File: headerless.cpp

package info (click to toggle)
0ad 0.0.23.1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,292 kB
  • sloc: cpp: 245,166; ansic: 200,249; python: 13,754; sh: 6,104; perl: 4,620; makefile: 977; xml: 810; java: 533; ruby: 229; erlang: 46; pascal: 30; sql: 21; tcl: 4
file content (773 lines) | stat: -rw-r--r-- 18,589 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/* Copyright (C) 2010 Wildfire Games.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/*
 * (header-less) pool-based heap allocator
 */

#include "precompiled.h"
#include "lib/allocators/headerless.h"

#include "lib/bits.h"
#include "lib/allocators/pool.h"


static const bool performSanityChecks = true;

// shared by Impl::Allocate and FreedBlock::Validate
static bool IsValidSize(size_t size);


//-----------------------------------------------------------------------------

// this combines the boundary tags and link fields into one structure,
// which is safer than direct pointer arithmetic.
//
// it is written to freed memory, which is fine because IsValidSize ensures
// the allocations are large enough.
class FreedBlock
{
	friend class RangeList;	// manipulates link fields directly

public:
	// (required for RangeList::m_sentinel)
	FreedBlock()
	{
	}

	void Setup(uintptr_t id, size_t size)
	{
		m_magic = s_magic;
		m_size = size;
		m_id = id;
	}

	void Reset()
	{
		// clear all fields to prevent accidental reuse
		prev = next = 0;
		m_id = 0;
		m_size = ~size_t(0);
		m_magic = 0;
	}

	size_t Size() const
	{
		return m_size;
	}

	/**
	 * @return whether this appears to be a FreedBlock instance with the
	 * desired ID. for additional safety, also call Validate().
	 **/
	bool IsFreedBlock(uintptr_t id) const
	{
		if(m_id != id)
			return false;
		if(m_magic != s_magic)
			return false;
		return true;
	}

	/**
	 * warn if any invariant doesn't hold.
	 **/
	void Validate(uintptr_t id) const
	{
		if(!performSanityChecks) return;

		// note: RangeList::Validate implicitly checks the prev and next
		// fields by iterating over the list.

		// note: we can't check for prev != next because we're called for
		// footers as well, and they don't have valid pointers.

		ENSURE(IsValidSize(m_size));
		ENSURE(IsFreedBlock(id));
	}

private:
	// note: the magic and ID fields are stored at both ends of this
	// class to increase the chance of detecting memory corruption.
	static const u64 s_magic = 0xFF55AA00BBCCDDEEull;
	u64 m_magic;

	FreedBlock* prev;
	FreedBlock* next;

	// size [bytes] of the entire memory block, including header and footer
	size_t m_size;

	// this differentiates between headers and footers.
	uintptr_t m_id;
};


static bool IsValidSize(size_t size)
{
	// note: we disallow the questionable practice of zero-byte allocations
	// because they may be indicative of bugs.
	if(size < HeaderlessAllocator::minAllocationSize)
		return false;

	if(size % HeaderlessAllocator::allocationAlignment)
		return false;

	return true;
}


//-----------------------------------------------------------------------------
// freelists
//-----------------------------------------------------------------------------

// policy: address-ordered good fit
// mechanism: segregated range lists of power-of-two size classes

struct AddressOrder
{
	static bool ShouldInsertBefore(FreedBlock* current, FreedBlock* successor)
	{
		return current < successor;
	}
};

// "range list" is a freelist of similarly-sized blocks.
class RangeList
{
public:
	RangeList()
	{
		Reset();
	}

	void Reset()
	{
		m_sentinel.prev = &m_sentinel;
		m_sentinel.next = &m_sentinel;
		m_freeBlocks = 0;
		m_freeBytes = 0;
	}

	template<class InsertPolicy>
	void Insert(FreedBlock* freedBlock)
	{
		// find freedBlock before which to insert
		FreedBlock* successor;
		for(successor = m_sentinel.next; successor != &m_sentinel; successor = successor->next)
		{
			if(InsertPolicy::ShouldInsertBefore(freedBlock, successor))
				break;
		}

		freedBlock->prev = successor->prev;
		freedBlock->next = successor;
		successor->prev->next = freedBlock;
		successor->prev = freedBlock;

		m_freeBlocks++;
		m_freeBytes += freedBlock->Size();
	}

	/**
	 * @return the first freed block of size >= minSize or 0 if none exists.
	 **/
	FreedBlock* Find(size_t minSize)
	{
		for(FreedBlock* freedBlock = m_sentinel.next; freedBlock != &m_sentinel; freedBlock = freedBlock->next)
		{
			if(freedBlock->Size() >= minSize)
				return freedBlock;
		}

		// none found, so average block size is less than the desired size
		ENSURE(m_freeBytes/m_freeBlocks < minSize);
		return 0;
	}

	void Remove(FreedBlock* freedBlock)
	{
		freedBlock->next->prev = freedBlock->prev;
		freedBlock->prev->next = freedBlock->next;

		ENSURE(m_freeBlocks != 0);
		ENSURE(m_freeBytes >= freedBlock->Size());
		m_freeBlocks--;
		m_freeBytes -= freedBlock->Size();
	}

	void Validate(uintptr_t id) const
	{
		if(!performSanityChecks) return;

		size_t freeBlocks = 0, freeBytes = 0;

		for(FreedBlock* freedBlock = m_sentinel.next; freedBlock != &m_sentinel; freedBlock = freedBlock->next)
		{
			freedBlock->Validate(id);
			freeBlocks++;
			freeBytes += freedBlock->Size();
		}

		for(FreedBlock* freedBlock = m_sentinel.prev; freedBlock != &m_sentinel; freedBlock = freedBlock->prev)
		{
			freedBlock->Validate(id);
			freeBlocks++;
			freeBytes += freedBlock->Size();
		}

		// our idea of the number and size of free blocks is correct
		ENSURE(freeBlocks == m_freeBlocks*2 && freeBytes == m_freeBytes*2);
		// if empty, state must be as established by Reset
		ENSURE(!IsEmpty() || (m_sentinel.next == &m_sentinel && m_sentinel.prev == &m_sentinel));
	}

	bool IsEmpty() const
	{
		return (m_freeBlocks == 0);
	}

	size_t FreeBlocks() const
	{
		return m_freeBlocks;
	}

	size_t FreeBytes() const
	{
		return m_freeBytes;
	}

private:
	// a sentinel simplifies Insert and Remove. we store it here instead of
	// in a separate array to improve locality (it is actually accessed).
	mutable FreedBlock m_sentinel;

	size_t m_freeBlocks;
	size_t m_freeBytes;
};


//-----------------------------------------------------------------------------

class SegregatedRangeLists
{
public:
	SegregatedRangeLists()
	{
		Reset();
	}

	void Reset()
	{
		m_bitmap = 0;
		for(size_t i = 0; i < numRangeLists; i++)
			m_rangeLists[i].Reset();
	}

	void Insert(FreedBlock* freedBlock)
	{
		const size_t sizeClass = SizeClass(freedBlock->Size());
		m_rangeLists[sizeClass].Insert<AddressOrder>(freedBlock);

		m_bitmap |= Bit<uintptr_t>(sizeClass);
	}

	/**
	 * @return the first freed block of size >= minSize or 0 if none exists.
	 **/
	FreedBlock* Find(size_t minSize)
	{
		// iterate over all large enough, non-empty size classes
		// (zero overhead for empty size classes)
		const size_t minSizeClass = SizeClass(minSize);
		size_t sizeClassBits = m_bitmap & ((~size_t(0)) << minSizeClass);
		while(sizeClassBits)
		{
			const size_t size = ValueOfLeastSignificantOneBit(sizeClassBits);
			sizeClassBits &= ~size;	// remove from sizeClassBits
			const size_t sizeClass = SizeClass(size);

			FreedBlock* freedBlock = m_rangeLists[sizeClass].Find(minSize);
			if(freedBlock)
				return freedBlock;
		}

		// apparently all classes above minSizeClass are empty,
		// or the above would have succeeded.
		ENSURE(m_bitmap < Bit<uintptr_t>(minSizeClass+1));
		return 0;
	}

	void Remove(FreedBlock* freedBlock)
	{
		const size_t sizeClass = SizeClass(freedBlock->Size());
		m_rangeLists[sizeClass].Remove(freedBlock);

		// (masking with !IsEmpty() << sizeClass would probably be faster)
		if(m_rangeLists[sizeClass].IsEmpty())
			m_bitmap &= ~Bit<uintptr_t>(sizeClass);
	}

	void Validate(uintptr_t id) const
	{
		for(size_t i = 0; i < numRangeLists; i++)
		{
			m_rangeLists[i].Validate(id);

			// both bitmap and list must agree on whether they are empty
			ENSURE(((m_bitmap & Bit<uintptr_t>(i)) == 0) == m_rangeLists[i].IsEmpty());
		}
	}

	size_t FreeBlocks() const
	{
		size_t freeBlocks = 0;
		for(size_t i = 0; i < numRangeLists; i++)
			freeBlocks += m_rangeLists[i].FreeBlocks();
		return freeBlocks;
	}

	size_t FreeBytes() const
	{
		size_t freeBytes = 0;
		for(size_t i = 0; i < numRangeLists; i++)
			freeBytes += m_rangeLists[i].FreeBytes();
		return freeBytes;
	}

private:
	/**
	 * @return "size class" of a given size.
	 * class i > 0 contains blocks of size (2**(i-1), 2**i].
	 **/
	static size_t SizeClass(size_t size)
	{
		return ceil_log2(size);
	}

	static uintptr_t ValueOfLeastSignificantOneBit(uintptr_t x)
	{
		return (x & -(intptr_t)x);
	}

	// segregated, i.e. one list per size class.
	static const size_t numRangeLists = sizeof(uintptr_t)*CHAR_BIT;
	RangeList m_rangeLists[numRangeLists];

	// bit i set <==> size class i's freelist is not empty.
	// this allows finding a non-empty list in O(1).
	uintptr_t m_bitmap;
};


//-----------------------------------------------------------------------------
// coalescing
//-----------------------------------------------------------------------------

// policy: immediately coalesce
// mechanism: boundary tags

// note: the id and magic values are all that differentiates tags from
// user data. this isn't 100% reliable, but as with headers, we don't want
// to insert extra boundary tags into the allocated memory.

// note: footers consist of Tag{magic, ID, size}, while headers also
// need prev/next pointers. this could comfortably fit in 64 bytes,
// but we don't want to inherit headers from a base class because its
// prev/next pointers should reside between the magic and ID fields.
// maintaining separate FreedBlock and Footer classes is also undesirable;
// we prefer to use FreedBlock for both, which increases the minimum
// allocation size to 64 + allocationAlignment, e.g. 128.
// that's not a problem because the allocator is designed for
// returning pages or IO buffers (4..256 KB).
cassert(HeaderlessAllocator::minAllocationSize >= 2*sizeof(FreedBlock));


class BoundaryTagManager
{
public:
	BoundaryTagManager()
		: m_freeBlocks(0), m_freeBytes(0)
	{
	}

	FreedBlock* WriteTags(u8* p, size_t size)
	{
		FreedBlock* freedBlock = (FreedBlock*)p;
		freedBlock->Setup(s_headerId, size);
		Footer(freedBlock)->Setup(s_footerId, size);

		m_freeBlocks++;
		m_freeBytes += size;

		Validate(freedBlock);
		return freedBlock;
	}

	void RemoveTags(FreedBlock* freedBlock)
	{
		Validate(freedBlock);

		ENSURE(m_freeBlocks != 0);
		ENSURE(m_freeBytes >= freedBlock->Size());
		m_freeBlocks--;
		m_freeBytes -= freedBlock->Size();

		FreedBlock* footer = Footer(freedBlock);
		freedBlock->Reset();
		footer->Reset();
	}

	FreedBlock* PrecedingBlock(u8* p, u8* beginningOfPool) const
	{
		if(p == beginningOfPool)	// avoid accessing invalid memory
			return 0;

		FreedBlock* precedingBlock;
		{
			FreedBlock* const footer = (FreedBlock*)(p - sizeof(FreedBlock));
			if(!footer->IsFreedBlock(s_footerId))
				return 0;
			footer->Validate(s_footerId);
			precedingBlock = (FreedBlock*)(p - footer->Size());
		}

		Validate(precedingBlock);
		return precedingBlock;
	}

	FreedBlock* FollowingBlock(u8* p, size_t size, u8* endOfPool) const
	{
		if(p+size == endOfPool)	// avoid accessing invalid memory
			return 0;

		FreedBlock* const followingBlock = (FreedBlock*)(p + size);
		if(!followingBlock->IsFreedBlock(s_headerId))
			return 0;

		Validate(followingBlock);
		return followingBlock;
	}

	size_t FreeBlocks() const
	{
		return m_freeBlocks;
	}

	size_t FreeBytes() const
	{
		return m_freeBytes;
	}

	// (generated via GUID)
	static const uintptr_t s_headerId = 0x111E8E6Fu;
	static const uintptr_t s_footerId = 0x4D745342u;

private:
	void Validate(FreedBlock* freedBlock) const
	{
		if(!performSanityChecks) return;

		// the existence of freedBlock means our bookkeeping better have
		// records of at least that much memory.
		ENSURE(m_freeBlocks != 0);
		ENSURE(m_freeBytes >= freedBlock->Size());

		freedBlock->Validate(s_headerId);
		Footer(freedBlock)->Validate(s_footerId);
	}

	static FreedBlock* Footer(FreedBlock* freedBlock)
	{
		u8* const p = (u8*)freedBlock;
		return (FreedBlock*)(p + freedBlock->Size() - sizeof(FreedBlock));
	}

	size_t m_freeBlocks;
	size_t m_freeBytes;
};


//-----------------------------------------------------------------------------
// stats
//-----------------------------------------------------------------------------

class Stats
{
public:
	void OnReset()
	{
		if(!performSanityChecks) return;

		m_totalAllocatedBlocks = m_totalAllocatedBytes = 0;
		m_totalDeallocatedBlocks = m_totalDeallocatedBytes = 0;
		m_currentExtantBlocks = m_currentExtantBytes = 0;
		m_currentFreeBlocks = m_currentFreeBytes = 0;
	}

	void OnAllocate(size_t size)
	{
		if(!performSanityChecks) return;

		m_totalAllocatedBlocks++;
		m_totalAllocatedBytes += size;

		m_currentExtantBlocks++;
		m_currentExtantBytes += size;
	}

	void OnDeallocate(size_t size)
	{
		if(!performSanityChecks) return;

		m_totalDeallocatedBlocks++;
		m_totalDeallocatedBytes += size;
		ENSURE(m_totalDeallocatedBlocks <= m_totalAllocatedBlocks);
		ENSURE(m_totalDeallocatedBytes <= m_totalAllocatedBytes);

		ENSURE(m_currentExtantBlocks != 0);
		ENSURE(m_currentExtantBytes >= size);
		m_currentExtantBlocks--;
		m_currentExtantBytes -= size;
	}

	void OnAddToFreelist(size_t size)
	{
		m_currentFreeBlocks++;
		m_currentFreeBytes += size;
	}

	void OnRemoveFromFreelist(size_t size)
	{
		if(!performSanityChecks) return;

		ENSURE(m_currentFreeBlocks != 0);
		ENSURE(m_currentFreeBytes >= size);
		m_currentFreeBlocks--;
		m_currentFreeBytes -= size;
	}

	void Validate() const
	{
		if(!performSanityChecks) return;

		ENSURE(m_totalDeallocatedBlocks <= m_totalAllocatedBlocks);
		ENSURE(m_totalDeallocatedBytes <= m_totalAllocatedBytes);

		ENSURE(m_currentExtantBlocks == m_totalAllocatedBlocks-m_totalDeallocatedBlocks);
		ENSURE(m_currentExtantBytes == m_totalAllocatedBytes-m_totalDeallocatedBytes);
	}

	size_t FreeBlocks() const
	{
		return m_currentFreeBlocks;
	}

	size_t FreeBytes() const
	{
		return m_currentFreeBytes;
	}

private:
	u64 m_totalAllocatedBlocks, m_totalAllocatedBytes;
	u64 m_totalDeallocatedBlocks, m_totalDeallocatedBytes;
	u64 m_currentExtantBlocks, m_currentExtantBytes;
	u64 m_currentFreeBlocks, m_currentFreeBytes;
};


//-----------------------------------------------------------------------------
// HeaderlessAllocator::Impl
//-----------------------------------------------------------------------------

static void AssertEqual(size_t x1, size_t x2, size_t x3)
{
	ENSURE(x1 == x2 && x2 == x3);
}

class HeaderlessAllocator::Impl
{
public:
	Impl(size_t poolSize)
	{
		(void)pool_create(&m_pool, poolSize, 0);

		Reset();
	}

	~Impl()
	{
		Validate();

		(void)pool_destroy(&m_pool);
	}

	void Reset()
	{
		pool_free_all(&m_pool);
		m_segregatedRangeLists.Reset();
		m_stats.OnReset();

		Validate();
	}

	NOTHROW_DEFINE void* Allocate(size_t size)
	{
		ENSURE(IsValidSize(size));
		Validate();

		void* p = TakeAndSplitFreeBlock(size);
		if(!p)
		{
			p = pool_alloc(&m_pool, size);
			if(!p)			// both failed; don't throw bad_alloc because
				return 0;	// this often happens with the file cache.
		}

		// (NB: we must not update the statistics if allocation failed)
		m_stats.OnAllocate(size);

		Validate();
		ENSURE((uintptr_t)p % allocationAlignment == 0);
		return p;
	}

	void Deallocate(u8* p, size_t size)
	{
		ENSURE((uintptr_t)p % allocationAlignment == 0);
		ENSURE(IsValidSize(size));
		ENSURE(pool_contains(&m_pool, p));
		ENSURE(pool_contains(&m_pool, p+size-1));

		Validate();

		m_stats.OnDeallocate(size);
		Coalesce(p, size);
		AddToFreelist(p, size);

		Validate();
	}

	void Validate() const
	{
		if(!performSanityChecks) return;

		m_segregatedRangeLists.Validate(BoundaryTagManager::s_headerId);
		m_stats.Validate();

		AssertEqual(m_stats.FreeBlocks(), m_segregatedRangeLists.FreeBlocks(), m_boundaryTagManager.FreeBlocks());
		AssertEqual(m_stats.FreeBytes(), m_segregatedRangeLists.FreeBytes(), m_boundaryTagManager.FreeBytes());
	}

private:
	void AddToFreelist(u8* p, size_t size)
	{
		FreedBlock* freedBlock = m_boundaryTagManager.WriteTags(p, size);
		m_segregatedRangeLists.Insert(freedBlock);
		m_stats.OnAddToFreelist(size);
	}

	void RemoveFromFreelist(FreedBlock* freedBlock)
	{
		m_stats.OnRemoveFromFreelist(freedBlock->Size());
		m_segregatedRangeLists.Remove(freedBlock);
		m_boundaryTagManager.RemoveTags(freedBlock);
	}

	/**
	 * expand a block by coalescing it with its free neighbor(s).
	 **/
	void Coalesce(u8*& p, size_t& size)
	{
		{
			FreedBlock* precedingBlock = m_boundaryTagManager.PrecedingBlock(p, m_pool.da.base);
			if(precedingBlock)
			{
				p -= precedingBlock->Size();
				size += precedingBlock->Size();
				RemoveFromFreelist(precedingBlock);
			}
		}

		{
			FreedBlock* followingBlock = m_boundaryTagManager.FollowingBlock(p, size, m_pool.da.base+m_pool.da.pos);
			if(followingBlock)
			{
				size += followingBlock->Size();
				RemoveFromFreelist(followingBlock);
			}
		}
	}

	void* TakeAndSplitFreeBlock(size_t size)
	{
		u8* p;
		size_t leftoverSize = 0;
		{
			FreedBlock* freedBlock = m_segregatedRangeLists.Find(size);
			if(!freedBlock)
				return 0;

			p = (u8*)freedBlock;
			leftoverSize = freedBlock->Size() - size;
			RemoveFromFreelist(freedBlock);
		}

		if(IsValidSize(leftoverSize))
			AddToFreelist(p+size, leftoverSize);

		return p;
	}

	Pool m_pool;
	SegregatedRangeLists m_segregatedRangeLists;
	BoundaryTagManager m_boundaryTagManager;
	Stats m_stats;
};


//-----------------------------------------------------------------------------

HeaderlessAllocator::HeaderlessAllocator(size_t poolSize)
	: impl(new Impl(poolSize))
{
}

void HeaderlessAllocator::Reset()
{
	return impl->Reset();
}

NOTHROW_DEFINE void* HeaderlessAllocator::Allocate(size_t size)
{
	return impl->Allocate(size);
}

void HeaderlessAllocator::Deallocate(void* p, size_t size)
{
	return impl->Deallocate((u8*)p, size);
}

void HeaderlessAllocator::Validate() const
{
	return impl->Validate();
}