1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
/* Copyright (C) 2018 Wildfire Games.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Windows High Resolution Timer
*/
#include "precompiled.h"
#include "lib/sysdep/os/win/whrt/whrt.h"
#include <process.h> // _beginthreadex
#include "lib/sysdep/cpu.h"
#include "lib/sysdep/os/win/wutil.h"
#include "lib/sysdep/os/win/winit.h"
#include "lib/sysdep/acpi.h"
#include "lib/bits.h"
#include "lib/sysdep/os/win/whrt/counter.h"
WINIT_REGISTER_EARLY_INIT2(whrt_Init); // wutil -> whrt -> wtime
WINIT_REGISTER_LATE_SHUTDOWN(whrt_Shutdown);
namespace ERR
{
const Status WHRT_COUNTER_UNSAFE = 140000;
}
//-----------------------------------------------------------------------------
// choose best available safe counter
// (moved into a separate function to simplify error handling)
static inline Status ActivateCounter(ICounter* counter)
{
RETURN_STATUS_IF_ERR(counter->Activate());
if(!counter->IsSafe())
return ERR::WHRT_COUNTER_UNSAFE; // NOWARN (happens often)
return INFO::OK;
}
/**
* @return the newly created and unique instance of the next best counter
* that is deemed safe, or 0 if all have already been created.
**/
static ICounter* GetNextBestSafeCounter()
{
for(;;)
{
static size_t nextCounterId = 0;
ICounter* counter = CreateCounter(nextCounterId++);
if(!counter)
return 0; // tried all, none were safe
Status err = ActivateCounter(counter);
if(err == INFO::OK)
{
debug_printf("HRT: using name=%s freq=%f\n", counter->Name(), counter->NominalFrequency());
return counter; // found a safe counter
}
else
{
wchar_t buf[100];
debug_printf("HRT: activating %s failed: %s\n", counter->Name(), utf8_from_wstring(StatusDescription(err, buf, ARRAY_SIZE(buf))).c_str());
DestroyCounter(counter);
}
}
}
//-----------------------------------------------------------------------------
// counter that drives the timer
static ICounter* counter;
// (these counter properties are cached for efficiency and convenience:)
static double nominalFrequency;
static double resolution;
static size_t counterBits;
static u64 counterMask;
static void InitCounter()
{
// we used to support switching counters at runtime, but that's
// unnecessarily complex. it need and should only be done once.
ENSURE(counter == 0);
counter = GetNextBestSafeCounter();
ENSURE(counter != 0);
nominalFrequency = counter->NominalFrequency();
resolution = counter->Resolution();
counterBits = counter->CounterBits();
debug_printf("HRT: counter=%s freq=%g res=%g bits=%d\n", counter->Name(), nominalFrequency, resolution, counterBits);
// sanity checks
ENSURE(nominalFrequency >= 500.0-DBL_EPSILON);
ENSURE(resolution <= 2e-3);
ENSURE(8 <= counterBits && counterBits <= 64);
counterMask = bit_mask<u64>(counterBits);
}
static void ShutdownCounter()
{
DestroyCounter(counter);
}
static inline u64 Counter()
{
return counter->Counter();
}
/**
* @return difference [ticks], taking rollover into account.
* (time-critical, so it's not called through ICounter.)
**/
static inline u64 CounterDelta(u64 oldCounter, u64 newCounter)
{
return (newCounter - oldCounter) & counterMask;
}
double whrt_Resolution()
{
ENSURE(resolution != 0.0);
return resolution;
}
//-----------------------------------------------------------------------------
// timer state
// we're not going to bother calibrating the counter (i.e. measuring its
// current frequency by means of a second timer). rationale:
// - all counters except the TSC are stable and run at fixed frequencies;
// - it's not clear that any other HRT or the tick count would be useful
// as a stable time reference (if it were, we should be using it instead);
// - calibration would complicate the code (we'd have to make sure the
// secondary counter is safe and can co-exist with the primary).
/**
* stores all timer state shared between readers and the update thread.
* (must be POD because it's used before static ctors run.)
**/
struct TimerState
{
// value of the counter at last update.
u64 counter;
// total elapsed time [seconds] since first update.
// converted from tick deltas with the *then current* frequency
// (this enables calibration, which is currently not implemented,
// but leaving open the possibility costs nothing)
double time;
u8 padding[48];
};
// how do we detect when the old TimerState is no longer in use and can be
// freed? we use two static instances (avoids dynamic allocation headaches)
// and swap between them ('double-buffering'). it is assumed that all
// entered critical sections (the latching of TimerState fields) will have
// been exited before the next update comes around; if not, TimerState.time
// changes, the critical section notices and re-reads the new values.
static __declspec(align(64)) TimerState timerStates[2];
// note: exchanging pointers is easier than XORing an index.
static volatile TimerState* volatile ts = &timerStates[0];
static volatile TimerState* volatile ts2 = &timerStates[1];
static void UpdateTimerState()
{
// how can we synchronize readers and the update thread? locks are
// preferably avoided since they're dangerous and can be slow. what we
// need to ensure is that TimerState doesn't change while another thread is
// accessing it. the first step is to linearize the update, i.e. have it
// appear to happen in an instant (done by building a new TimerState and
// having it go live by switching pointers). all that remains is to make
// reads of the state variables consistent, done by latching them all and
// retrying if an update came in the middle of this.
const u64 currentCounter = Counter();
const u64 deltaTicks = CounterDelta(ts->counter, currentCounter);
ts2->counter = currentCounter;
ts2->time = ts->time + deltaTicks/nominalFrequency;
ts = (volatile TimerState*)InterlockedExchangePointer((volatile PVOID*)&ts2, (PVOID)ts);
}
double whrt_Time()
{
// latch timer state (counter and time must be from the same update)
const volatile TimerState* state = ts;
return (state->time + CounterDelta(state->counter, Counter()) / nominalFrequency);
}
//-----------------------------------------------------------------------------
// update thread
// note: we used to discipline the HRT timestamp to the system time, so it
// was advantageous to trigger updates via WinMM event (thus reducing
// instances where we're called in the middle of a scheduler tick).
// since that's no longer relevant, we prefer using a thread, because that
// avoids the dependency on WinMM and its lengthy startup time.
// rationale: (+ and - are reasons for longer and shorter lengths)
// + minimize CPU usage
// + ensure all threads currently using TimerState return from those
// functions before the next interval
// - avoid more than 1 counter rollover per interval (InitUpdateThread makes
// sure our interval is shorter than the current counter's rollover rate)
static const DWORD UPDATE_INTERVAL_MS = 1000;
static HANDLE hExitEvent;
static HANDLE hUpdateThread;
static unsigned __stdcall UpdateThread(void* UNUSED(data))
{
debug_SetThreadName("whrt_UpdateThread");
for(;;)
{
const DWORD ret = WaitForSingleObject(hExitEvent, UPDATE_INTERVAL_MS);
// owner terminated or wait failed or exit event signaled - exit thread
if(ret != WAIT_TIMEOUT)
break;
UpdateTimerState();
}
return 0;
}
static inline Status InitUpdateThread()
{
WinScopedPreserveLastError s; // CreateEvent
// make sure our interval isn't too long
// (counterBits can be 64 => Bit() would overflow => calculate period/2)
const double period_2 = Bit<u64>(counterBits-1) / nominalFrequency;
const size_t rolloversPerInterval = size_t(UPDATE_INTERVAL_MS / i64(period_2*2.0*1000.0));
ENSURE(rolloversPerInterval <= 1);
hExitEvent = CreateEvent(0, TRUE, FALSE, 0); // manual reset, initially false
if(hExitEvent == INVALID_HANDLE_VALUE)
WARN_RETURN(ERR::LIMIT);
hUpdateThread = (HANDLE)_beginthreadex(0, 0, UpdateThread, 0, 0, 0);
if(!hUpdateThread)
WARN_RETURN(ERR::LIMIT);
return INFO::OK;
}
static inline void ShutdownUpdateThread()
{
// signal thread
BOOL ok = SetEvent(hExitEvent);
WARN_IF_FALSE(ok);
// the nice way is to wait for it to exit
if(WaitForSingleObject(hUpdateThread, 100) != WAIT_OBJECT_0)
TerminateThread(hUpdateThread, 0); // forcibly exit (dangerous)
CloseHandle(hExitEvent);
CloseHandle(hUpdateThread);
}
//-----------------------------------------------------------------------------
static Status whrt_Init()
{
InitCounter();
// latch initial counter value so that timer starts at 0
ts->counter = Counter(); // must come before UpdateTimerState
UpdateTimerState(); // must come before InitUpdateThread to avoid race
RETURN_STATUS_IF_ERR(InitUpdateThread());
return INFO::OK;
}
static Status whrt_Shutdown()
{
ShutdownUpdateThread();
ShutdownCounter();
acpi_Shutdown();
return INFO::OK;
}
|