File: ObjectBase.cpp

package info (click to toggle)
0ad 0.0.23.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,292 kB
  • sloc: cpp: 245,166; ansic: 200,249; python: 13,754; sh: 6,104; perl: 4,620; makefile: 977; xml: 810; java: 533; ruby: 229; erlang: 46; pascal: 30; sql: 21; tcl: 4
file content (685 lines) | stat: -rw-r--r-- 21,267 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/* Copyright (C) 2018 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "precompiled.h"

#include <algorithm>
#include <queue>

#include "ObjectBase.h"

#include "ObjectManager.h"
#include "ps/XML/Xeromyces.h"
#include "ps/Filesystem.h"
#include "ps/CLogger.h"
#include "lib/timer.h"
#include "maths/MathUtil.h"

#include <boost/random/uniform_int.hpp>

CObjectBase::CObjectBase(CObjectManager& objectManager)
: m_ObjectManager(objectManager)
{
	m_Properties.m_CastShadows = false;
	m_Properties.m_FloatOnWater = false;
}

void CObjectBase::LoadVariant(const CXeromyces& XeroFile, const XMBElement& variant, Variant& currentVariant)
{
	#define EL(x) int el_##x = XeroFile.GetElementID(#x)
	#define AT(x) int at_##x = XeroFile.GetAttributeID(#x)
	EL(animation);
	EL(animations);
	EL(color);
	EL(decal);
	EL(mesh);
	EL(particles);
	EL(prop);
	EL(props);
	EL(texture);
	EL(textures);
	EL(variant);
	AT(actor);
	AT(angle);
	AT(attachpoint);
	AT(depth);
	AT(event);
	AT(file);
	AT(frequency);
	AT(id);
	AT(load);
	AT(maxheight);
	AT(minheight);
	AT(name);
	AT(offsetx);
	AT(offsetz);
	AT(selectable);
	AT(sound);
	AT(speed);
	AT(width);
	#undef AT
	#undef EL

	if (variant.GetNodeName() != el_variant)
	{
		LOGERROR("Invalid variant format (unrecognised root element '%s')", XeroFile.GetElementString(variant.GetNodeName()).c_str());
		return;
	}

	XERO_ITER_ATTR(variant, attr)
	{
		if (attr.Name == at_file)
		{
			// Open up an external file to load.
			// Don't crash hard when failures happen, but log them and continue
			m_UsedFiles.insert(attr.Value);
			CXeromyces XeroVariant;
			if (XeroVariant.Load(g_VFS, "art/variants/" + attr.Value) == PSRETURN_OK)
			{
				XMBElement variantRoot = XeroVariant.GetRoot();
				LoadVariant(XeroVariant, variantRoot, currentVariant);
			}
			else
				LOGERROR("Could not open path %s", attr.Value);
			// Continue loading extra definitions in this variant to allow nested files
		}
		else if (attr.Name == at_name)
			currentVariant.m_VariantName = attr.Value.LowerCase();
		else if (attr.Name == at_frequency)
			currentVariant.m_Frequency = attr.Value.ToInt();
	}

	XERO_ITER_EL(variant, option)
	{
		int option_name = option.GetNodeName();

		if (option_name == el_mesh)
		{
			currentVariant.m_ModelFilename = VfsPath("art/meshes") / option.GetText().FromUTF8();
		}
		else if (option_name == el_textures)
		{
			XERO_ITER_EL(option, textures_element)
			{
				ENSURE(textures_element.GetNodeName() == el_texture);

				Samp samp;
				XERO_ITER_ATTR(textures_element, se)
				{
					if (se.Name == at_file)
						samp.m_SamplerFile = VfsPath("art/textures/skins") / se.Value.FromUTF8();
					else if (se.Name == at_name)
						samp.m_SamplerName = CStrIntern(se.Value);
				}
				currentVariant.m_Samplers.push_back(samp);
			}
		}
		else if (option_name == el_decal)
		{
			XMBAttributeList attrs = option.GetAttributes();
			Decal decal;
			decal.m_SizeX = attrs.GetNamedItem(at_width).ToFloat();
			decal.m_SizeZ = attrs.GetNamedItem(at_depth).ToFloat();
			decal.m_Angle = DEGTORAD(attrs.GetNamedItem(at_angle).ToFloat());
			decal.m_OffsetX = attrs.GetNamedItem(at_offsetx).ToFloat();
			decal.m_OffsetZ = attrs.GetNamedItem(at_offsetz).ToFloat();
			currentVariant.m_Decal = decal;
		}
		else if (option_name == el_particles)
		{
			XMBAttributeList attrs = option.GetAttributes();
			VfsPath file = VfsPath("art/particles") / attrs.GetNamedItem(at_file).FromUTF8();
			currentVariant.m_Particles = file;

			// For particle hotloading, it's easiest to reload the entire actor,
			// so remember the relevant particle file as a dependency for this actor
			m_UsedFiles.insert(file);
		}
		else if (option_name == el_color)
		{
			currentVariant.m_Color = option.GetText();
		}
		else if (option_name == el_animations)
		{
			XERO_ITER_EL(option, anim_element)
			{
				ENSURE(anim_element.GetNodeName() == el_animation);

				Anim anim;
				XERO_ITER_ATTR(anim_element, ae)
				{
					if (ae.Name == at_name)
						anim.m_AnimName = ae.Value;
					else if (ae.Name == at_id)
						anim.m_ID = ae.Value;
					else if (ae.Name == at_frequency)
						anim.m_Frequency = ae.Value.ToInt();
					else if (ae.Name == at_file)
						anim.m_FileName = VfsPath("art/animation") / ae.Value.FromUTF8();
					else if (ae.Name == at_speed)
						anim.m_Speed = ae.Value.ToInt() > 0 ? ae.Value.ToInt() / 100.f : 1.f;
					else if (ae.Name == at_event)
						anim.m_ActionPos = clamp(ae.Value.ToFloat(), 0.f, 1.f);
					else if (ae.Name == at_load)
						anim.m_ActionPos2 = clamp(ae.Value.ToFloat(), 0.f, 1.f);
					else if (ae.Name == at_sound)
						anim.m_SoundPos = clamp(ae.Value.ToFloat(), 0.f, 1.f);
				}
				currentVariant.m_Anims.push_back(anim);
			}
		}
		else if (option_name == el_props)
		{
			XERO_ITER_EL(option, prop_element)
			{
				ENSURE(prop_element.GetNodeName() == el_prop);

				Prop prop;
				XERO_ITER_ATTR(prop_element, pe)
				{
					if (pe.Name == at_attachpoint)
						prop.m_PropPointName = pe.Value;
					else if (pe.Name == at_actor)
						prop.m_ModelName = pe.Value.FromUTF8();
					else if (pe.Name == at_minheight)
						prop.m_minHeight = pe.Value.ToFloat();
					else if (pe.Name == at_maxheight)
						prop.m_maxHeight = pe.Value.ToFloat();
					else if (pe.Name == at_selectable)
						prop.m_selectable = pe.Value != "false";
				}
				currentVariant.m_Props.push_back(prop);
			}
		}
	}
}

bool CObjectBase::Load(const VfsPath& pathname)
{
	m_UsedFiles.clear();
	m_UsedFiles.insert(pathname);

	CXeromyces XeroFile;
	if (XeroFile.Load(g_VFS, pathname, "actor") != PSRETURN_OK)
		return false;

	// Define all the elements used in the XML file
	#define EL(x) int el_##x = XeroFile.GetElementID(#x)
	#define AT(x) int at_##x = XeroFile.GetAttributeID(#x)
	EL(actor);
	EL(castshadow);
	EL(float);
	EL(group);
	EL(material);
	#undef AT
	#undef EL

	XMBElement root = XeroFile.GetRoot();

	if (root.GetNodeName() != el_actor)
	{
		LOGERROR("Invalid actor format (unrecognised root element '%s')", XeroFile.GetElementString(root.GetNodeName()).c_str());
		return false;
	}

	m_VariantGroups.clear();

	m_Pathname = pathname;
	m_ShortName = pathname.Basename().string();


	// Set up the vector<vector<T>> m_Variants to contain the right number
	// of elements, to avoid wasteful copying/reallocation later.
	{
		// Count the variants in each group
		std::vector<int> variantGroupSizes;
		XERO_ITER_EL(root, child)
		{
			if (child.GetNodeName() == el_group)
				variantGroupSizes.push_back(child.GetChildNodes().size());
		}

		m_VariantGroups.resize(variantGroupSizes.size());
		// Set each vector to match the number of variants
		for (size_t i = 0; i < variantGroupSizes.size(); ++i)
			m_VariantGroups[i].resize(variantGroupSizes[i]);
	}


	// (This XML-reading code is rather worryingly verbose...)

	std::vector<std::vector<Variant> >::iterator currentGroup = m_VariantGroups.begin();

	XERO_ITER_EL(root, child)
	{
		int child_name = child.GetNodeName();

		if (child_name == el_group)
		{
			std::vector<Variant>::iterator currentVariant = currentGroup->begin();
			XERO_ITER_EL(child, variant)
			{
				LoadVariant(XeroFile, variant, *currentVariant);
				++currentVariant;
			}

			if (currentGroup->size() == 0)
				LOGERROR("Actor group has zero variants ('%s')", pathname.string8());

			++currentGroup;
		}
		else if (child_name == el_castshadow)
			m_Properties.m_CastShadows = true;
		else if (child_name == el_float)
			m_Properties.m_FloatOnWater = true;
		else if (child_name == el_material)
			m_Material = VfsPath("art/materials") / child.GetText().FromUTF8();
	}

	if (m_Material.empty())
		m_Material = VfsPath("art/materials/default.xml");

	return true;
}

bool CObjectBase::Reload()
{
	return Load(m_Pathname);
}

bool CObjectBase::UsesFile(const VfsPath& pathname)
{
	return m_UsedFiles.find(pathname) != m_UsedFiles.end();
}

std::vector<u8> CObjectBase::CalculateVariationKey(const std::vector<std::set<CStr> >& selections)
{
	// (TODO: see CObjectManager::FindObjectVariation for an opportunity to
	// call this function a bit less frequently)

	// Calculate a complete list of choices, one per group, based on the
	// supposedly-complete selections (i.e. not making random choices at this
	// stage).
	// In each group, if one of the variants has a name matching a string in the
	// first 'selections', set use that one.
	// Otherwise, try with the next (lower priority) selections set, and repeat.
	// Otherwise, choose the first variant (arbitrarily).

	std::vector<u8> choices;

	std::multimap<CStr, CStrW> chosenProps;

	for (std::vector<std::vector<CObjectBase::Variant> >::iterator grp = m_VariantGroups.begin();
		grp != m_VariantGroups.end();
		++grp)
	{
		// Ignore groups with nothing inside. (A warning will have been
		// emitted by the loading code.)
		if (grp->size() == 0)
			continue;

		int match = -1; // -1 => none found yet

		// If there's only a single variant, choose that one
		if (grp->size() == 1)
		{
			match = 0;
		}
		else
		{
			// Determine the first variant that matches the provided strings,
			// starting with the highest priority selections set:

			for (std::vector<std::set<CStr> >::const_iterator selset = selections.begin(); selset < selections.end(); ++selset)
			{
				ENSURE(grp->size() < 256); // else they won't fit in 'choices'

				for (size_t i = 0; i < grp->size(); ++i)
				{
					if (selset->count((*grp)[i].m_VariantName))
					{
						match = (u8)i;
						break;
					}
				}

				// Stop after finding the first match
				if (match != -1)
					break;
			}

			// If no match, just choose the first
			if (match == -1)
				match = 0;
		}

		choices.push_back(match);
		// Remember which props were chosen, so we can call CalculateVariationKey on them
		// at the end.
		// Erase all existing props which are overridden by this variant:
		Variant& var((*grp)[match]);

		for (const Prop& prop : var.m_Props)
			chosenProps.erase(prop.m_PropPointName);
		// and then insert the new ones:
		for (const Prop& prop : var.m_Props)
			if (!prop.m_ModelName.empty())
				chosenProps.insert(make_pair(prop.m_PropPointName, prop.m_ModelName));
	}

	// Load each prop, and add their CalculateVariationKey to our key:
	for (std::multimap<CStr, CStrW>::iterator it = chosenProps.begin(); it != chosenProps.end(); ++it)
	{
		CObjectBase* prop = m_ObjectManager.FindObjectBase(it->second);
		if (prop)
		{
			std::vector<u8> propChoices = prop->CalculateVariationKey(selections);
			choices.insert(choices.end(), propChoices.begin(), propChoices.end());
		}
	}

	return choices;
}

const CObjectBase::Variation CObjectBase::BuildVariation(const std::vector<u8>& variationKey)
{
	Variation variation;

	// variationKey should correspond with m_Variants, giving the id of the
	// chosen variant from each group. (Except variationKey has some bits stuck
	// on the end for props, but we don't care about those in here.)

	std::vector<std::vector<CObjectBase::Variant> >::iterator grp = m_VariantGroups.begin();
	std::vector<u8>::const_iterator match = variationKey.begin();
	for ( ;
		grp != m_VariantGroups.end() && match != variationKey.end();
		++grp, ++match)
	{
		// Ignore groups with nothing inside. (A warning will have been
		// emitted by the loading code.)
		if (grp->size() == 0)
			continue;

		size_t id = *match;
		if (id >= grp->size())
		{
			// This should be impossible
			debug_warn(L"BuildVariation: invalid variant id");
			continue;
		}

		// Get the matched variant
		CObjectBase::Variant& var ((*grp)[id]);

		// Apply its data:

		if (! var.m_ModelFilename.empty())
			variation.model = var.m_ModelFilename;

		if (var.m_Decal.m_SizeX && var.m_Decal.m_SizeZ)
			variation.decal = var.m_Decal;

		if (! var.m_Particles.empty())
			variation.particles = var.m_Particles;

		if (! var.m_Color.empty())
			variation.color = var.m_Color;

		// If one variant defines one prop attached to e.g. "root", and this
		// variant defines two different props with the same attachpoint, the one
		// original should be erased, and replaced by the two new ones.
		//
		// So, erase all existing props which are overridden by this variant:
		for (std::vector<CObjectBase::Prop>::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it)
			variation.props.erase(it->m_PropPointName);
		// and then insert the new ones:
		for (std::vector<CObjectBase::Prop>::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it)
			if (! it->m_ModelName.empty()) // if the name is empty then the overridden prop is just deleted
				variation.props.insert(make_pair(it->m_PropPointName, *it));

		// Same idea applies for animations.
		// So, erase all existing animations which are overridden by this variant:
		for (std::vector<CObjectBase::Anim>::iterator it = var.m_Anims.begin(); it != var.m_Anims.end(); ++it)
			variation.anims.erase(it->m_AnimName);
		// and then insert the new ones:
		for (std::vector<CObjectBase::Anim>::iterator it = var.m_Anims.begin(); it != var.m_Anims.end(); ++it)
			variation.anims.insert(make_pair(it->m_AnimName, *it));

		// Same for samplers, though perhaps not strictly necessary:
		for (std::vector<CObjectBase::Samp>::iterator it = var.m_Samplers.begin(); it != var.m_Samplers.end(); ++it)
			variation.samplers.erase(it->m_SamplerName.string());
		for (std::vector<CObjectBase::Samp>::iterator it = var.m_Samplers.begin(); it != var.m_Samplers.end(); ++it)
			variation.samplers.insert(make_pair(it->m_SamplerName.string(), *it));
	}

	return variation;
}

std::set<CStr> CObjectBase::CalculateRandomVariation(uint32_t seed, const std::set<CStr>& initialSelections)
{
	rng_t rng;
	rng.seed(seed);

	std::set<CStr> remainingSelections = CalculateRandomRemainingSelections(rng, std::vector<std::set<CStr> >(1, initialSelections));
	remainingSelections.insert(initialSelections.begin(), initialSelections.end());

	return remainingSelections; // now actually a complete set of selections
}

std::set<CStr> CObjectBase::CalculateRandomRemainingSelections(uint32_t seed, const std::vector<std::set<CStr> >& initialSelections)
{
	rng_t rng;
	rng.seed(seed);
	return CalculateRandomRemainingSelections(rng, initialSelections);
}

std::set<CStr> CObjectBase::CalculateRandomRemainingSelections(rng_t& rng, const std::vector<std::set<CStr> >& initialSelections)
{
	std::set<CStr> remainingSelections;
	std::multimap<CStr, CStrW> chosenProps;

	// Calculate a complete list of selections, so there is at least one
	// (and in most cases only one) per group.
	// In each group, if one of the variants has a name matching a string in
	// 'selections', use that one.
	// If more than one matches, choose randomly from those matching ones.
	// If none match, choose randomly from all variants.
	//
	// When choosing randomly, make use of each variant's frequency. If all
	// variants have frequency 0, treat them as if they were 1.

	for (std::vector<std::vector<Variant> >::iterator grp = m_VariantGroups.begin();
		grp != m_VariantGroups.end();
		++grp)
	{
		// Ignore groups with nothing inside. (A warning will have been
		// emitted by the loading code.)
		if (grp->size() == 0)
			continue;

		int match = -1; // -1 => none found yet

		// If there's only a single variant, choose that one
		if (grp->size() == 1)
		{
			match = 0;
		}
		else
		{
			// See if a variant (or several, but we only care about the first)
			// is already matched by the selections we've made, keeping their
			// priority order into account

			for (size_t s = 0; s < initialSelections.size(); ++s)
			{
				for (size_t i = 0; i < grp->size(); ++i)
				{
					if (initialSelections[s].count((*grp)[i].m_VariantName))
					{
						match = (int)i;
						break;
					}
				}

				if (match >= 0)
					break;
			}

			// If there was one, we don't need to do anything now because there's
			// already something to choose. Otherwise, choose randomly from the others.
			if (match == -1)
			{
				// Sum the frequencies
				int totalFreq = 0;
				for (size_t i = 0; i < grp->size(); ++i)
					totalFreq += (*grp)[i].m_Frequency;

				// Someone might be silly and set all variants to have freq==0, in
				// which case we just pretend they're all 1
				bool allZero = (totalFreq == 0);
				if (allZero) totalFreq = (int)grp->size();

				// Choose a random number in the interval [0..totalFreq)
				int randNum = boost::uniform_int<>(0, totalFreq-1)(rng);

				// and use that to choose one of the variants
				for (size_t i = 0; i < grp->size(); ++i)
				{
					randNum -= (allZero ? 1 : (*grp)[i].m_Frequency);
					if (randNum < 0)
					{
						remainingSelections.insert((*grp)[i].m_VariantName);
						// (If this change to 'remainingSelections' interferes with earlier choices, then
						// we'll get some non-fatal inconsistencies that just break the randomness. But that
						// shouldn't happen, much.)
						// (As an example, suppose you have a group with variants "a" and "b", and another
						// with variants "a" and "c"; now if random selection choses "b" for the first
						// and "a" for the second, then the selection of "a" from the second group will
						// cause "a" to be used in the first instead of the "b").
						match = (int)i;
						break;
					}
				}
				ENSURE(randNum < 0);
				// This should always succeed; otherwise it
				// wouldn't have chosen any of the variants.
			}
		}

		// Remember which props were chosen, so we can call CalculateRandomVariation on them
		// at the end.
		Variant& var ((*grp)[match]);
		// Erase all existing props which are overridden by this variant:
		for (const Prop& prop : var.m_Props)
			chosenProps.erase(prop.m_PropPointName);
		// and then insert the new ones:
		for (const Prop& prop : var.m_Props)
			if (!prop.m_ModelName.empty())
				chosenProps.insert(make_pair(prop.m_PropPointName, prop.m_ModelName));
	}

	// Load each prop, and add their required selections to ours:
	for (std::multimap<CStr, CStrW>::iterator it = chosenProps.begin(); it != chosenProps.end(); ++it)
	{
		CObjectBase* prop = m_ObjectManager.FindObjectBase(it->second);
		if (prop)
		{
			std::vector<std::set<CStr> > propInitialSelections = initialSelections;
			if (!remainingSelections.empty())
				propInitialSelections.push_back(remainingSelections);

			std::set<CStr> propRemainingSelections = prop->CalculateRandomRemainingSelections(rng, propInitialSelections);
			remainingSelections.insert(propRemainingSelections.begin(), propRemainingSelections.end());

			// Add the prop's used files to our own (recursively) so we can hotload
			// when any prop is changed
			m_UsedFiles.insert(prop->m_UsedFiles.begin(), prop->m_UsedFiles.end());
		}
	}

	return remainingSelections;
}

std::vector<std::vector<CStr> > CObjectBase::GetVariantGroups() const
{
	std::vector<std::vector<CStr> > groups;

	// Queue of objects (main actor plus props (recursively)) to be processed
	std::queue<const CObjectBase*> objectsQueue;
	objectsQueue.push(this);

	// Set of objects already processed, so we don't do them more than once
	std::set<const CObjectBase*> objectsProcessed;

	while (!objectsQueue.empty())
	{
		const CObjectBase* obj = objectsQueue.front();
		objectsQueue.pop();
		// Ignore repeated objects (likely to be props)
		if (objectsProcessed.find(obj) != objectsProcessed.end())
			continue;

		objectsProcessed.insert(obj);

		// Iterate through the list of groups
		for (size_t i = 0; i < obj->m_VariantGroups.size(); ++i)
		{
			// Copy the group's variant names into a new vector
			std::vector<CStr> group;
			group.reserve(obj->m_VariantGroups[i].size());
			for (size_t j = 0; j < obj->m_VariantGroups[i].size(); ++j)
				group.push_back(obj->m_VariantGroups[i][j].m_VariantName);

			// If this group is identical to one elsewhere, don't bother listing
			// it twice.
			// Linear search is theoretically not very efficient, but hopefully
			// we don't have enough props for that to matter...
			bool dupe = false;
			for (size_t j = 0; j < groups.size(); ++j)
			{
				if (groups[j] == group)
				{
					dupe = true;
					break;
				}
			}
			if (dupe)
				continue;

			// Add non-trivial groups (i.e. not just one entry) to the returned list
			if (obj->m_VariantGroups[i].size() > 1)
				groups.push_back(group);

			// Add all props onto the queue to be considered
			for (size_t j = 0; j < obj->m_VariantGroups[i].size(); ++j)
			{
				const std::vector<Prop>& props = obj->m_VariantGroups[i][j].m_Props;
				for (size_t k = 0; k < props.size(); ++k)
				{
					if (! props[k].m_ModelName.empty())
					{
						CObjectBase* prop = m_ObjectManager.FindObjectBase(props[k].m_ModelName.c_str());
						if (prop)
							objectsQueue.push(prop);
					}
				}
			}
		}
	}

	return groups;
}