1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
/* Copyright (C) 2015 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Describes ground via heightmap and array of CPatch.
*/
#include "precompiled.h"
#include "lib/res/graphics/ogl_tex.h"
#include "lib/sysdep/cpu.h"
#include "renderer/Renderer.h"
#include "TerrainProperties.h"
#include "TerrainTextureEntry.h"
#include "TerrainTextureManager.h"
#include <string.h>
#include "Terrain.h"
#include "Patch.h"
#include "maths/FixedVector3D.h"
#include "maths/MathUtil.h"
#include "ps/CLogger.h"
#include "simulation2/helpers/Pathfinding.h"
///////////////////////////////////////////////////////////////////////////////
// CTerrain constructor
CTerrain::CTerrain()
: m_Heightmap(0), m_Patches(0), m_MapSize(0), m_MapSizePatches(0),
m_BaseColor(255, 255, 255, 255)
{
}
///////////////////////////////////////////////////////////////////////////////
// CTerrain constructor
CTerrain::~CTerrain()
{
ReleaseData();
}
///////////////////////////////////////////////////////////////////////////////
// ReleaseData: delete any data allocated by this terrain
void CTerrain::ReleaseData()
{
m_HeightMipmap.ReleaseData();
delete[] m_Heightmap;
delete[] m_Patches;
}
///////////////////////////////////////////////////////////////////////////////
// Initialise: initialise this terrain to the given size
// using given heightmap to setup elevation data
bool CTerrain::Initialize(ssize_t patchesPerSide, const u16* data)
{
// clean up any previous terrain
ReleaseData();
// store terrain size
m_MapSize = patchesPerSide*PATCH_SIZE+1;
m_MapSizePatches = patchesPerSide;
// allocate data for new terrain
m_Heightmap = new u16[m_MapSize*m_MapSize];
m_Patches = new CPatch[m_MapSizePatches*m_MapSizePatches];
// given a heightmap?
if (data)
{
// yes; keep a copy of it
memcpy(m_Heightmap, data, m_MapSize*m_MapSize*sizeof(u16));
}
else
{
// build a flat terrain
memset(m_Heightmap, 0, m_MapSize*m_MapSize*sizeof(u16));
}
// setup patch parents, indices etc
InitialisePatches();
// initialise mipmap
m_HeightMipmap.Initialize(m_MapSize, m_Heightmap);
return true;
}
///////////////////////////////////////////////////////////////////////////////
CStr8 CTerrain::GetMovementClass(ssize_t i, ssize_t j) const
{
CMiniPatch* tile = GetTile(i, j);
if (tile && tile->GetTextureEntry())
return tile->GetTextureEntry()->GetProperties().GetMovementClass();
return "default";
}
///////////////////////////////////////////////////////////////////////////////
// CalcPosition: calculate the world space position of the vertex at (i,j)
// If i,j is off the map, it acts as if the edges of the terrain are extended
// outwards to infinity
void CTerrain::CalcPosition(ssize_t i, ssize_t j, CVector3D& pos) const
{
ssize_t hi = clamp(i, (ssize_t)0, m_MapSize-1);
ssize_t hj = clamp(j, (ssize_t)0, m_MapSize-1);
u16 height = m_Heightmap[hj*m_MapSize + hi];
pos.X = float(i*TERRAIN_TILE_SIZE);
pos.Y = float(height*HEIGHT_SCALE);
pos.Z = float(j*TERRAIN_TILE_SIZE);
}
///////////////////////////////////////////////////////////////////////////////
// CalcPositionFixed: calculate the world space position of the vertex at (i,j)
void CTerrain::CalcPositionFixed(ssize_t i, ssize_t j, CFixedVector3D& pos) const
{
ssize_t hi = clamp(i, (ssize_t)0, m_MapSize-1);
ssize_t hj = clamp(j, (ssize_t)0, m_MapSize-1);
u16 height = m_Heightmap[hj*m_MapSize + hi];
pos.X = fixed::FromInt(i) * (int)TERRAIN_TILE_SIZE;
// fixed max value is 32767, but height is a u16, so divide by two to avoid overflow
pos.Y = fixed::FromInt(height/ 2 ) / ((int)HEIGHT_UNITS_PER_METRE / 2);
pos.Z = fixed::FromInt(j) * (int)TERRAIN_TILE_SIZE;
}
///////////////////////////////////////////////////////////////////////////////
// CalcNormal: calculate the world space normal of the vertex at (i,j)
void CTerrain::CalcNormal(ssize_t i, ssize_t j, CVector3D& normal) const
{
CVector3D left, right, up, down;
// Calculate normals of the four half-tile triangles surrounding this vertex:
// get position of vertex where normal is being evaluated
CVector3D basepos;
CalcPosition(i, j, basepos);
if (i > 0) {
CalcPosition(i-1, j, left);
left -= basepos;
left.Normalize();
}
if (i < m_MapSize-1) {
CalcPosition(i+1, j, right);
right -= basepos;
right.Normalize();
}
if (j > 0) {
CalcPosition(i, j-1, up);
up -= basepos;
up.Normalize();
}
if (j < m_MapSize-1) {
CalcPosition(i, j+1, down);
down -= basepos;
down.Normalize();
}
CVector3D n0 = up.Cross(left);
CVector3D n1 = left.Cross(down);
CVector3D n2 = down.Cross(right);
CVector3D n3 = right.Cross(up);
// Compute the mean of the normals
normal = n0 + n1 + n2 + n3;
float nlen=normal.Length();
if (nlen>0.00001f) normal*=1.0f/nlen;
}
///////////////////////////////////////////////////////////////////////////////
// CalcNormalFixed: calculate the world space normal of the vertex at (i,j)
void CTerrain::CalcNormalFixed(ssize_t i, ssize_t j, CFixedVector3D& normal) const
{
CFixedVector3D left, right, up, down;
// Calculate normals of the four half-tile triangles surrounding this vertex:
// get position of vertex where normal is being evaluated
CFixedVector3D basepos;
CalcPositionFixed(i, j, basepos);
if (i > 0) {
CalcPositionFixed(i-1, j, left);
left -= basepos;
left.Normalize();
}
if (i < m_MapSize-1) {
CalcPositionFixed(i+1, j, right);
right -= basepos;
right.Normalize();
}
if (j > 0) {
CalcPositionFixed(i, j-1, up);
up -= basepos;
up.Normalize();
}
if (j < m_MapSize-1) {
CalcPositionFixed(i, j+1, down);
down -= basepos;
down.Normalize();
}
CFixedVector3D n0 = up.Cross(left);
CFixedVector3D n1 = left.Cross(down);
CFixedVector3D n2 = down.Cross(right);
CFixedVector3D n3 = right.Cross(up);
// Compute the mean of the normals
normal = n0 + n1 + n2 + n3;
normal.Normalize();
}
CVector3D CTerrain::CalcExactNormal(float x, float z) const
{
// Clamp to size-2 so we can use the tiles (xi,zi)-(xi+1,zi+1)
const ssize_t xi = clamp((ssize_t)floor(x/TERRAIN_TILE_SIZE), (ssize_t)0, m_MapSize-2);
const ssize_t zi = clamp((ssize_t)floor(z/TERRAIN_TILE_SIZE), (ssize_t)0, m_MapSize-2);
const float xf = clamp(x/TERRAIN_TILE_SIZE-xi, 0.0f, 1.0f);
const float zf = clamp(z/TERRAIN_TILE_SIZE-zi, 0.0f, 1.0f);
float h00 = m_Heightmap[zi*m_MapSize + xi];
float h01 = m_Heightmap[(zi+1)*m_MapSize + xi];
float h10 = m_Heightmap[zi*m_MapSize + (xi+1)];
float h11 = m_Heightmap[(zi+1)*m_MapSize + (xi+1)];
// Determine which terrain triangle this point is on,
// then compute the normal of that triangle's plane
if (GetTriangulationDir(xi, zi))
{
if (xf + zf <= 1.f)
{
// Lower-left triangle (don't use h11)
return -CVector3D(TERRAIN_TILE_SIZE, (h10-h00)*HEIGHT_SCALE, 0).Cross(CVector3D(0, (h01-h00)*HEIGHT_SCALE, TERRAIN_TILE_SIZE)).Normalized();
}
else
{
// Upper-right triangle (don't use h00)
return -CVector3D(TERRAIN_TILE_SIZE, (h11-h01)*HEIGHT_SCALE, 0).Cross(CVector3D(0, (h11-h10)*HEIGHT_SCALE, TERRAIN_TILE_SIZE)).Normalized();
}
}
else
{
if (xf <= zf)
{
// Upper-left triangle (don't use h10)
return -CVector3D(TERRAIN_TILE_SIZE, (h11-h01)*HEIGHT_SCALE, 0).Cross(CVector3D(0, (h01-h00)*HEIGHT_SCALE, TERRAIN_TILE_SIZE)).Normalized();
}
else
{
// Lower-right triangle (don't use h01)
return -CVector3D(TERRAIN_TILE_SIZE, (h10-h00)*HEIGHT_SCALE, 0).Cross(CVector3D(0, (h11-h10)*HEIGHT_SCALE, TERRAIN_TILE_SIZE)).Normalized();
}
}
}
///////////////////////////////////////////////////////////////////////////////
// GetPatch: return the patch at (i,j) in patch space, or null if the patch is
// out of bounds
CPatch* CTerrain::GetPatch(ssize_t i, ssize_t j) const
{
// range check (invalid indices are passed in by the culling and
// patch blend code because they iterate from 0..#patches and examine
// neighbors without checking if they're already on the edge)
if( (size_t)i >= (size_t)m_MapSizePatches || (size_t)j >= (size_t)m_MapSizePatches )
return 0;
return &m_Patches[(j*m_MapSizePatches)+i];
}
///////////////////////////////////////////////////////////////////////////////
// GetTile: return the tile at (i,j) in tile space, or null if the tile is out
// of bounds
CMiniPatch* CTerrain::GetTile(ssize_t i, ssize_t j) const
{
// see comment above
if( (size_t)i >= (size_t)(m_MapSize-1) || (size_t)j >= (size_t)(m_MapSize-1) )
return 0;
CPatch* patch=GetPatch(i/PATCH_SIZE, j/PATCH_SIZE); // can't fail (due to above check)
return &patch->m_MiniPatches[j%PATCH_SIZE][i%PATCH_SIZE];
}
float CTerrain::GetVertexGroundLevel(ssize_t i, ssize_t j) const
{
i = clamp(i, (ssize_t)0, m_MapSize-1);
j = clamp(j, (ssize_t)0, m_MapSize-1);
return HEIGHT_SCALE * m_Heightmap[j*m_MapSize + i];
}
fixed CTerrain::GetVertexGroundLevelFixed(ssize_t i, ssize_t j) const
{
i = clamp(i, (ssize_t)0, m_MapSize-1);
j = clamp(j, (ssize_t)0, m_MapSize-1);
// Convert to fixed metres (being careful to avoid intermediate overflows)
return fixed::FromInt(m_Heightmap[j*m_MapSize + i] / 2) / (int)(HEIGHT_UNITS_PER_METRE / 2);
}
fixed CTerrain::GetSlopeFixed(ssize_t i, ssize_t j) const
{
// Clamp to size-2 so we can use the tiles (i,j)-(i+1,j+1)
i = clamp(i, (ssize_t)0, m_MapSize-2);
j = clamp(j, (ssize_t)0, m_MapSize-2);
u16 h00 = m_Heightmap[j*m_MapSize + i];
u16 h01 = m_Heightmap[(j+1)*m_MapSize + i];
u16 h10 = m_Heightmap[j*m_MapSize + (i+1)];
u16 h11 = m_Heightmap[(j+1)*m_MapSize + (i+1)];
// Difference of highest point from lowest point
u16 delta = std::max(std::max(h00, h01), std::max(h10, h11)) -
std::min(std::min(h00, h01), std::min(h10, h11));
// Compute fractional slope (being careful to avoid intermediate overflows)
return fixed::FromInt(delta / TERRAIN_TILE_SIZE) / (int)HEIGHT_UNITS_PER_METRE;
}
fixed CTerrain::GetExactSlopeFixed(fixed x, fixed z) const
{
// Clamp to size-2 so we can use the tiles (xi,zi)-(xi+1,zi+1)
const ssize_t xi = clamp((ssize_t)(x / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), (ssize_t)0, m_MapSize-2);
const ssize_t zi = clamp((ssize_t)(z / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), (ssize_t)0, m_MapSize-2);
const fixed one = fixed::FromInt(1);
const fixed xf = clamp((x / (int)TERRAIN_TILE_SIZE) - fixed::FromInt(xi), fixed::Zero(), one);
const fixed zf = clamp((z / (int)TERRAIN_TILE_SIZE) - fixed::FromInt(zi), fixed::Zero(), one);
u16 h00 = m_Heightmap[zi*m_MapSize + xi];
u16 h01 = m_Heightmap[(zi+1)*m_MapSize + xi];
u16 h10 = m_Heightmap[zi*m_MapSize + (xi+1)];
u16 h11 = m_Heightmap[(zi+1)*m_MapSize + (xi+1)];
u16 delta;
if (GetTriangulationDir(xi, zi))
{
if (xf + zf <= one)
{
// Lower-left triangle (don't use h11)
delta = std::max(std::max(h00, h01), h10) -
std::min(std::min(h00, h01), h10);
}
else
{
// Upper-right triangle (don't use h00)
delta = std::max(std::max(h01, h10), h11) -
std::min(std::min(h01, h10), h11);
}
}
else
{
if (xf <= zf)
{
// Upper-left triangle (don't use h10)
delta = std::max(std::max(h00, h01), h11) -
std::min(std::min(h00, h01), h11);
}
else
{
// Lower-right triangle (don't use h01)
delta = std::max(std::max(h00, h10), h11) -
std::min(std::min(h00, h10), h11);
}
}
// Compute fractional slope (being careful to avoid intermediate overflows)
return fixed::FromInt(delta / TERRAIN_TILE_SIZE) / (int)HEIGHT_UNITS_PER_METRE;
}
float CTerrain::GetFilteredGroundLevel(float x, float z, float radius) const
{
// convert to [0,1] interval
float nx = x / (TERRAIN_TILE_SIZE*m_MapSize);
float nz = z / (TERRAIN_TILE_SIZE*m_MapSize);
float nr = radius / (TERRAIN_TILE_SIZE*m_MapSize);
// get trilinear filtered mipmap height
return HEIGHT_SCALE * m_HeightMipmap.GetTrilinearGroundLevel(nx, nz, nr);
}
float CTerrain::GetExactGroundLevel(float x, float z) const
{
// Clamp to size-2 so we can use the tiles (xi,zi)-(xi+1,zi+1)
const ssize_t xi = clamp((ssize_t)floor(x/TERRAIN_TILE_SIZE), (ssize_t)0, m_MapSize-2);
const ssize_t zi = clamp((ssize_t)floor(z/TERRAIN_TILE_SIZE), (ssize_t)0, m_MapSize-2);
const float xf = clamp(x/TERRAIN_TILE_SIZE-xi, 0.0f, 1.0f);
const float zf = clamp(z/TERRAIN_TILE_SIZE-zi, 0.0f, 1.0f);
float h00 = m_Heightmap[zi*m_MapSize + xi];
float h01 = m_Heightmap[(zi+1)*m_MapSize + xi];
float h10 = m_Heightmap[zi*m_MapSize + (xi+1)];
float h11 = m_Heightmap[(zi+1)*m_MapSize + (xi+1)];
// Determine which terrain triangle this point is on,
// then compute the linearly-interpolated height on that triangle's plane
if (GetTriangulationDir(xi, zi))
{
if (xf + zf <= 1.f)
{
// Lower-left triangle (don't use h11)
return HEIGHT_SCALE * (h00 + (h10-h00)*xf + (h01-h00)*zf);
}
else
{
// Upper-right triangle (don't use h00)
return HEIGHT_SCALE * (h11 + (h01-h11)*(1-xf) + (h10-h11)*(1-zf));
}
}
else
{
if (xf <= zf)
{
// Upper-left triangle (don't use h10)
return HEIGHT_SCALE * (h00 + (h11-h01)*xf + (h01-h00)*zf);
}
else
{
// Lower-right triangle (don't use h01)
return HEIGHT_SCALE * (h00 + (h10-h00)*xf + (h11-h10)*zf);
}
}
}
fixed CTerrain::GetExactGroundLevelFixed(fixed x, fixed z) const
{
// Clamp to size-2 so we can use the tiles (xi,zi)-(xi+1,zi+1)
const ssize_t xi = clamp((ssize_t)(x / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), (ssize_t)0, m_MapSize-2);
const ssize_t zi = clamp((ssize_t)(z / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), (ssize_t)0, m_MapSize-2);
const fixed one = fixed::FromInt(1);
const fixed xf = clamp((x / (int)TERRAIN_TILE_SIZE) - fixed::FromInt(xi), fixed::Zero(), one);
const fixed zf = clamp((z / (int)TERRAIN_TILE_SIZE) - fixed::FromInt(zi), fixed::Zero(), one);
u16 h00 = m_Heightmap[zi*m_MapSize + xi];
u16 h01 = m_Heightmap[(zi+1)*m_MapSize + xi];
u16 h10 = m_Heightmap[zi*m_MapSize + (xi+1)];
u16 h11 = m_Heightmap[(zi+1)*m_MapSize + (xi+1)];
// Intermediate scaling of xf, so we don't overflow in the multiplications below
// (h00 <= 65535, xf <= 1, max fixed is < 32768; divide by 2 here so xf1*h00 <= 32767.5)
const fixed xf0 = xf / 2;
const fixed xf1 = (one - xf) / 2;
// Linearly interpolate
return ((one - zf).Multiply(xf1 * h00 + xf0 * h10)
+ zf.Multiply(xf1 * h01 + xf0 * h11)) / (int)(HEIGHT_UNITS_PER_METRE / 2);
// TODO: This should probably be more like GetExactGroundLevel()
// in handling triangulation properly
}
bool CTerrain::GetTriangulationDir(ssize_t i, ssize_t j) const
{
// Clamp to size-2 so we can use the tiles (i,j)-(i+1,j+1)
i = clamp(i, (ssize_t)0, m_MapSize-2);
j = clamp(j, (ssize_t)0, m_MapSize-2);
int h00 = m_Heightmap[j*m_MapSize + i];
int h01 = m_Heightmap[(j+1)*m_MapSize + i];
int h10 = m_Heightmap[j*m_MapSize + (i+1)];
int h11 = m_Heightmap[(j+1)*m_MapSize + (i+1)];
// Prefer triangulating in whichever direction means the midpoint of the diagonal
// will be the highest. (In particular this means a diagonal edge will be straight
// along the top, and jagged along the bottom, which makes sense for terrain.)
int mid1 = h00+h11;
int mid2 = h01+h10;
return (mid1 < mid2);
}
///////////////////////////////////////////////////////////////////////////////
// Resize: resize this terrain to the given size (in patches per side)
void CTerrain::Resize(ssize_t size)
{
if (size==m_MapSizePatches) {
// inexplicable request to resize terrain to the same size .. ignore it
return;
}
if (!m_Heightmap) {
// not yet created a terrain; build a default terrain of the given size now
Initialize(size,0);
return;
}
// allocate data for new terrain
ssize_t newMapSize=size*PATCH_SIZE+1;
u16* newHeightmap=new u16[newMapSize*newMapSize];
CPatch* newPatches=new CPatch[size*size];
if (size>m_MapSizePatches) {
// new map is bigger than old one - zero the heightmap so we don't get uninitialised
// height data along the expanded edges
memset(newHeightmap,0,newMapSize*newMapSize*sizeof(u16));
}
// now copy over rows of data
u16* src=m_Heightmap;
u16* dst=newHeightmap;
ssize_t copysize=std::min(newMapSize, m_MapSize);
for (ssize_t j=0;j<copysize;j++) {
memcpy(dst,src,copysize*sizeof(u16));
dst+=copysize;
src+=m_MapSize;
if (newMapSize>m_MapSize) {
// extend the last height to the end of the row
for (size_t i=0;i<newMapSize-(size_t)m_MapSize;i++) {
*dst++=*(src-1);
}
}
}
if (newMapSize>m_MapSize) {
// copy over heights of the last row to any remaining rows
src=newHeightmap+((m_MapSize-1)*newMapSize);
dst=src+newMapSize;
for (ssize_t i=0;i<newMapSize-m_MapSize;i++) {
memcpy(dst,src,newMapSize*sizeof(u16));
dst+=newMapSize;
}
}
// now build new patches
for (ssize_t j=0;j<size;j++) {
for (ssize_t i=0;i<size;i++) {
// copy over texture data from existing tiles, if possible
if (i<m_MapSizePatches && j<m_MapSizePatches) {
memcpy(newPatches[j*size+i].m_MiniPatches,m_Patches[j*m_MapSizePatches+i].m_MiniPatches,sizeof(CMiniPatch)*PATCH_SIZE*PATCH_SIZE);
}
}
if (j<m_MapSizePatches && size>m_MapSizePatches) {
// copy over the last tile from each column
for (ssize_t n=0;n<size-m_MapSizePatches;n++) {
for (ssize_t m=0;m<PATCH_SIZE;m++) {
CMiniPatch& src=m_Patches[j*m_MapSizePatches+m_MapSizePatches-1].m_MiniPatches[m][15];
for (ssize_t k=0;k<PATCH_SIZE;k++) {
CMiniPatch& dst=newPatches[j*size+m_MapSizePatches+n].m_MiniPatches[m][k];
dst = src;
}
}
}
}
}
if (size>m_MapSizePatches) {
// copy over the last tile from each column
CPatch* srcpatch=&newPatches[(m_MapSizePatches-1)*size];
CPatch* dstpatch=srcpatch+size;
for (ssize_t p=0;p<(ssize_t)size-m_MapSizePatches;p++) {
for (ssize_t n=0;n<(ssize_t)size;n++) {
for (ssize_t m=0;m<PATCH_SIZE;m++) {
for (ssize_t k=0;k<PATCH_SIZE;k++) {
CMiniPatch& src=srcpatch->m_MiniPatches[15][k];
CMiniPatch& dst=dstpatch->m_MiniPatches[m][k];
dst = src;
}
}
srcpatch++;
dstpatch++;
}
}
}
// release all the original data
ReleaseData();
// store new data
m_Heightmap=newHeightmap;
m_Patches=newPatches;
m_MapSize=(ssize_t)newMapSize;
m_MapSizePatches=(ssize_t)size;
// initialise all the new patches
InitialisePatches();
// initialise mipmap
m_HeightMipmap.Initialize(m_MapSize,m_Heightmap);
}
///////////////////////////////////////////////////////////////////////////////
// InitialisePatches: initialise patch data
void CTerrain::InitialisePatches()
{
for (ssize_t j = 0; j < m_MapSizePatches; j++)
{
for (ssize_t i = 0; i < m_MapSizePatches; i++)
{
CPatch* patch = GetPatch(i, j); // can't fail
patch->Initialize(this, i, j);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// SetHeightMap: set up a new heightmap from 16-bit source data;
// assumes heightmap matches current terrain size
void CTerrain::SetHeightMap(u16* heightmap)
{
// keep a copy of the given heightmap
memcpy(m_Heightmap, heightmap, m_MapSize*m_MapSize*sizeof(u16));
// recalculate patch bounds, invalidate vertices
for (ssize_t j = 0; j < m_MapSizePatches; j++)
{
for (ssize_t i = 0; i < m_MapSizePatches; i++)
{
CPatch* patch = GetPatch(i, j); // can't fail
patch->InvalidateBounds();
patch->SetDirty(RENDERDATA_UPDATE_VERTICES);
}
}
// update mipmap
m_HeightMipmap.Update(m_Heightmap);
}
///////////////////////////////////////////////////////////////////////////////
void CTerrain::MakeDirty(ssize_t i0, ssize_t j0, ssize_t i1, ssize_t j1, int dirtyFlags)
{
// Finds the inclusive limits of the patches that include the specified range of tiles
ssize_t pi0 = clamp( i0 /PATCH_SIZE, (ssize_t)0, m_MapSizePatches-1);
ssize_t pi1 = clamp((i1-1)/PATCH_SIZE, (ssize_t)0, m_MapSizePatches-1);
ssize_t pj0 = clamp( j0 /PATCH_SIZE, (ssize_t)0, m_MapSizePatches-1);
ssize_t pj1 = clamp((j1-1)/PATCH_SIZE, (ssize_t)0, m_MapSizePatches-1);
for (ssize_t j = pj0; j <= pj1; j++)
{
for (ssize_t i = pi0; i <= pi1; i++)
{
CPatch* patch = GetPatch(i, j); // can't fail (i,j were clamped)
if (dirtyFlags & RENDERDATA_UPDATE_VERTICES)
patch->CalcBounds();
patch->SetDirty(dirtyFlags);
}
}
if (m_Heightmap)
{
m_HeightMipmap.Update(m_Heightmap,
clamp(i0, (ssize_t)0, m_MapSize-1),
clamp(j0, (ssize_t)0, m_MapSize-1),
clamp(i1, (ssize_t)1, m_MapSize),
clamp(j1, (ssize_t)1, m_MapSize)
);
}
}
void CTerrain::MakeDirty(int dirtyFlags)
{
for (ssize_t j = 0; j < m_MapSizePatches; j++)
{
for (ssize_t i = 0; i < m_MapSizePatches; i++)
{
CPatch* patch = GetPatch(i, j); // can't fail
if (dirtyFlags & RENDERDATA_UPDATE_VERTICES)
patch->CalcBounds();
patch->SetDirty(dirtyFlags);
}
}
if (m_Heightmap)
m_HeightMipmap.Update(m_Heightmap);
}
CBoundingBoxAligned CTerrain::GetVertexesBound(ssize_t i0, ssize_t j0, ssize_t i1, ssize_t j1)
{
i0 = clamp(i0, (ssize_t)0, m_MapSize-1);
j0 = clamp(j0, (ssize_t)0, m_MapSize-1);
i1 = clamp(i1, (ssize_t)0, m_MapSize-1);
j1 = clamp(j1, (ssize_t)0, m_MapSize-1);
u16 minH = 65535;
u16 maxH = 0;
for (ssize_t j = j0; j <= j1; ++j)
{
for (ssize_t i = i0; i <= i1; ++i)
{
minH = std::min(minH, m_Heightmap[j*m_MapSize + i]);
maxH = std::max(maxH, m_Heightmap[j*m_MapSize + i]);
}
}
CBoundingBoxAligned bound;
bound[0].X = (float)(i0*TERRAIN_TILE_SIZE);
bound[0].Y = (float)(minH*HEIGHT_SCALE);
bound[0].Z = (float)(j0*TERRAIN_TILE_SIZE);
bound[1].X = (float)(i1*TERRAIN_TILE_SIZE);
bound[1].Y = (float)(maxH*HEIGHT_SCALE);
bound[1].Z = (float)(j1*TERRAIN_TILE_SIZE);
return bound;
}
|