File: Spatial.h

package info (click to toggle)
0ad 0.0.21-2~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 54,068 kB
  • sloc: cpp: 230,527; ansic: 23,115; python: 13,559; perl: 2,499; sh: 948; xml: 776; makefile: 696; java: 533; ruby: 229; erlang: 53; sql: 21
file content (569 lines) | stat: -rw-r--r-- 16,874 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/* Copyright (C) 2016 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef INCLUDED_SPATIAL
#define INCLUDED_SPATIAL

#include "simulation2/serialization/SerializeTemplates.h"

/**
 * A very basic subdivision scheme for finding items in ranges.
 * Items are stored in lists in dynamic-sized divisions.
 * Items have a size (min/max values of their axis-aligned bounding box)
 * and are stored in all divisions overlapping that area.
 *
 * It is the caller's responsibility to ensure items are only added
 * once, aren't removed unless they've been added, etc, and that
 * Move/Remove are called with the same coordinates originally passed
 * to Add (since this class doesn't remember which divisions an item
 * occupies).
 */
class SpatialSubdivision
{
	struct SubDivisionGrid
	{
		std::vector<uint32_t> items;

		inline void push_back(uint32_t value)
		{
			items.push_back(value);
		}

		inline void erase(int index)
		{
			// Delete by swapping with the last element then popping
			if ((int)items.size() > 1) // but only if we have more than 1 elements
				items[index] = items.back();
			items.pop_back();
		}

		void copy_items_at_end(std::vector<uint32_t>& out) const
		{
			out.insert(out.end(), items.begin(), items.end());
		}
	};


	entity_pos_t m_DivisionSize;
	SubDivisionGrid* m_Divisions;
	uint32_t m_DivisionsW;
	uint32_t m_DivisionsH;

	friend struct SerializeSpatialSubdivision;

public:
	SpatialSubdivision() : m_Divisions(NULL), m_DivisionsW(0), m_DivisionsH(0)
	{
	}
	~SpatialSubdivision()
	{
		delete[] m_Divisions;
	}
	SpatialSubdivision(const SpatialSubdivision& rhs)
	{
		m_DivisionSize = rhs.m_DivisionSize;
		m_DivisionsW = rhs.m_DivisionsW;
		m_DivisionsH = rhs.m_DivisionsH;
		size_t n = m_DivisionsW * m_DivisionsH;
		m_Divisions = new SubDivisionGrid[n];
		for (size_t i = 0; i < n; ++i)
			m_Divisions[i] = rhs.m_Divisions[i]; // just fall back to piecemeal copy
	}
	SpatialSubdivision& operator=(const SpatialSubdivision& rhs)
	{
		if (this != &rhs)
		{
			m_DivisionSize = rhs.m_DivisionSize;
			size_t n = rhs.m_DivisionsW * rhs.m_DivisionsH;
			if (m_DivisionsW != rhs.m_DivisionsW || m_DivisionsH != rhs.m_DivisionsH)
				Create(n); // size changed, recreate
			
			m_DivisionsW = rhs.m_DivisionsW;
			m_DivisionsH = rhs.m_DivisionsH;
			for (size_t i = 0; i < n; ++i)
				m_Divisions[i] = rhs.m_Divisions[i]; // just fall back to piecemeal copy
		}
		return *this;
	}

	inline entity_pos_t GetDivisionSize() const { return m_DivisionSize; }
	inline uint32_t GetWidth() const { return m_DivisionsW; }
	inline uint32_t GetHeight() const { return m_DivisionsH; }

	void Create(size_t count)
	{
		delete[] m_Divisions;
		m_Divisions = new SubDivisionGrid[count];
	}

	/**
	 * Equivalence test (ignoring order of items within each subdivision)
	 */
	bool operator==(const SpatialSubdivision& rhs) const
	{
		if (m_DivisionSize != rhs.m_DivisionSize || m_DivisionsW != rhs.m_DivisionsW || m_DivisionsH != rhs.m_DivisionsH)
			return false;
		
		uint32_t n = m_DivisionsH * m_DivisionsW;
		for (uint32_t i = 0; i < n; ++i)
		{
			if (m_Divisions[i].items.size() != rhs.m_Divisions[i].items.size())
				return false;

			// don't bother optimizing this, this is only used in the TESTING SUITE
			std::vector<uint32_t> a = m_Divisions[i].items;
			std::vector<uint32_t> b = rhs.m_Divisions[i].items;
			std::sort(a.begin(), a.end());
			std::sort(b.begin(), b.end());
			if (a != b)
				return false;
		}
		return true;
	}

	inline bool operator!=(const SpatialSubdivision& rhs) const
	{
		return !(*this == rhs);
	}

	void Reset(entity_pos_t maxX, entity_pos_t maxZ, entity_pos_t divisionSize)
	{
		m_DivisionSize = divisionSize;
		m_DivisionsW = (maxX / m_DivisionSize).ToInt_RoundToInfinity();
		m_DivisionsH = (maxZ / m_DivisionSize).ToInt_RoundToInfinity();

		Create(m_DivisionsW * m_DivisionsH);
	}


	/**
	 * Add an item with the given 'to' size.
	 * The item must not already be present.
	 */
	void Add(uint32_t item, CFixedVector2D toMin, CFixedVector2D toMax)
	{
		ENSURE(toMin.X <= toMax.X && toMin.Y <= toMax.Y);

		u32 i0 = GetI0(toMin.X);
		u32 j0 = GetJ0(toMin.Y);
		u32 i1 = GetI1(toMax.X);
		u32 j1 = GetJ1(toMax.Y);
		for (u32 j = j0; j <= j1; ++j)
		{
			for (u32 i = i0; i <= i1; ++i)
			{
				m_Divisions[i + j*m_DivisionsW].push_back(item);
			}
		}
	}

	/**
	 * Remove an item with the given 'from' size.
	 * The item should already be present.
	 * The size must match the size that was last used when adding the item.
	 */
	void Remove(uint32_t item, CFixedVector2D fromMin, CFixedVector2D fromMax)
	{
		ENSURE(fromMin.X <= fromMax.X && fromMin.Y <= fromMax.Y);

		u32 i0 = GetI0(fromMin.X);
		u32 j0 = GetJ0(fromMin.Y);
		u32 i1 = GetI1(fromMax.X);
		u32 j1 = GetJ1(fromMax.Y);
		for (u32 j = j0; j <= j1; ++j)
		{
			for (u32 i = i0; i <= i1; ++i)
			{
				SubDivisionGrid& div = m_Divisions[i + j*m_DivisionsW];
				int size = div.items.size();
				for (int n = 0; n < size; ++n)
				{
					if (div.items[n] == item)
					{
						div.erase(n);
						break;
					}
				}
			}
		}
	}

	/**
	 * Equivalent to Remove() then Add(), but potentially faster.
	 */
	void Move(uint32_t item, CFixedVector2D fromMin, CFixedVector2D fromMax, CFixedVector2D toMin, CFixedVector2D toMax)
	{
		// Skip the work if we're staying in the same divisions
		if (GetIndex0(fromMin) == GetIndex0(toMin) && GetIndex1(fromMax) == GetIndex1(toMax))
			return;

		Remove(item, fromMin, fromMax);
		Add(item, toMin, toMax);
	}

	/**
	 * Convenience function for Add() of individual points.
	 * (Note that points on a boundary may occupy multiple divisions.)
	 */
	void Add(uint32_t item, CFixedVector2D to)
	{
		Add(item, to, to);
	}

	/**
	 * Convenience function for Remove() of individual points.
	 */
	void Remove(uint32_t item, CFixedVector2D from)
	{
		Remove(item, from, from);
	}

	/**
	 * Convenience function for Move() of individual points.
	 */
	void Move(uint32_t item, CFixedVector2D from, CFixedVector2D to)
	{
		Move(item, from, from, to, to);
	}

	/**
	 * Returns a sorted list of unique items that includes all items
	 * within the given axis-aligned square range.
	 */
	void GetInRange(std::vector<uint32_t>& out, CFixedVector2D posMin, CFixedVector2D posMax) const
	{
		out.clear();
		ENSURE(posMin.X <= posMax.X && posMin.Y <= posMax.Y);

		u32 i0 = GetI0(posMin.X);
		u32 j0 = GetJ0(posMin.Y);
		u32 i1 = GetI1(posMax.X);
		u32 j1 = GetJ1(posMax.Y);
		for (u32 j = j0; j <= j1; ++j)
		{
			for (u32 i = i0; i <= i1; ++i)
			{
				m_Divisions[i + j*m_DivisionsW].copy_items_at_end(out);
			}
		}
		// some buildings span several tiles, so we need to make it unique
		std::sort(out.begin(), out.end());
		out.erase(std::unique(out.begin(), out.end()), out.end());
	}

	/**
	 * Returns a sorted list of unique items that includes all items
	 * within the given circular distance of the given point.
	 */
	void GetNear(std::vector<uint32_t>& out, CFixedVector2D pos, entity_pos_t range) const
	{
		// TODO: be cleverer and return a circular pattern of divisions,
		// not this square over-approximation
		CFixedVector2D r(range, range);
		GetInRange(out, pos - r, pos + r);
	}

private:
	// Helper functions for translating coordinates into division indexes
	// (avoiding out-of-bounds accesses, and rounding correctly so that
	// points precisely between divisions are counted in both):

	uint32_t GetI0(entity_pos_t x) const
	{
		return Clamp((x / m_DivisionSize).ToInt_RoundToInfinity()-1, 0, (int)m_DivisionsW-1);
	}

	uint32_t GetJ0(entity_pos_t z) const
	{
		return Clamp((z / m_DivisionSize).ToInt_RoundToInfinity()-1, 0, (int)m_DivisionsH-1);
	}

	uint32_t GetI1(entity_pos_t x) const
	{
		return Clamp((x / m_DivisionSize).ToInt_RoundToNegInfinity(), 0, (int)m_DivisionsW-1);
	}

	uint32_t GetJ1(entity_pos_t z) const
	{
		return Clamp((z / m_DivisionSize).ToInt_RoundToNegInfinity(), 0, (int)m_DivisionsH-1);
	}

	uint32_t GetIndex0(CFixedVector2D pos) const
	{
		return GetI0(pos.X) + GetJ0(pos.Y)*m_DivisionsW;
	}

	uint32_t GetIndex1(CFixedVector2D pos) const
	{
		return GetI1(pos.X) + GetJ1(pos.Y)*m_DivisionsW;
	}
};

/**
 * Serialization helper template for SpatialSubdivision
 */
struct SerializeSpatialSubdivision
{
	void operator()(ISerializer& serialize, const char* UNUSED(name), SpatialSubdivision& value)
	{
		serialize.NumberFixed_Unbounded("div size", value.m_DivisionSize);
		serialize.NumberU32_Unbounded("divs w", value.m_DivisionsW);
		serialize.NumberU32_Unbounded("divs h", value.m_DivisionsH);

		size_t count = value.m_DivisionsH * value.m_DivisionsW;
		for (size_t i = 0; i < count; ++i)
			SerializeVector<SerializeU32_Unbounded>()(serialize, "subdiv items", value.m_Divisions[i].items);
	}

	void operator()(IDeserializer& serialize, const char* UNUSED(name), SpatialSubdivision& value)
	{
		serialize.NumberFixed_Unbounded("div size", value.m_DivisionSize);
		serialize.NumberU32_Unbounded("divs w", value.m_DivisionsW);
		serialize.NumberU32_Unbounded("divs h", value.m_DivisionsH);

		size_t count = value.m_DivisionsW * value.m_DivisionsH;
		value.Create(count);
		for (size_t i = 0; i < count; ++i)
			SerializeVector<SerializeU32_Unbounded>()(serialize, "subdiv items", value.m_Divisions[i].items);
	}
};


/**
 * A basic square subdivision scheme for finding entities in range
 * More efficient than SpatialSubdivision, but a bit less precise 
 * (so the querier will get more entities to perform tests on).
 *
 * Items are stored in vectors in fixed-size divisions.
 *
 * Items have a size (min/max values of their axis-aligned bounding box).
 * If that size is higher than a subdivision's size, they're stored in the "general" vector
 * This means that if too many objects have a size that's big, it'll end up being slow
 * We want subdivisions to be as small as possible yet contain as many items as possible.
 *
 * It is the caller's responsibility to ensure items are only added once, aren't removed 
 * unless they've been added, etc, and that Move/Remove are called with the same coordinates
 * originally passed to Add (since this class doesn't remember which divisions an item
 * occupies).
 *
 * TODO: If a unit size were to change, it would need to be updated (that doesn't happen for now)
 */
class FastSpatialSubdivision
{
private:
	static const int SUBDIVISION_SIZE = 20; // bigger than most buildings and entities

	std::vector<entity_id_t> m_OverSizedData;
	std::vector<entity_id_t>* m_SpatialDivisionsData;	// fixed size array of subdivisions
	size_t m_ArrayWidth; // number of columns in m_SpatialDivisionsData

	inline size_t Index(fixed position) const
	{
		return Clamp((position / SUBDIVISION_SIZE).ToInt_RoundToZero(), 0, (int)m_ArrayWidth-1);
	}

	inline size_t SubdivisionIdx(CFixedVector2D position) const
	{
		return Index(position.X) + Index(position.Y)*m_ArrayWidth;
	}

	/**
	 * Efficiently erase from a vector by swapping with the last element and popping it.
	 * Returns true if the element was found and erased, else returns false.
	 */
	bool EraseFrom(std::vector<entity_id_t>& vector, entity_id_t item)
	{
		std::vector<entity_id_t>::iterator it = std::find(vector.begin(), vector.end(), item);
		if (it == vector.end())
			return false;

		*it = vector.back();
		vector.pop_back();
		return true;
	}

public:
	FastSpatialSubdivision() : 
		m_SpatialDivisionsData(NULL), m_ArrayWidth(0) 
	{
	}

	FastSpatialSubdivision(const FastSpatialSubdivision& other) : 
		m_SpatialDivisionsData(NULL), m_ArrayWidth(0)
	{
		Reset(other.m_ArrayWidth);
		std::copy(&other.m_SpatialDivisionsData[0], &other.m_SpatialDivisionsData[m_ArrayWidth*m_ArrayWidth], m_SpatialDivisionsData);
	}

	~FastSpatialSubdivision()
	{
		delete[] m_SpatialDivisionsData;
	}

	void Reset(size_t arrayWidth)
	{
		delete[] m_SpatialDivisionsData;

		m_ArrayWidth = arrayWidth;
		m_SpatialDivisionsData = new std::vector<entity_id_t>[m_ArrayWidth*m_ArrayWidth];
		m_OverSizedData.clear();
	}

	void Reset(fixed w, fixed h)
	{
		ENSURE(w >= fixed::Zero() && h >= fixed::Zero());
		size_t arrayWidth = std::max((w / SUBDIVISION_SIZE).ToInt_RoundToZero(), (h / SUBDIVISION_SIZE).ToInt_RoundToZero()) + 1;
		Reset(arrayWidth);
	}

	FastSpatialSubdivision& operator=(const FastSpatialSubdivision& other)
	{
		if (this != &other)
		{
			Reset(other.m_ArrayWidth);
			std::copy(&other.m_SpatialDivisionsData[0], &other.m_SpatialDivisionsData[m_ArrayWidth*m_ArrayWidth], m_SpatialDivisionsData);
		}
		return *this;
	}

	bool operator==(const FastSpatialSubdivision& other) const
	{
		if (m_ArrayWidth != other.m_ArrayWidth)
			return false;
		if (m_OverSizedData != other.m_OverSizedData)
			return false;
		for (size_t idx = 0; idx < m_ArrayWidth*m_ArrayWidth; ++idx)
			if (m_SpatialDivisionsData[idx] != other.m_SpatialDivisionsData[idx])
				return false;
		return true;
	}

	inline bool operator!=(const FastSpatialSubdivision& rhs) const
	{
		return !(*this == rhs);
	}

	/**
	 * Add an item.
	 */
	void Add(entity_id_t item, CFixedVector2D position, u32 size)
	{
		if (size > SUBDIVISION_SIZE)
		{
			if (std::find(m_OverSizedData.begin(), m_OverSizedData.end(), item) == m_OverSizedData.end())
				m_OverSizedData.push_back(item);
		}
		else 
		{
			std::vector<entity_id_t>& subdivision = m_SpatialDivisionsData[SubdivisionIdx(position)];
			if (std::find(subdivision.begin(), subdivision.end(), item) == subdivision.end())
				subdivision.push_back(item);
		}
	}

	/**
	 * Remove an item.
	 * Position must be where we expect to find it, or we won't find it.
	 */
	void Remove(entity_id_t item, CFixedVector2D position, u32 size)
	{
		if (size > SUBDIVISION_SIZE)
			EraseFrom(m_OverSizedData, item);
		else 
		{
			std::vector<entity_id_t>& subdivision = m_SpatialDivisionsData[SubdivisionIdx(position)];
			EraseFrom(subdivision, item);
		}
	}

	/**
	 * Equivalent to Remove() then Add(), but slightly faster.
	 * In particular for big objects nothing needs to be done.
	 */
	void Move(entity_id_t item, CFixedVector2D oldPosition, CFixedVector2D newPosition, u32 size)
	{		
		if (size > SUBDIVISION_SIZE)
			return;
		if (SubdivisionIdx(newPosition) == SubdivisionIdx(oldPosition))
			return;

		std::vector<entity_id_t>& oldSubdivision = m_SpatialDivisionsData[SubdivisionIdx(oldPosition)];
		if (EraseFrom(oldSubdivision, item))
		{
			std::vector<entity_id_t>& newSubdivision = m_SpatialDivisionsData[SubdivisionIdx(newPosition)];
			newSubdivision.push_back(item);
		}
	}

	/**
	 * Returns a (non sorted) list of items that are either in the square or close to it.
	 * It's the responsibility of the querier to do proper distance checking and entity sorting.
	 */
	void GetInRange(std::vector<entity_id_t>& out, CFixedVector2D posMin, CFixedVector2D posMax) const
	{
		size_t minX = Index(posMin.X);
		size_t minY = Index(posMin.Y);
		size_t maxX = Index(posMax.X) + 1;
		size_t maxY = Index(posMax.Y) + 1;

		// Now expand the subdivisions by one so we make sure we've got all elements potentially in range.
		// Also make sure min >= 0 and max <= width
		minX = minX > 0 ? minX-1 : 0;
		minY = minY > 0 ? minY-1 : 0;
		maxX = maxX < m_ArrayWidth ? maxX+1 : m_ArrayWidth;
		maxY = maxY < m_ArrayWidth ? maxY+1 : m_ArrayWidth;

		ENSURE(out.empty() && "GetInRange: out is not clean");

		// Add oversized items, they can be anywhere
		out.insert(out.end(), m_OverSizedData.begin(), m_OverSizedData.end());

		for (size_t Y = minY; Y < maxY; ++Y)
		{
			for (size_t X = minX; X < maxX; ++X)
			{
				std::vector<entity_id_t>& subdivision = m_SpatialDivisionsData[X + Y*m_ArrayWidth];
				if (!subdivision.empty())
					out.insert(out.end(), subdivision.begin(), subdivision.end());
			}
		}
	}

	/**
	 * Returns a (non sorted) list of items that are either in the circle or close to it.
	 * It's the responsibility of the querier to do proper distance checking and entity sorting.
	 */
	void GetNear(std::vector<entity_id_t>& out, CFixedVector2D pos, entity_pos_t range) const
	{
		// Because the subdivision size is rather big wrt typical ranges, 
		// this square over-approximation is hopefully not too bad.
		CFixedVector2D r(range, range);
		GetInRange(out, pos - r, pos + r);
	}

	size_t GetDivisionSize() const
	{
		return SUBDIVISION_SIZE;
	}

	size_t GetWidth() const 
	{ 
		return m_ArrayWidth; 
	}
};

#endif // INCLUDED_SPATIAL