1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
/* Copyright (C) 2018 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#ifdef _MSC_VER
# pragma warning(disable: 4244 4305 4127 4701)
#endif
/**** Decompose.c ****/
/* Ken Shoemake, 1993 */
#include <math.h>
#include "Decompose.h"
/******* Matrix Preliminaries *******/
/** Fill out 3x3 matrix to 4x4 **/
#define mat_pad(A) (A[W][X]=A[X][W]=A[W][Y]=A[Y][W]=A[W][Z]=A[Z][W]=0,A[W][W]=1)
/** Copy nxn matrix A to C using "gets" for assignment **/
#define mat_copy(C,gets,A,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
C[i][j] gets (A[i][j]);}
/** Copy transpose of nxn matrix A to C using "gets" for assignment **/
#define mat_tpose(AT,gets,A,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
AT[i][j] gets (A[j][i]);}
/** Assign nxn matrix C the element-wise combination of A and B using "op" **/
#define mat_binop(C,gets,A,op,B,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
C[i][j] gets (A[i][j]) op (B[i][j]);}
/** Multiply the upper left 3x3 parts of A and B to get AB **/
void mat_mult(HMatrix A, HMatrix B, HMatrix AB)
{
int i, j;
for (i=0; i<3; i++) for (j=0; j<3; j++)
AB[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + A[i][2]*B[2][j];
}
/** Return dot product of length 3 vectors va and vb **/
float vdot(float *va, float *vb)
{
return (va[0]*vb[0] + va[1]*vb[1] + va[2]*vb[2]);
}
/** Set v to cross product of length 3 vectors va and vb **/
void vcross(float *va, float *vb, float *v)
{
v[0] = va[1]*vb[2] - va[2]*vb[1];
v[1] = va[2]*vb[0] - va[0]*vb[2];
v[2] = va[0]*vb[1] - va[1]*vb[0];
}
/** Set MadjT to transpose of inverse of M times determinant of M **/
void adjoint_transpose(HMatrix M, HMatrix MadjT)
{
vcross(M[1], M[2], MadjT[0]);
vcross(M[2], M[0], MadjT[1]);
vcross(M[0], M[1], MadjT[2]);
}
/******* Quaternion Preliminaries *******/
/* Construct a (possibly non-unit) quaternion from real components. */
Quat Qt_(float x, float y, float z, float w)
{
Quat qq;
qq.x = x; qq.y = y; qq.z = z; qq.w = w;
return (qq);
}
/* Return conjugate of quaternion. */
Quat Qt_Conj(Quat q)
{
Quat qq;
qq.x = -q.x; qq.y = -q.y; qq.z = -q.z; qq.w = q.w;
return (qq);
}
/* Return quaternion product qL * qR. Note: order is important!
* To combine rotations, use the product Mul(qSecond, qFirst),
* which gives the effect of rotating by qFirst then qSecond. */
Quat Qt_Mul(Quat qL, Quat qR)
{
Quat qq;
qq.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z;
qq.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y;
qq.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z;
qq.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x;
return (qq);
}
/* Return product of quaternion q by scalar w. */
Quat Qt_Scale(Quat q, float w)
{
Quat qq;
qq.w = q.w*w; qq.x = q.x*w; qq.y = q.y*w; qq.z = q.z*w;
return (qq);
}
/* Construct a unit quaternion from rotation matrix. Assumes matrix is
* used to multiply column vector on the left: vnew = mat vold. Works
* correctly for right-handed coordinate system and right-handed rotations.
* Translation and perspective components ignored. */
Quat Qt_FromMatrix(HMatrix mat)
{
/* This algorithm avoids near-zero divides by looking for a large component
* - first w, then x, y, or z. When the trace is greater than zero,
* |w| is greater than 1/2, which is as small as a largest component can be.
* Otherwise, the largest diagonal entry corresponds to the largest of |x|,
* |y|, or |z|, one of which must be larger than |w|, and at least 1/2. */
Quat qu;
double tr, s;
tr = mat[X][X] + mat[Y][Y]+ mat[Z][Z];
if (tr >= 0.0) {
s = sqrt(tr + mat[W][W]);
qu.w = s*0.5;
s = 0.5 / s;
qu.x = (mat[Z][Y] - mat[Y][Z]) * s;
qu.y = (mat[X][Z] - mat[Z][X]) * s;
qu.z = (mat[Y][X] - mat[X][Y]) * s;
} else {
int h = X;
if (mat[Y][Y] > mat[X][X]) h = Y;
if (mat[Z][Z] > mat[h][h]) h = Z;
switch (h) {
#define caseMacro(i,j,k,I,J,K) \
case I:\
s = sqrt( (mat[I][I] - (mat[J][J]+mat[K][K])) + mat[W][W] );\
qu.i = s*0.5;\
s = 0.5 / s;\
qu.j = (mat[I][J] + mat[J][I]) * s;\
qu.k = (mat[K][I] + mat[I][K]) * s;\
qu.w = (mat[K][J] - mat[J][K]) * s;\
break
caseMacro(x,y,z,X,Y,Z);
caseMacro(y,z,x,Y,Z,X);
caseMacro(z,x,y,Z,X,Y);
}
}
if (mat[W][W] != 1.0) qu = Qt_Scale(qu, 1/sqrt(mat[W][W]));
return (qu);
}
/******* Decomp Auxiliaries *******/
static HMatrix mat_id = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
/** Compute either the 1 or infinity norm of M, depending on tpose **/
float mat_norm(HMatrix M, int tpose)
{
int i;
float sum, max;
max = 0.0;
for (i=0; i<3; i++) {
if (tpose) sum = fabs(M[0][i])+fabs(M[1][i])+fabs(M[2][i]);
else sum = fabs(M[i][0])+fabs(M[i][1])+fabs(M[i][2]);
if (max<sum) max = sum;
}
return max;
}
float norm_inf(HMatrix M) {return mat_norm(M, 0);}
float norm_one(HMatrix M) {return mat_norm(M, 1);}
/** Return index of column of M containing maximum abs entry, or -1 if M=0 **/
int find_max_col(HMatrix M)
{
float abs, max;
int i, j, col;
max = 0.0; col = -1;
for (i=0; i<3; i++) for (j=0; j<3; j++) {
abs = M[i][j]; if (abs<0.0) abs = -abs;
if (abs>max) {max = abs; col = j;}
}
return col;
}
/** Setup u for Household reflection to zero all v components but first **/
void make_reflector(float *v, float *u)
{
float s = sqrt(vdot(v, v));
u[0] = v[0]; u[1] = v[1];
u[2] = v[2] + ((v[2]<0.0) ? -s : s);
s = sqrt(2.0/vdot(u, u));
u[0] = u[0]*s; u[1] = u[1]*s; u[2] = u[2]*s;
}
/** Apply Householder reflection represented by u to column vectors of M **/
void reflect_cols(HMatrix M, float *u)
{
int i, j;
for (i=0; i<3; i++) {
float s = u[0]*M[0][i] + u[1]*M[1][i] + u[2]*M[2][i];
for (j=0; j<3; j++) M[j][i] -= u[j]*s;
}
}
/** Apply Householder reflection represented by u to row vectors of M **/
void reflect_rows(HMatrix M, float *u)
{
int i, j;
for (i=0; i<3; i++) {
float s = vdot(u, M[i]);
for (j=0; j<3; j++) M[i][j] -= u[j]*s;
}
}
/** Find orthogonal factor Q of rank 1 (or less) M **/
void do_rank1(HMatrix M, HMatrix Q)
{
float v1[3], v2[3], s;
int col;
mat_copy(Q,=,mat_id,4);
/* If rank(M) is 1, we should find a non-zero column in M */
col = find_max_col(M);
if (col<0) return; /* Rank is 0 */
v1[0] = M[0][col]; v1[1] = M[1][col]; v1[2] = M[2][col];
make_reflector(v1, v1); reflect_cols(M, v1);
v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2];
make_reflector(v2, v2); reflect_rows(M, v2);
s = M[2][2];
if (s<0.0) Q[2][2] = -1.0;
reflect_cols(Q, v1); reflect_rows(Q, v2);
}
/** Find orthogonal factor Q of rank 2 (or less) M using adjoint transpose **/
void do_rank2(HMatrix M, HMatrix MadjT, HMatrix Q)
{
float v1[3], v2[3];
float w, x, y, z, c, s, d;
int col;
/* If rank(M) is 2, we should find a non-zero column in MadjT */
col = find_max_col(MadjT);
if (col<0) {do_rank1(M, Q); return;} /* Rank<2 */
v1[0] = MadjT[0][col]; v1[1] = MadjT[1][col]; v1[2] = MadjT[2][col];
make_reflector(v1, v1); reflect_cols(M, v1);
vcross(M[0], M[1], v2);
make_reflector(v2, v2); reflect_rows(M, v2);
w = M[0][0]; x = M[0][1]; y = M[1][0]; z = M[1][1];
if (w*z>x*y) {
c = z+w; s = y-x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
Q[0][0] = Q[1][1] = c; Q[0][1] = -(Q[1][0] = s);
} else {
c = z-w; s = y+x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
Q[0][0] = -(Q[1][1] = c); Q[0][1] = Q[1][0] = s;
}
Q[0][2] = Q[2][0] = Q[1][2] = Q[2][1] = 0.0; Q[2][2] = 1.0;
reflect_cols(Q, v1); reflect_rows(Q, v2);
}
/******* Polar Decomposition *******/
/* Polar Decomposition of 3x3 matrix in 4x4,
* M = QS. See Nicholas Higham and Robert S. Schreiber,
* Fast Polar Decomposition of An Arbitrary Matrix,
* Technical Report 88-942, October 1988,
* Department of Computer Science, Cornell University.
*/
float polar_decomp(HMatrix M, HMatrix Q, HMatrix S)
{
#define TOL 1.0e-6
HMatrix Mk, MadjTk, Ek;
float det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, g1, g2;
mat_tpose(Mk,=,M,3);
M_one = norm_one(Mk); M_inf = norm_inf(Mk);
do {
adjoint_transpose(Mk, MadjTk);
det = vdot(Mk[0], MadjTk[0]);
if (det==0.0) {do_rank2(Mk, MadjTk, Mk); break;}
MadjT_one = norm_one(MadjTk); MadjT_inf = norm_inf(MadjTk);
gamma = sqrt(sqrt((MadjT_one*MadjT_inf)/(M_one*M_inf))/fabs(det));
g1 = gamma*0.5;
g2 = 0.5/(gamma*det);
mat_copy(Ek,=,Mk,3);
mat_binop(Mk,=,g1*Mk,+,g2*MadjTk,3);
mat_copy(Ek,-=,Mk,3);
E_one = norm_one(Ek);
M_one = norm_one(Mk); M_inf = norm_inf(Mk);
} while (E_one>(M_one*TOL));
mat_tpose(Q,=,Mk,3); mat_pad(Q);
mat_mult(Mk, M, S); mat_pad(S);
for (int i = 0; i < 3; i++) for (int j = i; j < 3; j++)
S[i][j] = S[j][i] = 0.5*(S[i][j]+S[j][i]);
return (det);
}
/******* Spectral Decomposition *******/
/* Compute the spectral decomposition of symmetric positive semi-definite S.
* Returns rotation in U and scale factors in result, so that if K is a diagonal
* matrix of the scale factors, then S = U K (U transpose). Uses Jacobi method.
* See Gene H. Golub and Charles F. Van Loan. Matrix Computations. Hopkins 1983.
*/
HVect spect_decomp(HMatrix S, HMatrix U)
{
HVect kv;
double Diag[3], OffD[3]; /* OffD is off-diag (by omitted index) */
double g, h, fabsh, fabsOffDi, t, theta, c, s, tau, ta, OffDq, a, b;
static char nxt[] = {Y, Z, X};
mat_copy(U, =, mat_id, 4);
Diag[X] = S[X][X];
Diag[Y] = S[Y][Y];
Diag[Z] = S[Z][Z];
OffD[X] = S[Y][Z];
OffD[Y] = S[Z][X];
OffD[Z] = S[X][Y];
for (int sweep = 20; sweep > 0; --sweep)
{
float sm = fabs(OffD[X]) + fabs(OffD[Y]) + fabs(OffD[Z]);
if (sm == 0.0)
break;
for (int i = Z; i >= X; --i)
{
int p = nxt[i];
int q = nxt[p];
fabsOffDi = fabs(OffD[i]);
g = 100.0 * fabsOffDi;
if (fabsOffDi > 0.0)
{
h = Diag[q] - Diag[p];
fabsh = fabs(h);
if (fabsh + g == fabsh)
{
t = OffD[i] / h;
}
else
{
theta = 0.5 * h / OffD[i];
t = 1.0 / (fabs(theta) + sqrt(theta * theta + 1.0));
if (theta < 0.0)
t = -t;
}
c = 1.0 / sqrt(t * t + 1.0);
s = t * c;
tau = s / (c + 1.0);
ta = t * OffD[i];
OffD[i] = 0.0;
Diag[p] -= ta;
Diag[q] += ta;
OffDq = OffD[q];
OffD[q] -= s * (OffD[p] + tau * OffD[q]);
OffD[p] += s * (OffDq - tau * OffD[p]);
for (int j = Z; j >= X; --j)
{
a = U[j][p];
b = U[j][q];
U[j][p] -= s * (b + tau * a);
U[j][q] += s * (a - tau * b);
}
}
}
}
kv.x = Diag[X];
kv.y = Diag[Y];
kv.z = Diag[Z];
kv.w = 1.0;
return kv;
}
/******* Spectral Axis Adjustment *******/
/* Given a unit quaternion, q, and a scale vector, k, find a unit quaternion, p,
* which permutes the axes and turns freely in the plane of duplicate scale
* factors, such that q p has the largest possible w component, i.e. the
* smallest possible angle. Permutes k's components to go with q p instead of q.
* See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition.
* Proceedings of Graphics Interface 1992. Details on p. 262-263.
*/
Quat snuggle(Quat q, HVect *k)
{
#define SQRTHALF (0.7071067811865475244)
#define sgn(n,v) ((n)?-(v):(v))
#define swap(a,i,j) {a[3]=a[i]; a[i]=a[j]; a[j]=a[3];}
#define cycle(a,p) if (p) {a[3]=a[0]; a[0]=a[1]; a[1]=a[2]; a[2]=a[3];}\
else {a[3]=a[2]; a[2]=a[1]; a[1]=a[0]; a[0]=a[3];}
Quat p;
float ka[4];
int turn = -1;
ka[X] = k->x; ka[Y] = k->y; ka[Z] = k->z;
if (ka[X]==ka[Y]) {if (ka[X]==ka[Z]) turn = W; else turn = Z;}
else {if (ka[X]==ka[Z]) turn = Y; else if (ka[Y]==ka[Z]) turn = X;}
if (turn>=0) {
Quat qtoz, qp;
unsigned neg[3], win;
double mag[3], t;
static Quat qxtoz = {.0f, static_cast<float>(SQRTHALF), .0f, static_cast<float>(SQRTHALF)};
static Quat qytoz = {static_cast<float>(SQRTHALF), .0f, .0f, static_cast<float>(SQRTHALF)};
static Quat qppmm = { 0.5, 0.5,-0.5,-0.5};
static Quat qpppp = { 0.5, 0.5, 0.5, 0.5};
static Quat qmpmm = {-0.5, 0.5,-0.5,-0.5};
static Quat qpppm = { 0.5, 0.5, 0.5,-0.5};
static Quat q0001 = { 0.0, 0.0, 0.0, 1.0};
static Quat q1000 = { 1.0, 0.0, 0.0, 0.0};
switch (turn) {
default: return (Qt_Conj(q));
case X: q = Qt_Mul(q, qtoz = qxtoz); swap(ka,X,Z) break;
case Y: q = Qt_Mul(q, qtoz = qytoz); swap(ka,Y,Z) break;
case Z: qtoz = q0001; break;
}
q = Qt_Conj(q);
mag[0] = (double)q.z*q.z+(double)q.w*q.w-0.5;
mag[1] = (double)q.x*q.z-(double)q.y*q.w;
mag[2] = (double)q.y*q.z+(double)q.x*q.w;
for (int i = 0; i < 3; ++i) if ((neg[i] = (mag[i] < 0.0)) != 0) mag[i] = -mag[i];
if (mag[0]>mag[1]) {if (mag[0]>mag[2]) win = 0; else win = 2;}
else {if (mag[1]>mag[2]) win = 1; else win = 2;}
switch (win) {
case 0: if (neg[0]) p = q1000; else p = q0001; break;
case 1: if (neg[1]) p = qppmm; else p = qpppp; cycle(ka,0) break;
case 2: if (neg[2]) p = qmpmm; else p = qpppm; cycle(ka,1) break;
}
qp = Qt_Mul(q, p);
t = sqrt(mag[win]+0.5);
p = Qt_Mul(p, Qt_(0.0,0.0,-qp.z/t,qp.w/t));
p = Qt_Mul(qtoz, Qt_Conj(p));
} else {
float qa[4], pa[4];
unsigned lo, hi, neg[4], par = 0;
double all, big, two;
qa[0] = q.x; qa[1] = q.y; qa[2] = q.z; qa[3] = q.w;
for (int i = 0; i < 4; ++i) {
pa[i] = 0.0;
if ((neg[i] = (qa[i]<0.0)) != 0) qa[i] = -qa[i];
par ^= neg[i];
}
/* Find two largest components, indices in hi and lo */
if (qa[0]>qa[1]) lo = 0; else lo = 1;
if (qa[2]>qa[3]) hi = 2; else hi = 3;
if (qa[lo]>qa[hi]) {
if (qa[lo^1]>qa[hi]) {hi = lo; lo ^= 1;}
else {hi ^= lo; lo ^= hi; hi ^= lo;}
} else {if (qa[hi^1]>qa[lo]) lo = hi^1;}
all = (qa[0]+qa[1]+qa[2]+qa[3])*0.5;
two = (qa[hi]+qa[lo])*SQRTHALF;
big = qa[hi];
if (all>two) {
if (all>big) {/*all*/
{int i; for (i=0; i<4; i++) pa[i] = sgn(neg[i], 0.5);}
cycle(ka,par)
} else {/*big*/ pa[hi] = sgn(neg[hi],1.0);}
} else {
if (two>big) {/*two*/
pa[hi] = sgn(neg[hi],SQRTHALF); pa[lo] = sgn(neg[lo], SQRTHALF);
if (lo>hi) {hi ^= lo; lo ^= hi; hi ^= lo;}
if (hi==W) {hi = "\001\002\000"[lo]; lo = 3-hi-lo;}
swap(ka,hi,lo)
} else {/*big*/ pa[hi] = sgn(neg[hi],1.0);}
}
p.x = -pa[0]; p.y = -pa[1]; p.z = -pa[2]; p.w = pa[3];
}
k->x = ka[X]; k->y = ka[Y]; k->z = ka[Z];
return (p);
}
/******* Decompose Affine Matrix *******/
/* Decompose 4x4 affine matrix A as TFRUK(U transpose), where t contains the
* translation components, q contains the rotation R, u contains U, k contains
* scale factors, and f contains the sign of the determinant.
* Assumes A transforms column vectors in right-handed coordinates.
* See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition.
* Proceedings of Graphics Interface 1992.
*/
void decomp_affine(HMatrix A, AffineParts *parts)
{
HMatrix Q, S, U;
Quat p;
float det;
parts->t = Qt_(A[X][W], A[Y][W], A[Z][W], 0);
det = polar_decomp(A, Q, S);
if (det<0.0) {
mat_copy(Q,=,-Q,3);
parts->f = -1;
} else parts->f = 1;
parts->q = Qt_FromMatrix(Q);
parts->k = spect_decomp(S, U);
parts->u = Qt_FromMatrix(U);
p = snuggle(parts->u, &parts->k);
parts->u = Qt_Mul(parts->u, p);
}
/******* Invert Affine Decomposition *******/
/* Compute inverse of affine decomposition.
*/
void invert_affine(AffineParts *parts, AffineParts *inverse)
{
Quat t, p;
inverse->f = parts->f;
inverse->q = Qt_Conj(parts->q);
inverse->u = Qt_Mul(parts->q, parts->u);
inverse->k.x = (parts->k.x==0.0) ? 0.0 : 1.0/parts->k.x;
inverse->k.y = (parts->k.y==0.0) ? 0.0 : 1.0/parts->k.y;
inverse->k.z = (parts->k.z==0.0) ? 0.0 : 1.0/parts->k.z;
inverse->k.w = parts->k.w;
t = Qt_(-parts->t.x, -parts->t.y, -parts->t.z, 0);
t = Qt_Mul(Qt_Conj(inverse->u), Qt_Mul(t, inverse->u));
t = Qt_(inverse->k.x*t.x, inverse->k.y*t.y, inverse->k.z*t.z, 0);
p = Qt_Mul(inverse->q, inverse->u);
t = Qt_Mul(p, Qt_Mul(t, Qt_Conj(p)));
inverse->t = (inverse->f>0.0) ? t : Qt_(-t.x, -t.y, -t.z, 0);
}
|