1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
/* Copyright (C) 2018 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include <algorithm>
#include <queue>
#include "ObjectBase.h"
#include "ObjectManager.h"
#include "ps/XML/Xeromyces.h"
#include "ps/Filesystem.h"
#include "ps/CLogger.h"
#include "lib/timer.h"
#include "maths/MathUtil.h"
#include <boost/random/uniform_int.hpp>
CObjectBase::CObjectBase(CObjectManager& objectManager)
: m_ObjectManager(objectManager)
{
m_Properties.m_CastShadows = false;
m_Properties.m_FloatOnWater = false;
}
void CObjectBase::LoadVariant(const CXeromyces& XeroFile, const XMBElement& variant, Variant& currentVariant)
{
#define EL(x) int el_##x = XeroFile.GetElementID(#x)
#define AT(x) int at_##x = XeroFile.GetAttributeID(#x)
EL(animation);
EL(animations);
EL(color);
EL(decal);
EL(mesh);
EL(particles);
EL(prop);
EL(props);
EL(texture);
EL(textures);
EL(variant);
AT(actor);
AT(angle);
AT(attachpoint);
AT(depth);
AT(event);
AT(file);
AT(frequency);
AT(id);
AT(load);
AT(maxheight);
AT(minheight);
AT(name);
AT(offsetx);
AT(offsetz);
AT(selectable);
AT(sound);
AT(speed);
AT(width);
#undef AT
#undef EL
if (variant.GetNodeName() != el_variant)
{
LOGERROR("Invalid variant format (unrecognised root element '%s')", XeroFile.GetElementString(variant.GetNodeName()).c_str());
return;
}
XERO_ITER_ATTR(variant, attr)
{
if (attr.Name == at_file)
{
// Open up an external file to load.
// Don't crash hard when failures happen, but log them and continue
m_UsedFiles.insert(attr.Value);
CXeromyces XeroVariant;
if (XeroVariant.Load(g_VFS, "art/variants/" + attr.Value) == PSRETURN_OK)
{
XMBElement variantRoot = XeroVariant.GetRoot();
LoadVariant(XeroVariant, variantRoot, currentVariant);
}
else
LOGERROR("Could not open path %s", attr.Value);
// Continue loading extra definitions in this variant to allow nested files
}
else if (attr.Name == at_name)
currentVariant.m_VariantName = attr.Value.LowerCase();
else if (attr.Name == at_frequency)
currentVariant.m_Frequency = attr.Value.ToInt();
}
XERO_ITER_EL(variant, option)
{
int option_name = option.GetNodeName();
if (option_name == el_mesh)
{
currentVariant.m_ModelFilename = VfsPath("art/meshes") / option.GetText().FromUTF8();
}
else if (option_name == el_textures)
{
XERO_ITER_EL(option, textures_element)
{
ENSURE(textures_element.GetNodeName() == el_texture);
Samp samp;
XERO_ITER_ATTR(textures_element, se)
{
if (se.Name == at_file)
samp.m_SamplerFile = VfsPath("art/textures/skins") / se.Value.FromUTF8();
else if (se.Name == at_name)
samp.m_SamplerName = CStrIntern(se.Value);
}
currentVariant.m_Samplers.push_back(samp);
}
}
else if (option_name == el_decal)
{
XMBAttributeList attrs = option.GetAttributes();
Decal decal;
decal.m_SizeX = attrs.GetNamedItem(at_width).ToFloat();
decal.m_SizeZ = attrs.GetNamedItem(at_depth).ToFloat();
decal.m_Angle = DEGTORAD(attrs.GetNamedItem(at_angle).ToFloat());
decal.m_OffsetX = attrs.GetNamedItem(at_offsetx).ToFloat();
decal.m_OffsetZ = attrs.GetNamedItem(at_offsetz).ToFloat();
currentVariant.m_Decal = decal;
}
else if (option_name == el_particles)
{
XMBAttributeList attrs = option.GetAttributes();
VfsPath file = VfsPath("art/particles") / attrs.GetNamedItem(at_file).FromUTF8();
currentVariant.m_Particles = file;
// For particle hotloading, it's easiest to reload the entire actor,
// so remember the relevant particle file as a dependency for this actor
m_UsedFiles.insert(file);
}
else if (option_name == el_color)
{
currentVariant.m_Color = option.GetText();
}
else if (option_name == el_animations)
{
XERO_ITER_EL(option, anim_element)
{
ENSURE(anim_element.GetNodeName() == el_animation);
Anim anim;
XERO_ITER_ATTR(anim_element, ae)
{
if (ae.Name == at_name)
anim.m_AnimName = ae.Value;
else if (ae.Name == at_id)
anim.m_ID = ae.Value;
else if (ae.Name == at_frequency)
anim.m_Frequency = ae.Value.ToInt();
else if (ae.Name == at_file)
anim.m_FileName = VfsPath("art/animation") / ae.Value.FromUTF8();
else if (ae.Name == at_speed)
anim.m_Speed = ae.Value.ToInt() > 0 ? ae.Value.ToInt() / 100.f : 1.f;
else if (ae.Name == at_event)
anim.m_ActionPos = clamp(ae.Value.ToFloat(), 0.f, 1.f);
else if (ae.Name == at_load)
anim.m_ActionPos2 = clamp(ae.Value.ToFloat(), 0.f, 1.f);
else if (ae.Name == at_sound)
anim.m_SoundPos = clamp(ae.Value.ToFloat(), 0.f, 1.f);
}
currentVariant.m_Anims.push_back(anim);
}
}
else if (option_name == el_props)
{
XERO_ITER_EL(option, prop_element)
{
ENSURE(prop_element.GetNodeName() == el_prop);
Prop prop;
XERO_ITER_ATTR(prop_element, pe)
{
if (pe.Name == at_attachpoint)
prop.m_PropPointName = pe.Value;
else if (pe.Name == at_actor)
prop.m_ModelName = pe.Value.FromUTF8();
else if (pe.Name == at_minheight)
prop.m_minHeight = pe.Value.ToFloat();
else if (pe.Name == at_maxheight)
prop.m_maxHeight = pe.Value.ToFloat();
else if (pe.Name == at_selectable)
prop.m_selectable = pe.Value != "false";
}
currentVariant.m_Props.push_back(prop);
}
}
}
}
bool CObjectBase::Load(const VfsPath& pathname)
{
m_UsedFiles.clear();
m_UsedFiles.insert(pathname);
CXeromyces XeroFile;
if (XeroFile.Load(g_VFS, pathname, "actor") != PSRETURN_OK)
return false;
// Define all the elements used in the XML file
#define EL(x) int el_##x = XeroFile.GetElementID(#x)
#define AT(x) int at_##x = XeroFile.GetAttributeID(#x)
EL(actor);
EL(castshadow);
EL(float);
EL(group);
EL(material);
#undef AT
#undef EL
XMBElement root = XeroFile.GetRoot();
if (root.GetNodeName() != el_actor)
{
LOGERROR("Invalid actor format (unrecognised root element '%s')", XeroFile.GetElementString(root.GetNodeName()).c_str());
return false;
}
m_VariantGroups.clear();
m_Pathname = pathname;
m_ShortName = pathname.Basename().string();
// Set up the vector<vector<T>> m_Variants to contain the right number
// of elements, to avoid wasteful copying/reallocation later.
{
// Count the variants in each group
std::vector<int> variantGroupSizes;
XERO_ITER_EL(root, child)
{
if (child.GetNodeName() == el_group)
variantGroupSizes.push_back(child.GetChildNodes().size());
}
m_VariantGroups.resize(variantGroupSizes.size());
// Set each vector to match the number of variants
for (size_t i = 0; i < variantGroupSizes.size(); ++i)
m_VariantGroups[i].resize(variantGroupSizes[i]);
}
// (This XML-reading code is rather worryingly verbose...)
std::vector<std::vector<Variant> >::iterator currentGroup = m_VariantGroups.begin();
XERO_ITER_EL(root, child)
{
int child_name = child.GetNodeName();
if (child_name == el_group)
{
std::vector<Variant>::iterator currentVariant = currentGroup->begin();
XERO_ITER_EL(child, variant)
{
LoadVariant(XeroFile, variant, *currentVariant);
++currentVariant;
}
if (currentGroup->size() == 0)
LOGERROR("Actor group has zero variants ('%s')", pathname.string8());
++currentGroup;
}
else if (child_name == el_castshadow)
m_Properties.m_CastShadows = true;
else if (child_name == el_float)
m_Properties.m_FloatOnWater = true;
else if (child_name == el_material)
m_Material = VfsPath("art/materials") / child.GetText().FromUTF8();
}
if (m_Material.empty())
m_Material = VfsPath("art/materials/default.xml");
return true;
}
bool CObjectBase::Reload()
{
return Load(m_Pathname);
}
bool CObjectBase::UsesFile(const VfsPath& pathname)
{
return m_UsedFiles.find(pathname) != m_UsedFiles.end();
}
std::vector<u8> CObjectBase::CalculateVariationKey(const std::vector<std::set<CStr> >& selections)
{
// (TODO: see CObjectManager::FindObjectVariation for an opportunity to
// call this function a bit less frequently)
// Calculate a complete list of choices, one per group, based on the
// supposedly-complete selections (i.e. not making random choices at this
// stage).
// In each group, if one of the variants has a name matching a string in the
// first 'selections', set use that one.
// Otherwise, try with the next (lower priority) selections set, and repeat.
// Otherwise, choose the first variant (arbitrarily).
std::vector<u8> choices;
std::multimap<CStr, CStrW> chosenProps;
for (std::vector<std::vector<CObjectBase::Variant> >::iterator grp = m_VariantGroups.begin();
grp != m_VariantGroups.end();
++grp)
{
// Ignore groups with nothing inside. (A warning will have been
// emitted by the loading code.)
if (grp->size() == 0)
continue;
int match = -1; // -1 => none found yet
// If there's only a single variant, choose that one
if (grp->size() == 1)
{
match = 0;
}
else
{
// Determine the first variant that matches the provided strings,
// starting with the highest priority selections set:
for (std::vector<std::set<CStr> >::const_iterator selset = selections.begin(); selset < selections.end(); ++selset)
{
ENSURE(grp->size() < 256); // else they won't fit in 'choices'
for (size_t i = 0; i < grp->size(); ++i)
{
if (selset->count((*grp)[i].m_VariantName))
{
match = (u8)i;
break;
}
}
// Stop after finding the first match
if (match != -1)
break;
}
// If no match, just choose the first
if (match == -1)
match = 0;
}
choices.push_back(match);
// Remember which props were chosen, so we can call CalculateVariationKey on them
// at the end.
// Erase all existing props which are overridden by this variant:
Variant& var((*grp)[match]);
for (const Prop& prop : var.m_Props)
chosenProps.erase(prop.m_PropPointName);
// and then insert the new ones:
for (const Prop& prop : var.m_Props)
if (!prop.m_ModelName.empty())
chosenProps.insert(make_pair(prop.m_PropPointName, prop.m_ModelName));
}
// Load each prop, and add their CalculateVariationKey to our key:
for (std::multimap<CStr, CStrW>::iterator it = chosenProps.begin(); it != chosenProps.end(); ++it)
{
CObjectBase* prop = m_ObjectManager.FindObjectBase(it->second);
if (prop)
{
std::vector<u8> propChoices = prop->CalculateVariationKey(selections);
choices.insert(choices.end(), propChoices.begin(), propChoices.end());
}
}
return choices;
}
const CObjectBase::Variation CObjectBase::BuildVariation(const std::vector<u8>& variationKey)
{
Variation variation;
// variationKey should correspond with m_Variants, giving the id of the
// chosen variant from each group. (Except variationKey has some bits stuck
// on the end for props, but we don't care about those in here.)
std::vector<std::vector<CObjectBase::Variant> >::iterator grp = m_VariantGroups.begin();
std::vector<u8>::const_iterator match = variationKey.begin();
for ( ;
grp != m_VariantGroups.end() && match != variationKey.end();
++grp, ++match)
{
// Ignore groups with nothing inside. (A warning will have been
// emitted by the loading code.)
if (grp->size() == 0)
continue;
size_t id = *match;
if (id >= grp->size())
{
// This should be impossible
debug_warn(L"BuildVariation: invalid variant id");
continue;
}
// Get the matched variant
CObjectBase::Variant& var ((*grp)[id]);
// Apply its data:
if (! var.m_ModelFilename.empty())
variation.model = var.m_ModelFilename;
if (var.m_Decal.m_SizeX && var.m_Decal.m_SizeZ)
variation.decal = var.m_Decal;
if (! var.m_Particles.empty())
variation.particles = var.m_Particles;
if (! var.m_Color.empty())
variation.color = var.m_Color;
// If one variant defines one prop attached to e.g. "root", and this
// variant defines two different props with the same attachpoint, the one
// original should be erased, and replaced by the two new ones.
//
// So, erase all existing props which are overridden by this variant:
for (std::vector<CObjectBase::Prop>::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it)
variation.props.erase(it->m_PropPointName);
// and then insert the new ones:
for (std::vector<CObjectBase::Prop>::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it)
if (! it->m_ModelName.empty()) // if the name is empty then the overridden prop is just deleted
variation.props.insert(make_pair(it->m_PropPointName, *it));
// Same idea applies for animations.
// So, erase all existing animations which are overridden by this variant:
for (std::vector<CObjectBase::Anim>::iterator it = var.m_Anims.begin(); it != var.m_Anims.end(); ++it)
variation.anims.erase(it->m_AnimName);
// and then insert the new ones:
for (std::vector<CObjectBase::Anim>::iterator it = var.m_Anims.begin(); it != var.m_Anims.end(); ++it)
variation.anims.insert(make_pair(it->m_AnimName, *it));
// Same for samplers, though perhaps not strictly necessary:
for (std::vector<CObjectBase::Samp>::iterator it = var.m_Samplers.begin(); it != var.m_Samplers.end(); ++it)
variation.samplers.erase(it->m_SamplerName.string());
for (std::vector<CObjectBase::Samp>::iterator it = var.m_Samplers.begin(); it != var.m_Samplers.end(); ++it)
variation.samplers.insert(make_pair(it->m_SamplerName.string(), *it));
}
return variation;
}
std::set<CStr> CObjectBase::CalculateRandomVariation(uint32_t seed, const std::set<CStr>& initialSelections)
{
rng_t rng;
rng.seed(seed);
std::set<CStr> remainingSelections = CalculateRandomRemainingSelections(rng, std::vector<std::set<CStr> >(1, initialSelections));
remainingSelections.insert(initialSelections.begin(), initialSelections.end());
return remainingSelections; // now actually a complete set of selections
}
std::set<CStr> CObjectBase::CalculateRandomRemainingSelections(uint32_t seed, const std::vector<std::set<CStr> >& initialSelections)
{
rng_t rng;
rng.seed(seed);
return CalculateRandomRemainingSelections(rng, initialSelections);
}
std::set<CStr> CObjectBase::CalculateRandomRemainingSelections(rng_t& rng, const std::vector<std::set<CStr> >& initialSelections)
{
std::set<CStr> remainingSelections;
std::multimap<CStr, CStrW> chosenProps;
// Calculate a complete list of selections, so there is at least one
// (and in most cases only one) per group.
// In each group, if one of the variants has a name matching a string in
// 'selections', use that one.
// If more than one matches, choose randomly from those matching ones.
// If none match, choose randomly from all variants.
//
// When choosing randomly, make use of each variant's frequency. If all
// variants have frequency 0, treat them as if they were 1.
for (std::vector<std::vector<Variant> >::iterator grp = m_VariantGroups.begin();
grp != m_VariantGroups.end();
++grp)
{
// Ignore groups with nothing inside. (A warning will have been
// emitted by the loading code.)
if (grp->size() == 0)
continue;
int match = -1; // -1 => none found yet
// If there's only a single variant, choose that one
if (grp->size() == 1)
{
match = 0;
}
else
{
// See if a variant (or several, but we only care about the first)
// is already matched by the selections we've made, keeping their
// priority order into account
for (size_t s = 0; s < initialSelections.size(); ++s)
{
for (size_t i = 0; i < grp->size(); ++i)
{
if (initialSelections[s].count((*grp)[i].m_VariantName))
{
match = (int)i;
break;
}
}
if (match >= 0)
break;
}
// If there was one, we don't need to do anything now because there's
// already something to choose. Otherwise, choose randomly from the others.
if (match == -1)
{
// Sum the frequencies
int totalFreq = 0;
for (size_t i = 0; i < grp->size(); ++i)
totalFreq += (*grp)[i].m_Frequency;
// Someone might be silly and set all variants to have freq==0, in
// which case we just pretend they're all 1
bool allZero = (totalFreq == 0);
if (allZero) totalFreq = (int)grp->size();
// Choose a random number in the interval [0..totalFreq)
int randNum = boost::uniform_int<>(0, totalFreq-1)(rng);
// and use that to choose one of the variants
for (size_t i = 0; i < grp->size(); ++i)
{
randNum -= (allZero ? 1 : (*grp)[i].m_Frequency);
if (randNum < 0)
{
remainingSelections.insert((*grp)[i].m_VariantName);
// (If this change to 'remainingSelections' interferes with earlier choices, then
// we'll get some non-fatal inconsistencies that just break the randomness. But that
// shouldn't happen, much.)
// (As an example, suppose you have a group with variants "a" and "b", and another
// with variants "a" and "c"; now if random selection choses "b" for the first
// and "a" for the second, then the selection of "a" from the second group will
// cause "a" to be used in the first instead of the "b").
match = (int)i;
break;
}
}
ENSURE(randNum < 0);
// This should always succeed; otherwise it
// wouldn't have chosen any of the variants.
}
}
// Remember which props were chosen, so we can call CalculateRandomVariation on them
// at the end.
Variant& var ((*grp)[match]);
// Erase all existing props which are overridden by this variant:
for (const Prop& prop : var.m_Props)
chosenProps.erase(prop.m_PropPointName);
// and then insert the new ones:
for (const Prop& prop : var.m_Props)
if (!prop.m_ModelName.empty())
chosenProps.insert(make_pair(prop.m_PropPointName, prop.m_ModelName));
}
// Load each prop, and add their required selections to ours:
for (std::multimap<CStr, CStrW>::iterator it = chosenProps.begin(); it != chosenProps.end(); ++it)
{
CObjectBase* prop = m_ObjectManager.FindObjectBase(it->second);
if (prop)
{
std::vector<std::set<CStr> > propInitialSelections = initialSelections;
if (!remainingSelections.empty())
propInitialSelections.push_back(remainingSelections);
std::set<CStr> propRemainingSelections = prop->CalculateRandomRemainingSelections(rng, propInitialSelections);
remainingSelections.insert(propRemainingSelections.begin(), propRemainingSelections.end());
// Add the prop's used files to our own (recursively) so we can hotload
// when any prop is changed
m_UsedFiles.insert(prop->m_UsedFiles.begin(), prop->m_UsedFiles.end());
}
}
return remainingSelections;
}
std::vector<std::vector<CStr> > CObjectBase::GetVariantGroups() const
{
std::vector<std::vector<CStr> > groups;
// Queue of objects (main actor plus props (recursively)) to be processed
std::queue<const CObjectBase*> objectsQueue;
objectsQueue.push(this);
// Set of objects already processed, so we don't do them more than once
std::set<const CObjectBase*> objectsProcessed;
while (!objectsQueue.empty())
{
const CObjectBase* obj = objectsQueue.front();
objectsQueue.pop();
// Ignore repeated objects (likely to be props)
if (objectsProcessed.find(obj) != objectsProcessed.end())
continue;
objectsProcessed.insert(obj);
// Iterate through the list of groups
for (size_t i = 0; i < obj->m_VariantGroups.size(); ++i)
{
// Copy the group's variant names into a new vector
std::vector<CStr> group;
group.reserve(obj->m_VariantGroups[i].size());
for (size_t j = 0; j < obj->m_VariantGroups[i].size(); ++j)
group.push_back(obj->m_VariantGroups[i][j].m_VariantName);
// If this group is identical to one elsewhere, don't bother listing
// it twice.
// Linear search is theoretically not very efficient, but hopefully
// we don't have enough props for that to matter...
bool dupe = false;
for (size_t j = 0; j < groups.size(); ++j)
{
if (groups[j] == group)
{
dupe = true;
break;
}
}
if (dupe)
continue;
// Add non-trivial groups (i.e. not just one entry) to the returned list
if (obj->m_VariantGroups[i].size() > 1)
groups.push_back(group);
// Add all props onto the queue to be considered
for (size_t j = 0; j < obj->m_VariantGroups[i].size(); ++j)
{
const std::vector<Prop>& props = obj->m_VariantGroups[i][j].m_Props;
for (size_t k = 0; k < props.size(); ++k)
{
if (! props[k].m_ModelName.empty())
{
CObjectBase* prop = m_ObjectManager.FindObjectBase(props[k].m_ModelName.c_str());
if (prop)
objectsQueue.push(prop);
}
}
}
}
}
return groups;
}
|