges(edges, vertexes, i0, j0, i1, j1, passClass, *m_TerrainOnlyGrid);
}
// Find all the obstruction squares that might affect us
CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
std::vector<ICmpObstructionManager::ObstructionSquare> squares;
size_t staticShapesNb = 0;
cmpObstructionManager->GetStaticObstructionsInRange(filter, rangeXMin - clearance, rangeZMin - clearance, rangeXMax + clearance, rangeZMax + clearance, squares);
staticShapesNb = squares.size();
cmpObstructionManager->GetUnitObstructionsInRange(filter, rangeXMin - clearance, rangeZMin - clearance, rangeXMax + clearance, rangeZMax + clearance, squares);
// Change array capacities to reduce reallocations
vertexes.reserve(vertexes.size() + squares.size()*4);
edgeSquares.reserve(edgeSquares.size() + squares.size()); // (assume most squares are AA)
entity_pos_t pathfindClearance = clearance;
// Convert each obstruction square into collision edges and search graph vertexes
for (size_t i = 0; i < squares.size(); ++i)
{
CFixedVector2D center(squares[i].x, squares[i].z);
CFixedVector2D u = squares[i].u;
CFixedVector2D v = squares[i].v;
if (i >= staticShapesNb)
pathfindClearance = clearance - entity_pos_t::FromInt(1)/2;
// Expand the vertexes by the moving unit's collision radius, to find the
// closest we can get to it
CFixedVector2D hd0(squares[i].hw + pathfindClearance + EDGE_EXPAND_DELTA, squares[i].hh + pathfindClearance + EDGE_EXPAND_DELTA);
CFixedVector2D hd1(squares[i].hw + pathfindClearance + EDGE_EXPAND_DELTA, -(squares[i].hh + pathfindClearance + EDGE_EXPAND_DELTA));
// Check whether this is an axis-aligned square
bool aa = (u.X == fixed::FromInt(1) && u.Y == fixed::Zero() && v.X == fixed::Zero() && v.Y == fixed::FromInt(1));
Vertex vert;
vert.status = Vertex::UNEXPLORED;
vert.quadInward = QUADRANT_NONE;
vert.quadOutward = QUADRANT_ALL;
vert.p.X = center.X - hd0.Dot(u); vert.p.Y = center.Y + hd0.Dot(v); if (aa) vert.quadInward = QUADRANT_BR; vertexes.push_back(vert);
vert.p.X = center.X - hd1.Dot(u); vert.p.Y = center.Y + hd1.Dot(v); if (aa) vert.quadInward = QUADRANT_TR; vertexes.push_back(vert);
vert.p.X = center.X + hd0.Dot(u); vert.p.Y = center.Y - hd0.Dot(v); if (aa) vert.quadInward = QUADRANT_TL; vertexes.push_back(vert);
vert.p.X = center.X + hd1.Dot(u); vert.p.Y = center.Y - hd1.Dot(v); if (aa) vert.quadInward = QUADRANT_BL; vertexes.push_back(vert);
// Add the edges:
CFixedVector2D h0(squares[i].hw + pathfindClearance, squares[i].hh + pathfindClearance);
CFixedVector2D h1(squares[i].hw + pathfindClearance, -(squares[i].hh + pathfindClearance));
CFixedVector2D ev0(center.X - h0.Dot(u), center.Y + h0.Dot(v));
CFixedVector2D ev1(center.X - h1.Dot(u), center.Y + h1.Dot(v));
CFixedVector2D ev2(center.X + h0.Dot(u), center.Y - h0.Dot(v));
CFixedVector2D ev3(center.X + h1.Dot(u), center.Y - h1.Dot(v));
if (aa)
edgeSquares.emplace_back(Square{ ev1, ev3 });
else
{
edges.emplace_back(Edge{ ev0, ev1 });
edges.emplace_back(Edge{ ev1, ev2 });
edges.emplace_back(Edge{ ev2, ev3 });
edges.emplace_back(Edge{ ev3, ev0 });
}
// TODO: should clip out vertexes and edges that are outside the range,
// to reduce the search space
}
// Clip out vertices that are inside an edgeSquare (i.e. trivially unreachable)
for (size_t i = 0; i < edgeSquares.size(); ++i)
{
// If the start point is inside the square, ignore it
if (start.p.X >= edgeSquares[i].p0.X &&
start.p.Y >= edgeSquares[i].p0.Y &&
start.p.X <= edgeSquares[i].p1.X &&
start.p.Y <= edgeSquares[i].p1.Y)
continue;
// Remove every non-start/goal vertex that is inside an edgeSquare;
// since remove() would be inefficient, just mark it as closed instead.
for (size_t j = 2; j < vertexes.size(); ++j)
if (vertexes[j].p.X >= edgeSquares[i].p0.X &&
vertexes[j].p.Y >= edgeSquares[i].p0.Y &&
vertexes[j].p.X <= edgeSquares[i].p1.X &&
vertexes[j].p.Y <= edgeSquares[i].p1.Y)
vertexes[j].status = Vertex::CLOSED;
}
ENSURE(vertexes.size() < 65536); // we store array indexes as u16
// Render the debug overlay
if (m_DebugOverlay)
{
#define PUSH_POINT(p) STMT(xz.push_back(p.X.ToFloat()); xz.push_back(p.Y.ToFloat()))
// Render the vertexes as little Pac-Man shapes to indicate quadrant direction
for (size_t i = 0; i < vertexes.size(); ++i)
{
m_DebugOverlayShortPathLines.emplace_back();
m_DebugOverlayShortPathLines.back().m_Color = CColor(1, 1, 0, 1);
float x = vertexes[i].p.X.ToFloat();
float z = vertexes[i].p.Y.ToFloat();
float a0 = 0, a1 = 0;
// Get arc start/end angles depending on quadrant (if any)
if (vertexes[i].quadInward == QUADRANT_BL) { a0 = -0.25f; a1 = 0.50f; }
else if (vertexes[i].quadInward == QUADRANT_TR) { a0 = 0.25f; a1 = 1.00f; }
else if (vertexes[i].quadInward == QUADRANT_TL) { a0 = -0.50f; a1 = 0.25f; }
else if (vertexes[i].quadInward == QUADRANT_BR) { a0 = 0.00f; a1 = 0.75f; }
if (a0 == a1)
SimRender::ConstructCircleOnGround(GetSimContext(), x, z, 0.5f,
m_DebugOverlayShortPathLines.back(), true);
else
SimRender::ConstructClosedArcOnGround(GetSimContext(), x, z, 0.5f,
a0 * ((float)M_PI*2.0f), a1 * ((float)M_PI*2.0f),
m_DebugOverlayShortPathLines.back(), true);
}
// Render the edges
for (size_t i = 0; i < edges.size(); ++i)
{
m_DebugOverlayShortPathLines.emplace_back();
m_DebugOverlayShortPathLines.back().m_Color = CColor(0, 1, 1, 1);
std::vector<float> xz;
PUSH_POINT(edges[i].p0);
PUSH_POINT(edges[i].p1);
// Add an arrowhead to indicate the direction
CFixedVector2D d = edges[i].p1 - edges[i].p0;
d.Normalize(fixed::FromInt(1)/8);
CFixedVector2D p2 = edges[i].p1 - d*2;
CFixedVector2D p3 = p2 + d.Perpendicular();
CFixedVector2D p4 = p2 - d.Perpendicular();
PUSH_POINT(p3);
PUSH_POINT(p4);
PUSH_POINT(edges[i].p1);
SimRender::ConstructLineOnGround(GetSimContext(), xz, m_DebugOverlayShortPathLines.back(), true);
}
#undef PUSH_POINT
// Render the axis-aligned squares
for (size_t i = 0; i < edgeSquares.size(); ++i)
{
m_DebugOverlayShortPathLines.push_back(SOverlayLine());
m_DebugOverlayShortPathLines.back().m_Color = CColor(0, 1, 1, 1);
std::vector<float> xz;
Square s = edgeSquares[i];
xz.push_back(s.p0.X.ToFloat());
xz.push_back(s.p0.Y.ToFloat());
xz.push_back(s.p0.X.ToFloat());
xz.push_back(s.p1.Y.ToFloat());
xz.push_back(s.p1.X.ToFloat());
xz.push_back(s.p1.Y.ToFloat());
xz.push_back(s.p1.X.ToFloat());
xz.push_back(s.p0.Y.ToFloat());
xz.push_back(s.p0.X.ToFloat());
xz.push_back(s.p0.Y.ToFloat());
SimRender::ConstructLineOnGround(GetSimContext(), xz, m_DebugOverlayShortPathLines.back(), true);
}
}
// Do an A* search over the vertex/visibility graph:
// Since we are just measuring Euclidean distance the heuristic is admissible,
// so we never have to re-examine a node once it's been moved to the closed set.
// To save time in common cases, we don't precompute a graph of valid edges between vertexes;
// we do it lazily instead. When the search algorithm reaches a vertex, we examine every other
// vertex and see if we can reach it without hitting any collision edges, and ignore the ones
// we can't reach. Since the algorithm can only reach a vertex once (and then it'll be marked
// as closed), we won't be doing any redundant visibility computations.
PROFILE_START("Short pathfinding - A*");
VertexPriorityQueue open;
VertexPriorityQueue::Item qiStart = { START_VERTEX_ID, start.h, start.h };
open.push(qiStart);
u16 idBest = START_VERTEX_ID;
fixed hBest = start.h;
while (!open.empty())
{
// Move best tile from open to closed
VertexPriorityQueue::Item curr = open.pop();
vertexes[curr.id].status = Vertex::CLOSED;
// If we've reached the destination, stop
if (curr.id == GOAL_VERTEX_ID)
{
idBest = curr.id;
break;
}
// Sort the edges by distance in order to check those first that have a high probability of blocking a ray.
// The heuristic based on distance is very rough, especially for squares that are further away;
// we're also only really interested in the closest squares since they are the only ones that block a lot of rays.
// Thus we only do a partial sort; the threshold is just a somewhat reasonable value.
if (edgeSquares.size() > 8)
std::partial_sort(edgeSquares.begin(), edgeSquares.begin() + 8, edgeSquares.end(), SquareSort(vertexes[curr.id].p));
edgesUnaligned.clear();
edgesLeft.clear();
edgesRight.clear();
edgesBottom.clear();
edgesTop.clear();
SplitAAEdges(vertexes[curr.id].p, edges, edgeSquares, edgesUnaligned, edgesLeft, edgesRight, edgesBottom, edgesTop);
// Check the lines to every other vertex
for (size_t n = 0; n < vertexes.size(); ++n)
{
if (vertexes[n].status == Vertex::CLOSED)
continue;
// If this is the magical goal vertex, move it to near the current vertex
CFixedVector2D npos;
if (n == GOAL_VERTEX_ID)
{
npos = goal.NearestPointOnGoal(vertexes[curr.id].p);
// To prevent integer overflows later on, we need to ensure all vertexes are
// 'close' to the source. The goal might be far away (not a good idea but
// sometimes it happens), so clamp it to the current search range
npos.X = clamp(npos.X, rangeXMin, rangeXMax);
npos.Y = clamp(npos.Y, rangeZMin, rangeZMax);
}
else
npos = vertexes[n].p;
// Work out which quadrant(s) we're approaching the new vertex from
u8 quad = 0;
if (vertexes[curr.id].p.X <= npos.X && vertexes[curr.id].p.Y <= npos.Y) quad |= QUADRANT_BL;
if (vertexes[curr.id].p.X >= npos.X && vertexes[curr.id].p.Y >= npos.Y) quad |= QUADRANT_TR;
if (vertexes[curr.id].p.X <= npos.X && vertexes[curr.id].p.Y >= npos.Y) quad |= QUADRANT_TL;
if (vertexes[curr.id].p.X >= npos.X && vertexes[curr.id].p.Y <= npos.Y) quad |= QUADRANT_BR;
// Check that the new vertex is in the right quadrant for the old vertex
if (!(vertexes[curr.id].quadOutward & quad))
{
// Hack: Always head towards the goal if possible, to avoid missing it if it's
// inside another unit
if (n != GOAL_VERTEX_ID)
continue;
}
bool visible = true;
u16 i, j;
Pathfinding::NearestNavcell(vertexes[curr.id].p.X, vertexes[curr.id].p.Y, i, j, m_Grid->m_W, m_Grid->m_H);
if (!IS_PASSABLE(m_Grid->get(i, j), passClass))
{
Pathfinding::NearestNavcell(npos.X, npos.Y, i, j, m_Grid->m_W, m_Grid->m_H);
// Do not allow path between two impassable vertexes to prevent cases
// where a path along an obstruction will end up in an impassable region
if (!IS_PASSABLE(m_Grid->get(i, j), passClass))
visible = false;
}
visible = visible &&
CheckVisibilityLeft(vertexes[curr.id].p, npos, edgesLeft) &&
CheckVisibilityRight(vertexes[curr.id].p, npos, edgesRight) &&
CheckVisibilityBottom(vertexes[curr.id].p, npos, edgesBottom) &&
CheckVisibilityTop(vertexes[curr.id].p, npos, edgesTop) &&
CheckVisibility(vertexes[curr.id].p, npos, edgesUnaligned);
/*
// Render the edges that we examine
m_DebugOverlayShortPathLines.push_back(SOverlayLine());
m_DebugOverlayShortPathLines.back().m_Color = visible ? CColor(0, 1, 0, 0.5) : CColor(1, 0, 0, 0.5);
std::vector<float> xz;
xz.push_back(vertexes[curr.id].p.X.ToFloat());
xz.push_back(vertexes[curr.id].p.Y.ToFloat());
xz.push_back(npos.X.ToFloat());
xz.push_back(npos.Y.ToFloat());
SimRender::ConstructLineOnGround(GetSimContext(), xz, m_DebugOverlayShortPathLines.back(), false);
//*/
if (visible)
{
fixed g = vertexes[curr.id].g + (vertexes[curr.id].p - npos).Length();
// If this is a new tile, compute the heuristic distance
if (vertexes[n].status == Vertex::UNEXPLORED)
{
// Add it to the open list:
vertexes[n].status = Vertex::OPEN;
vertexes[n].g = g;
vertexes[n].h = goal.DistanceToPoint(npos);
vertexes[n].pred = curr.id;
// If this is an axis-aligned shape, the path must continue in the same quadrant
// direction (but not go into the inside of the shape).
// Hack: If we started *inside* a shape then perhaps headed to its corner (e.g. the unit
// was very near another unit), don't restrict further pathing.
if (vertexes[n].quadInward && !(curr.id == START_VERTEX_ID && g < fixed::FromInt(8)))
vertexes[n].quadOutward = ((~vertexes[n].quadInward) & quad) & 0xF;
if (n == GOAL_VERTEX_ID)
vertexes[n].p = npos; // remember the new best goal position
VertexPriorityQueue::Item t = { (u16)n, g + vertexes[n].h, vertexes[n].h };
open.push(t);
// Remember the heuristically best vertex we've seen so far, in case we never actually reach the target
if (vertexes[n].h < hBest)
{
idBest = (u16)n;
hBest = vertexes[n].h;
}
}
else // must be OPEN
{
// If we've already seen this tile, and the new path to this tile does not have a
// better cost, then stop now
if (g >= vertexes[n].g)
continue;
// Otherwise, we have a better path, so replace the old one with the new cost/parent
fixed gprev = vertexes[n].g;
vertexes[n].g = g;
vertexes[n].pred = curr.id;
// If this is an axis-aligned shape, the path must continue in the same quadrant
// direction (but not go into the inside of the shape).
if (vertexes[n].quadInward)
vertexes[n].quadOutward = ((~vertexes[n].quadInward) & quad) & 0xF;
if (n == GOAL_VERTEX_ID)
vertexes[n].p = npos; // remember the new best goal position
open.promote((u16)n, gprev + vertexes[n].h, g + vertexes[n].h, vertexes[n].h);
}
}
}
}
// Reconstruct the path (in reverse)
for (u16 id = idBest; id != START_VERTEX_ID; id = vertexes[id].pred)
path.m_Waypoints.emplace_back(Waypoint{ vertexes[id].p.X, vertexes[id].p.Y });
PROFILE_END("Short pathfinding - A*");
}
|