File: Decompose.cpp

package info (click to toggle)
0ad 0.0.23.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,292 kB
  • sloc: cpp: 245,166; ansic: 200,249; python: 13,754; sh: 6,104; perl: 4,620; makefile: 977; xml: 810; java: 533; ruby: 229; erlang: 46; pascal: 30; sql: 21; tcl: 4
file content (543 lines) | stat: -rw-r--r-- 16,729 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* Copyright (C) 2018 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "precompiled.h"

#ifdef _MSC_VER
# pragma warning(disable: 4244 4305 4127 4701)
#endif

/**** Decompose.c ****/
/* Ken Shoemake, 1993 */
#include <math.h>
#include "Decompose.h"

/******* Matrix Preliminaries *******/

/** Fill out 3x3 matrix to 4x4 **/
#define mat_pad(A) (A[W][X]=A[X][W]=A[W][Y]=A[Y][W]=A[W][Z]=A[Z][W]=0,A[W][W]=1)

/** Copy nxn matrix A to C using "gets" for assignment **/
#define mat_copy(C,gets,A,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
    C[i][j] gets (A[i][j]);}

/** Copy transpose of nxn matrix A to C using "gets" for assignment **/
#define mat_tpose(AT,gets,A,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
    AT[i][j] gets (A[j][i]);}

/** Assign nxn matrix C the element-wise combination of A and B using "op" **/
#define mat_binop(C,gets,A,op,B,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
    C[i][j] gets (A[i][j]) op (B[i][j]);}

/** Multiply the upper left 3x3 parts of A and B to get AB **/
void mat_mult(HMatrix A, HMatrix B, HMatrix AB)
{
    int i, j;
    for (i=0; i<3; i++) for (j=0; j<3; j++)
	AB[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + A[i][2]*B[2][j];
}

/** Return dot product of length 3 vectors va and vb **/
float vdot(float *va, float *vb)
{
    return (va[0]*vb[0] + va[1]*vb[1] + va[2]*vb[2]);
}

/** Set v to cross product of length 3 vectors va and vb **/
void vcross(float *va, float *vb, float *v)
{
    v[0] = va[1]*vb[2] - va[2]*vb[1];
    v[1] = va[2]*vb[0] - va[0]*vb[2];
    v[2] = va[0]*vb[1] - va[1]*vb[0];
}

/** Set MadjT to transpose of inverse of M times determinant of M **/
void adjoint_transpose(HMatrix M, HMatrix MadjT)
{
    vcross(M[1], M[2], MadjT[0]);
    vcross(M[2], M[0], MadjT[1]);
    vcross(M[0], M[1], MadjT[2]);
}

/******* Quaternion Preliminaries *******/

/* Construct a (possibly non-unit) quaternion from real components. */
Quat Qt_(float x, float y, float z, float w)
{
    Quat qq;
    qq.x = x; qq.y = y; qq.z = z; qq.w = w;
    return (qq);
}

/* Return conjugate of quaternion. */
Quat Qt_Conj(Quat q)
{
    Quat qq;
    qq.x = -q.x; qq.y = -q.y; qq.z = -q.z; qq.w = q.w;
    return (qq);
}

/* Return quaternion product qL * qR.  Note: order is important!
 * To combine rotations, use the product Mul(qSecond, qFirst),
 * which gives the effect of rotating by qFirst then qSecond. */
Quat Qt_Mul(Quat qL, Quat qR)
{
    Quat qq;
    qq.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z;
    qq.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y;
    qq.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z;
    qq.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x;
    return (qq);
}

/* Return product of quaternion q by scalar w. */
Quat Qt_Scale(Quat q, float w)
{
    Quat qq;
    qq.w = q.w*w; qq.x = q.x*w; qq.y = q.y*w; qq.z = q.z*w;
    return (qq);
}

/* Construct a unit quaternion from rotation matrix.  Assumes matrix is
 * used to multiply column vector on the left: vnew = mat vold.	 Works
 * correctly for right-handed coordinate system and right-handed rotations.
 * Translation and perspective components ignored. */
Quat Qt_FromMatrix(HMatrix mat)
{
    /* This algorithm avoids near-zero divides by looking for a large component
     * - first w, then x, y, or z.  When the trace is greater than zero,
     * |w| is greater than 1/2, which is as small as a largest component can be.
     * Otherwise, the largest diagonal entry corresponds to the largest of |x|,
     * |y|, or |z|, one of which must be larger than |w|, and at least 1/2. */
    Quat qu;
    double tr, s;

    tr = mat[X][X] + mat[Y][Y]+ mat[Z][Z];
    if (tr >= 0.0) {
	    s = sqrt(tr + mat[W][W]);
	    qu.w = s*0.5;
	    s = 0.5 / s;
	    qu.x = (mat[Z][Y] - mat[Y][Z]) * s;
	    qu.y = (mat[X][Z] - mat[Z][X]) * s;
	    qu.z = (mat[Y][X] - mat[X][Y]) * s;
	} else {
	    int h = X;
	    if (mat[Y][Y] > mat[X][X]) h = Y;
	    if (mat[Z][Z] > mat[h][h]) h = Z;
	    switch (h) {
#define caseMacro(i,j,k,I,J,K) \
	    case I:\
		s = sqrt( (mat[I][I] - (mat[J][J]+mat[K][K])) + mat[W][W] );\
		qu.i = s*0.5;\
		s = 0.5 / s;\
		qu.j = (mat[I][J] + mat[J][I]) * s;\
		qu.k = (mat[K][I] + mat[I][K]) * s;\
		qu.w = (mat[K][J] - mat[J][K]) * s;\
		break
	    caseMacro(x,y,z,X,Y,Z);
	    caseMacro(y,z,x,Y,Z,X);
	    caseMacro(z,x,y,Z,X,Y);
	    }
	}
    if (mat[W][W] != 1.0) qu = Qt_Scale(qu, 1/sqrt(mat[W][W]));
    return (qu);
}
/******* Decomp Auxiliaries *******/

static HMatrix mat_id = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};

/** Compute either the 1 or infinity norm of M, depending on tpose **/
float mat_norm(HMatrix M, int tpose)
{
    int i;
    float sum, max;
    max = 0.0;
    for (i=0; i<3; i++) {
	if (tpose) sum = fabs(M[0][i])+fabs(M[1][i])+fabs(M[2][i]);
	else	   sum = fabs(M[i][0])+fabs(M[i][1])+fabs(M[i][2]);
	if (max<sum) max = sum;
    }
    return max;
}

float norm_inf(HMatrix M) {return mat_norm(M, 0);}
float norm_one(HMatrix M) {return mat_norm(M, 1);}

/** Return index of column of M containing maximum abs entry, or -1 if M=0 **/
int find_max_col(HMatrix M)
{
    float abs, max;
    int i, j, col;
    max = 0.0; col = -1;
    for (i=0; i<3; i++) for (j=0; j<3; j++) {
	abs = M[i][j]; if (abs<0.0) abs = -abs;
	if (abs>max) {max = abs; col = j;}
    }
    return col;
}

/** Setup u for Household reflection to zero all v components but first **/
void make_reflector(float *v, float *u)
{
    float s = sqrt(vdot(v, v));
    u[0] = v[0]; u[1] = v[1];
    u[2] = v[2] + ((v[2]<0.0) ? -s : s);
    s = sqrt(2.0/vdot(u, u));
    u[0] = u[0]*s; u[1] = u[1]*s; u[2] = u[2]*s;
}

/** Apply Householder reflection represented by u to column vectors of M **/
void reflect_cols(HMatrix M, float *u)
{
    int i, j;
    for (i=0; i<3; i++) {
	float s = u[0]*M[0][i] + u[1]*M[1][i] + u[2]*M[2][i];
	for (j=0; j<3; j++) M[j][i] -= u[j]*s;
    }
}
/** Apply Householder reflection represented by u to row vectors of M **/
void reflect_rows(HMatrix M, float *u)
{
    int i, j;
    for (i=0; i<3; i++) {
	float s = vdot(u, M[i]);
	for (j=0; j<3; j++) M[i][j] -= u[j]*s;
    }
}

/** Find orthogonal factor Q of rank 1 (or less) M **/
void do_rank1(HMatrix M, HMatrix Q)
{
    float v1[3], v2[3], s;
    int col;
    mat_copy(Q,=,mat_id,4);
    /* If rank(M) is 1, we should find a non-zero column in M */
    col = find_max_col(M);
    if (col<0) return; /* Rank is 0 */
    v1[0] = M[0][col]; v1[1] = M[1][col]; v1[2] = M[2][col];
    make_reflector(v1, v1); reflect_cols(M, v1);
    v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2];
    make_reflector(v2, v2); reflect_rows(M, v2);
    s = M[2][2];
    if (s<0.0) Q[2][2] = -1.0;
    reflect_cols(Q, v1); reflect_rows(Q, v2);
}

/** Find orthogonal factor Q of rank 2 (or less) M using adjoint transpose **/
void do_rank2(HMatrix M, HMatrix MadjT, HMatrix Q)
{
    float v1[3], v2[3];
    float w, x, y, z, c, s, d;
    int col;
    /* If rank(M) is 2, we should find a non-zero column in MadjT */
    col = find_max_col(MadjT);
    if (col<0) {do_rank1(M, Q); return;} /* Rank<2 */
    v1[0] = MadjT[0][col]; v1[1] = MadjT[1][col]; v1[2] = MadjT[2][col];
    make_reflector(v1, v1); reflect_cols(M, v1);
    vcross(M[0], M[1], v2);
    make_reflector(v2, v2); reflect_rows(M, v2);
    w = M[0][0]; x = M[0][1]; y = M[1][0]; z = M[1][1];
    if (w*z>x*y) {
	c = z+w; s = y-x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
	Q[0][0] = Q[1][1] = c; Q[0][1] = -(Q[1][0] = s);
    } else {
	c = z-w; s = y+x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
	Q[0][0] = -(Q[1][1] = c); Q[0][1] = Q[1][0] = s;
    }
    Q[0][2] = Q[2][0] = Q[1][2] = Q[2][1] = 0.0; Q[2][2] = 1.0;
    reflect_cols(Q, v1); reflect_rows(Q, v2);
}


/******* Polar Decomposition *******/

/* Polar Decomposition of 3x3 matrix in 4x4,
 * M = QS.  See Nicholas Higham and Robert S. Schreiber,
 * Fast Polar Decomposition of An Arbitrary Matrix,
 * Technical Report 88-942, October 1988,
 * Department of Computer Science, Cornell University.
 */
float polar_decomp(HMatrix M, HMatrix Q, HMatrix S)
{
#define TOL 1.0e-6
    HMatrix Mk, MadjTk, Ek;
    float det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, g1, g2;
    mat_tpose(Mk,=,M,3);
    M_one = norm_one(Mk);  M_inf = norm_inf(Mk);
    do {
	adjoint_transpose(Mk, MadjTk);
	det = vdot(Mk[0], MadjTk[0]);
	if (det==0.0) {do_rank2(Mk, MadjTk, Mk); break;}
	MadjT_one = norm_one(MadjTk); MadjT_inf = norm_inf(MadjTk);
	gamma = sqrt(sqrt((MadjT_one*MadjT_inf)/(M_one*M_inf))/fabs(det));
	g1 = gamma*0.5;
	g2 = 0.5/(gamma*det);
	mat_copy(Ek,=,Mk,3);
	mat_binop(Mk,=,g1*Mk,+,g2*MadjTk,3);
	mat_copy(Ek,-=,Mk,3);
	E_one = norm_one(Ek);
	M_one = norm_one(Mk);  M_inf = norm_inf(Mk);
    } while (E_one>(M_one*TOL));
    mat_tpose(Q,=,Mk,3); mat_pad(Q);
    mat_mult(Mk, M, S);	 mat_pad(S);
	for (int i = 0; i < 3; i++) for (int j = i; j < 3; j++)
	S[i][j] = S[j][i] = 0.5*(S[i][j]+S[j][i]);
    return (det);
}

















/******* Spectral Decomposition *******/

/* Compute the spectral decomposition of symmetric positive semi-definite S.
 * Returns rotation in U and scale factors in result, so that if K is a diagonal
 * matrix of the scale factors, then S = U K (U transpose). Uses Jacobi method.
 * See Gene H. Golub and Charles F. Van Loan. Matrix Computations. Hopkins 1983.
 */
HVect spect_decomp(HMatrix S, HMatrix U)
{
	HVect kv;
	double Diag[3], OffD[3]; /* OffD is off-diag (by omitted index) */
	double g, h, fabsh, fabsOffDi, t, theta, c, s, tau, ta, OffDq, a, b;
	static char nxt[] = {Y, Z, X};
	mat_copy(U, =, mat_id, 4);
	Diag[X] = S[X][X];
	Diag[Y] = S[Y][Y];
	Diag[Z] = S[Z][Z];
	OffD[X] = S[Y][Z];
	OffD[Y] = S[Z][X];
	OffD[Z] = S[X][Y];
	for (int sweep = 20; sweep > 0; --sweep)
	{
		float sm = fabs(OffD[X]) + fabs(OffD[Y]) + fabs(OffD[Z]);
		if (sm == 0.0)
			break;
		for (int i = Z; i >= X; --i)
		{
			int p = nxt[i];
			int q = nxt[p];
			fabsOffDi = fabs(OffD[i]);
			g = 100.0 * fabsOffDi;
			if (fabsOffDi > 0.0)
			{
				h = Diag[q] - Diag[p];
				fabsh = fabs(h);
				if (fabsh + g == fabsh)
				{
					t = OffD[i] / h;
				}
				else
				{
					theta = 0.5 * h / OffD[i];
					t = 1.0 / (fabs(theta) + sqrt(theta * theta + 1.0));
					if (theta < 0.0)
						t = -t;
				}
				c = 1.0 / sqrt(t * t + 1.0);
				s = t * c;
				tau = s / (c + 1.0);
				ta = t * OffD[i];
				OffD[i] = 0.0;
				Diag[p] -= ta;
				Diag[q] += ta;
				OffDq = OffD[q];
				OffD[q] -= s * (OffD[p] + tau * OffD[q]);
				OffD[p] += s * (OffDq - tau * OffD[p]);
				for (int j = Z; j >= X; --j)
				{
					a = U[j][p];
					b = U[j][q];
					U[j][p] -= s * (b + tau * a);
					U[j][q] += s * (a - tau * b);
				}
			}
		}
	}
	kv.x = Diag[X];
	kv.y = Diag[Y];
	kv.z = Diag[Z];
	kv.w = 1.0;
	return kv;
}

/******* Spectral Axis Adjustment *******/

/* Given a unit quaternion, q, and a scale vector, k, find a unit quaternion, p,
 * which permutes the axes and turns freely in the plane of duplicate scale
 * factors, such that q p has the largest possible w component, i.e. the
 * smallest possible angle. Permutes k's components to go with q p instead of q.
 * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition.
 * Proceedings of Graphics Interface 1992. Details on p. 262-263.
 */
Quat snuggle(Quat q, HVect *k)
{
#define SQRTHALF (0.7071067811865475244)
#define sgn(n,v)    ((n)?-(v):(v))
#define swap(a,i,j) {a[3]=a[i]; a[i]=a[j]; a[j]=a[3];}
#define cycle(a,p)  if (p) {a[3]=a[0]; a[0]=a[1]; a[1]=a[2]; a[2]=a[3];}\
		    else   {a[3]=a[2]; a[2]=a[1]; a[1]=a[0]; a[0]=a[3];}
    Quat p;
    float ka[4];
    int turn = -1;
    ka[X] = k->x; ka[Y] = k->y; ka[Z] = k->z;
    if (ka[X]==ka[Y]) {if (ka[X]==ka[Z]) turn = W; else turn = Z;}
    else {if (ka[X]==ka[Z]) turn = Y; else if (ka[Y]==ka[Z]) turn = X;}
    if (turn>=0) {
	Quat qtoz, qp;
	unsigned neg[3], win;
	double mag[3], t;
	static Quat qxtoz = {.0f, static_cast<float>(SQRTHALF), .0f, static_cast<float>(SQRTHALF)};
	static Quat qytoz = {static_cast<float>(SQRTHALF), .0f, .0f, static_cast<float>(SQRTHALF)};
	static Quat qppmm = { 0.5, 0.5,-0.5,-0.5};
	static Quat qpppp = { 0.5, 0.5, 0.5, 0.5};
	static Quat qmpmm = {-0.5, 0.5,-0.5,-0.5};
	static Quat qpppm = { 0.5, 0.5, 0.5,-0.5};
	static Quat q0001 = { 0.0, 0.0, 0.0, 1.0};
	static Quat q1000 = { 1.0, 0.0, 0.0, 0.0};
	switch (turn) {
	default: return (Qt_Conj(q));
	case X: q = Qt_Mul(q, qtoz = qxtoz); swap(ka,X,Z) break;
	case Y: q = Qt_Mul(q, qtoz = qytoz); swap(ka,Y,Z) break;
	case Z: qtoz = q0001; break;
	}
	q = Qt_Conj(q);
	mag[0] = (double)q.z*q.z+(double)q.w*q.w-0.5;
	mag[1] = (double)q.x*q.z-(double)q.y*q.w;
	mag[2] = (double)q.y*q.z+(double)q.x*q.w;
	for (int i = 0; i < 3; ++i) if ((neg[i] = (mag[i] < 0.0)) != 0) mag[i] = -mag[i];
	if (mag[0]>mag[1]) {if (mag[0]>mag[2]) win = 0; else win = 2;}
	else		   {if (mag[1]>mag[2]) win = 1; else win = 2;}
	switch (win) {
	case 0: if (neg[0]) p = q1000; else p = q0001; break;
	case 1: if (neg[1]) p = qppmm; else p = qpppp; cycle(ka,0) break;
	case 2: if (neg[2]) p = qmpmm; else p = qpppm; cycle(ka,1) break;
	}
	qp = Qt_Mul(q, p);
	t = sqrt(mag[win]+0.5);
	p = Qt_Mul(p, Qt_(0.0,0.0,-qp.z/t,qp.w/t));
	p = Qt_Mul(qtoz, Qt_Conj(p));
    } else {
	float qa[4], pa[4];
	unsigned lo, hi, neg[4], par = 0;
	double all, big, two;
	qa[0] = q.x; qa[1] = q.y; qa[2] = q.z; qa[3] = q.w;
	for (int i = 0; i < 4; ++i) {
	    pa[i] = 0.0;
	    if ((neg[i] = (qa[i]<0.0)) != 0) qa[i] = -qa[i];
	    par ^= neg[i];
	}
	/* Find two largest components, indices in hi and lo */
	if (qa[0]>qa[1]) lo = 0; else lo = 1;
	if (qa[2]>qa[3]) hi = 2; else hi = 3;
	if (qa[lo]>qa[hi]) {
	    if (qa[lo^1]>qa[hi]) {hi = lo; lo ^= 1;}
	    else {hi ^= lo; lo ^= hi; hi ^= lo;}
	} else {if (qa[hi^1]>qa[lo]) lo = hi^1;}
	all = (qa[0]+qa[1]+qa[2]+qa[3])*0.5;
	two = (qa[hi]+qa[lo])*SQRTHALF;
	big = qa[hi];
	if (all>two) {
	    if (all>big) {/*all*/
		{int i; for (i=0; i<4; i++) pa[i] = sgn(neg[i], 0.5);}
		cycle(ka,par)
	    } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);}
	} else {
	    if (two>big) {/*two*/
		pa[hi] = sgn(neg[hi],SQRTHALF); pa[lo] = sgn(neg[lo], SQRTHALF);
		if (lo>hi) {hi ^= lo; lo ^= hi; hi ^= lo;}
		if (hi==W) {hi = "\001\002\000"[lo]; lo = 3-hi-lo;}
		swap(ka,hi,lo)
	    } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);}
	}
	p.x = -pa[0]; p.y = -pa[1]; p.z = -pa[2]; p.w = pa[3];
    }
    k->x = ka[X]; k->y = ka[Y]; k->z = ka[Z];
    return (p);
}











/******* Decompose Affine Matrix *******/

/* Decompose 4x4 affine matrix A as TFRUK(U transpose), where t contains the
 * translation components, q contains the rotation R, u contains U, k contains
 * scale factors, and f contains the sign of the determinant.
 * Assumes A transforms column vectors in right-handed coordinates.
 * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition.
 * Proceedings of Graphics Interface 1992.
 */
void decomp_affine(HMatrix A, AffineParts *parts)
{
    HMatrix Q, S, U;
    Quat p;
    float det;
    parts->t = Qt_(A[X][W], A[Y][W], A[Z][W], 0);
    det = polar_decomp(A, Q, S);
    if (det<0.0) {
	mat_copy(Q,=,-Q,3);
	parts->f = -1;
    } else parts->f = 1;
    parts->q = Qt_FromMatrix(Q);
    parts->k = spect_decomp(S, U);
    parts->u = Qt_FromMatrix(U);
    p = snuggle(parts->u, &parts->k);
    parts->u = Qt_Mul(parts->u, p);
}

/******* Invert Affine Decomposition *******/

/* Compute inverse of affine decomposition.
 */
void invert_affine(AffineParts *parts, AffineParts *inverse)
{
    Quat t, p;
    inverse->f = parts->f;
    inverse->q = Qt_Conj(parts->q);
    inverse->u = Qt_Mul(parts->q, parts->u);
    inverse->k.x = (parts->k.x==0.0) ? 0.0 : 1.0/parts->k.x;
    inverse->k.y = (parts->k.y==0.0) ? 0.0 : 1.0/parts->k.y;
    inverse->k.z = (parts->k.z==0.0) ? 0.0 : 1.0/parts->k.z;
    inverse->k.w = parts->k.w;
    t = Qt_(-parts->t.x, -parts->t.y, -parts->t.z, 0);
    t = Qt_Mul(Qt_Conj(inverse->u), Qt_Mul(t, inverse->u));
    t = Qt_(inverse->k.x*t.x, inverse->k.y*t.y, inverse->k.z*t.z, 0);
    p = Qt_Mul(inverse->q, inverse->u);
    t = Qt_Mul(p, Qt_Mul(t, Qt_Conj(p)));
    inverse->t = (inverse->f>0.0) ? t : Qt_(-t.x, -t.y, -t.z, 0);
}