1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
|
/* Copyright (C) 2015 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "OverlayRenderer.h"
#include <boost/unordered_map.hpp>
#include "graphics/LOSTexture.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "graphics/TextureManager.h"
#include "lib/ogl.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "ps/Game.h"
#include "ps/Profile.h"
#include "renderer/Renderer.h"
#include "renderer/TexturedLineRData.h"
#include "renderer/VertexArray.h"
#include "renderer/VertexBuffer.h"
#include "renderer/VertexBufferManager.h"
#include "simulation2/Simulation2.h"
#include "simulation2/components/ICmpWaterManager.h"
#include "simulation2/system/SimContext.h"
/**
* Key used to group quads into batches for more efficient rendering. Currently groups by the combination
* of the main texture and the texture mask, to minimize texture swapping during rendering.
*/
struct QuadBatchKey
{
QuadBatchKey (const CTexturePtr& texture, const CTexturePtr& textureMask)
: m_Texture(texture), m_TextureMask(textureMask)
{ }
bool operator==(const QuadBatchKey& other) const
{
return (m_Texture == other.m_Texture && m_TextureMask == other.m_TextureMask);
}
CTexturePtr m_Texture;
CTexturePtr m_TextureMask;
};
/**
* Holds information about a single quad rendering batch.
*/
class QuadBatchData : public CRenderData
{
public:
QuadBatchData() : m_IndicesBase(0), m_NumRenderQuads(0) { }
/// Holds the quad overlay structures requested to be rendered in this batch. Must be cleared
/// after each frame.
std::vector<SOverlayQuad*> m_Quads;
/// Start index of this batch into the dedicated quad indices VertexArray (see OverlayInternals).
size_t m_IndicesBase;
/// Amount of quads to actually render in this batch. Potentially (although unlikely to be)
/// different from m_Quads.size() due to restrictions on the total amount of quads that can be
/// rendered. Must be reset after each frame.
size_t m_NumRenderQuads;
};
struct OverlayRendererInternals
{
typedef boost::unordered_map<QuadBatchKey, QuadBatchData> QuadBatchMap;
OverlayRendererInternals();
~OverlayRendererInternals(){ }
std::vector<SOverlayLine*> lines;
std::vector<SOverlayTexturedLine*> texlines;
std::vector<SOverlaySprite*> sprites;
std::vector<SOverlayQuad*> quads;
std::vector<SOverlaySphere*> spheres;
QuadBatchMap quadBatchMap;
// Dedicated vertex/index buffers for rendering all quads (to within the limits set by
// MAX_QUAD_OVERLAYS).
VertexArray quadVertices;
VertexArray::Attribute quadAttributePos;
VertexArray::Attribute quadAttributeColor;
VertexArray::Attribute quadAttributeUV;
VertexIndexArray quadIndices;
/// Maximum amount of quad overlays we support for rendering. This limit is set to be able to
/// render all quads from a single dedicated VB without having to reallocate it, which is much
/// faster in the typical case of rendering only a handful of quads. When modifying this value,
/// you must take care for the new amount of quads to fit in a single VBO (which is not likely
/// to be a problem).
static const size_t MAX_QUAD_OVERLAYS = 1024;
// Sets of commonly-(re)used shader defines.
CShaderDefines defsOverlayLineNormal;
CShaderDefines defsOverlayLineAlwaysVisible;
CShaderDefines defsQuadOverlay;
// Geometry for a unit sphere
std::vector<float> sphereVertexes;
std::vector<u16> sphereIndexes;
void GenerateSphere();
/// Performs one-time setup. Called from CRenderer::Open, after graphics capabilities have
/// been detected. Note that no VBOs must be created before this is called, since the shader
/// path and graphics capabilities are not guaranteed to be stable before this point.
void Initialize();
};
const float OverlayRenderer::OVERLAY_VOFFSET = 0.2f;
OverlayRendererInternals::OverlayRendererInternals()
: quadVertices(GL_DYNAMIC_DRAW), quadIndices(GL_STATIC_DRAW)
{
quadAttributePos.elems = 3;
quadAttributePos.type = GL_FLOAT;
quadVertices.AddAttribute(&quadAttributePos);
quadAttributeColor.elems = 4;
quadAttributeColor.type = GL_FLOAT;
quadVertices.AddAttribute(&quadAttributeColor);
quadAttributeUV.elems = 2;
quadAttributeUV.type = GL_SHORT; // don't use GL_UNSIGNED_SHORT here, TexCoordPointer won't accept it
quadVertices.AddAttribute(&quadAttributeUV);
// Note that we're reusing the textured overlay line shader for the quad overlay rendering. This
// is because their code is almost identical; the only difference is that for the quad overlays
// we want to use a vertex color stream as opposed to an objectColor uniform. To this end, the
// shader has been set up to switch between the two behaviours based on the USE_OBJECTCOLOR define.
defsOverlayLineNormal.Add(str_USE_OBJECTCOLOR, str_1);
defsOverlayLineAlwaysVisible.Add(str_USE_OBJECTCOLOR, str_1);
defsOverlayLineAlwaysVisible.Add(str_IGNORE_LOS, str_1);
}
void OverlayRendererInternals::Initialize()
{
// Perform any initialization after graphics capabilities have been detected. Notably,
// only at this point can we safely allocate VBOs (in contrast to e.g. in the constructor),
// because their creation depends on the shader path, which is not reliably set before this point.
quadVertices.SetNumVertices(MAX_QUAD_OVERLAYS * 4);
quadVertices.Layout(); // allocate backing store
quadIndices.SetNumVertices(MAX_QUAD_OVERLAYS * 6);
quadIndices.Layout(); // allocate backing store
// Since the quads in the vertex array are independent and always consist of exactly 4 vertices per quad, the
// indices are always the same; we can therefore fill in all the indices once and pretty much forget about
// them. We then also no longer need its backing store, since we never change any indices afterwards.
VertexArrayIterator<u16> index = quadIndices.GetIterator();
for (size_t i = 0; i < MAX_QUAD_OVERLAYS; ++i)
{
*index++ = i*4 + 0;
*index++ = i*4 + 1;
*index++ = i*4 + 2;
*index++ = i*4 + 2;
*index++ = i*4 + 3;
*index++ = i*4 + 0;
}
quadIndices.Upload();
quadIndices.FreeBackingStore();
}
static size_t hash_value(const QuadBatchKey& d)
{
size_t seed = 0;
boost::hash_combine(seed, d.m_Texture);
boost::hash_combine(seed, d.m_TextureMask);
return seed;
}
OverlayRenderer::OverlayRenderer()
{
m = new OverlayRendererInternals();
}
OverlayRenderer::~OverlayRenderer()
{
delete m;
}
void OverlayRenderer::Initialize()
{
m->Initialize();
}
void OverlayRenderer::Submit(SOverlayLine* line)
{
ENSURE(line->m_Coords.size() % 3 == 0);
m->lines.push_back(line);
}
void OverlayRenderer::Submit(SOverlayTexturedLine* line)
{
// Simplify the rest of the code by guaranteeing non-empty lines
if (line->m_Coords.empty())
return;
ENSURE(line->m_Coords.size() % 2 == 0);
m->texlines.push_back(line);
}
void OverlayRenderer::Submit(SOverlaySprite* overlay)
{
m->sprites.push_back(overlay);
}
void OverlayRenderer::Submit(SOverlayQuad* overlay)
{
m->quads.push_back(overlay);
}
void OverlayRenderer::Submit(SOverlaySphere* overlay)
{
m->spheres.push_back(overlay);
}
void OverlayRenderer::EndFrame()
{
m->lines.clear();
m->texlines.clear();
m->sprites.clear();
m->quads.clear();
m->spheres.clear();
// this should leave the capacity unchanged, which is okay since it
// won't be very large or very variable
// Empty the batch rendering data structures, but keep their key mappings around for the next frames
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it)
{
QuadBatchData& quadBatchData = (it->second);
quadBatchData.m_Quads.clear();
quadBatchData.m_NumRenderQuads = 0;
quadBatchData.m_IndicesBase = 0;
}
}
void OverlayRenderer::PrepareForRendering()
{
PROFILE3("prepare overlays");
// This is where we should do something like sort the overlays by
// color/sprite/etc for more efficient rendering
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
if (!line->m_RenderData)
{
line->m_RenderData = shared_ptr<CTexturedLineRData>(new CTexturedLineRData());
line->m_RenderData->Update(*line);
// We assume the overlay line will get replaced by the caller
// if terrain changes, so we don't need to detect that here and
// call Update again. Also we assume the caller won't change
// any of the parameters after first submitting the line.
}
}
// Group quad overlays by their texture/mask combination for efficient rendering
// TODO: consider doing this directly in Submit()
for (size_t i = 0; i < m->quads.size(); ++i)
{
SOverlayQuad* const quad = m->quads[i];
QuadBatchKey textures(quad->m_Texture, quad->m_TextureMask);
QuadBatchData& batchRenderData = m->quadBatchMap[textures]; // will create entry if it doesn't already exist
// add overlay to list of quads
batchRenderData.m_Quads.push_back(quad);
}
const CVector3D vOffset(0, OverlayRenderer::OVERLAY_VOFFSET, 0);
// Write quad overlay vertices/indices to VA backing store
VertexArrayIterator<CVector3D> vertexPos = m->quadAttributePos.GetIterator<CVector3D>();
VertexArrayIterator<CVector4D> vertexColor = m->quadAttributeColor.GetIterator<CVector4D>();
VertexArrayIterator<short[2]> vertexUV = m->quadAttributeUV.GetIterator<short[2]>();
size_t indicesIdx = 0;
size_t totalNumQuads = 0;
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it)
{
QuadBatchData& batchRenderData = (it->second);
batchRenderData.m_NumRenderQuads = 0;
if (batchRenderData.m_Quads.empty())
continue;
// Remember the current index into the (entire) indices array as our base offset for this batch
batchRenderData.m_IndicesBase = indicesIdx;
// points to the index where each iteration's vertices will be appended
for (size_t i = 0; i < batchRenderData.m_Quads.size() && totalNumQuads < OverlayRendererInternals::MAX_QUAD_OVERLAYS; i++)
{
const SOverlayQuad* quad = batchRenderData.m_Quads[i];
// TODO: this is kind of ugly, the iterator should use a type that can have quad->m_Color assigned
// to it directly
const CVector4D quadColor(quad->m_Color.r, quad->m_Color.g, quad->m_Color.b, quad->m_Color.a);
*vertexPos++ = quad->m_Corners[0] + vOffset;
*vertexPos++ = quad->m_Corners[1] + vOffset;
*vertexPos++ = quad->m_Corners[2] + vOffset;
*vertexPos++ = quad->m_Corners[3] + vOffset;
(*vertexUV)[0] = 0;
(*vertexUV)[1] = 0;
++vertexUV;
(*vertexUV)[0] = 0;
(*vertexUV)[1] = 1;
++vertexUV;
(*vertexUV)[0] = 1;
(*vertexUV)[1] = 1;
++vertexUV;
(*vertexUV)[0] = 1;
(*vertexUV)[1] = 0;
++vertexUV;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
indicesIdx += 6;
totalNumQuads++;
batchRenderData.m_NumRenderQuads++;
}
}
m->quadVertices.Upload();
// don't free the backing store! we'll overwrite it on the next frame to save a reallocation.
m->quadVertices.PrepareForRendering();
}
void OverlayRenderer::RenderOverlaysBeforeWater()
{
PROFILE3_GPU("overlays (before)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderOverlaysBeforeWater for GLES
#else
pglActiveTextureARB(GL_TEXTURE0);
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
// Ignore z so that we draw behind terrain (but don't disable GL_DEPTH_TEST
// since we still want to write to the z buffer)
glDepthFunc(GL_ALWAYS);
for (size_t i = 0; i < m->lines.size(); ++i)
{
SOverlayLine* line = m->lines[i];
if (line->m_Coords.empty())
continue;
ENSURE(line->m_Coords.size() % 3 == 0);
glColor4fv(line->m_Color.FloatArray());
glLineWidth((float)line->m_Thickness);
glInterleavedArrays(GL_V3F, sizeof(float)*3, &line->m_Coords[0]);
glDrawArrays(GL_LINE_STRIP, 0, (GLsizei)line->m_Coords.size()/3);
}
glDisableClientState(GL_VERTEX_ARRAY);
glLineWidth(1.f);
glDepthFunc(GL_LEQUAL);
glDisable(GL_BLEND);
#endif
}
void OverlayRenderer::RenderOverlaysAfterWater()
{
PROFILE3_GPU("overlays (after)");
RenderTexturedOverlayLines();
RenderQuadOverlays();
RenderSphereOverlays();
}
void OverlayRenderer::RenderTexturedOverlayLines()
{
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderTexturedOverlayLines for GLES
return;
#endif
if (m->texlines.empty())
return;
ogl_WarnIfError();
pglActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
const char* shaderName;
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shaderName = "arb/overlayline";
else
shaderName = "fixed:overlayline";
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
CShaderManager& shaderManager = g_Renderer.GetShaderManager();
CShaderProgramPtr shaderTexLineNormal(shaderManager.LoadProgram(shaderName, m->defsOverlayLineNormal));
CShaderProgramPtr shaderTexLineAlwaysVisible(shaderManager.LoadProgram(shaderName, m->defsOverlayLineAlwaysVisible));
// ----------------------------------------------------------------------------------------
if (shaderTexLineNormal)
{
shaderTexLineNormal->Bind();
shaderTexLineNormal->BindTexture(str_losTex, los.GetTexture());
shaderTexLineNormal->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the non-always-visible overlay lines using the normal shader
RenderTexturedOverlayLines(shaderTexLineNormal, false);
shaderTexLineNormal->Unbind();
}
// ----------------------------------------------------------------------------------------
if (shaderTexLineAlwaysVisible)
{
shaderTexLineAlwaysVisible->Bind();
// TODO: losTex and losTransform are unused in the always visible shader; see if these can be safely omitted
shaderTexLineAlwaysVisible->BindTexture(str_losTex, los.GetTexture());
shaderTexLineAlwaysVisible->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the always-visible overlay lines using the LoS-ignored shader
RenderTexturedOverlayLines(shaderTexLineAlwaysVisible, true);
shaderTexLineAlwaysVisible->Unbind();
}
// ----------------------------------------------------------------------------------------
// TODO: the shaders should probably be responsible for unbinding their textures
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(0, 0);
CVertexBuffer::Unbind();
glDepthMask(1);
glDisable(GL_BLEND);
}
void OverlayRenderer::RenderTexturedOverlayLines(CShaderProgramPtr shader, bool alwaysVisible)
{
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
// render only those lines matching the requested alwaysVisible status
if (!line->m_RenderData || line->m_AlwaysVisible != alwaysVisible)
continue;
ENSURE(line->m_RenderData);
line->m_RenderData->Render(*line, shader);
}
}
void OverlayRenderer::RenderQuadOverlays()
{
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderQuadOverlays for GLES
return;
#endif
if (m->quadBatchMap.empty())
return;
ogl_WarnIfError();
pglActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
const char* shaderName;
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shaderName = "arb/overlayline";
else
shaderName = "fixed:overlayline";
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
CShaderManager& shaderManager = g_Renderer.GetShaderManager();
CShaderProgramPtr shader(shaderManager.LoadProgram(shaderName, m->defsQuadOverlay));
// ----------------------------------------------------------------------------------------
if (shader)
{
shader->Bind();
shader->BindTexture(str_losTex, los.GetTexture());
shader->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// Base offsets (in bytes) of the two backing stores relative to their owner VBO
u8* indexBase = m->quadIndices.Bind();
u8* vertexBase = m->quadVertices.Bind();
GLsizei indexStride = m->quadIndices.GetStride();
GLsizei vertexStride = m->quadVertices.GetStride();
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it)
{
QuadBatchData& batchRenderData = it->second;
const size_t batchNumQuads = batchRenderData.m_NumRenderQuads;
// Careful; some drivers don't like drawing calls with 0 stuff to draw.
if (batchNumQuads == 0)
continue;
const QuadBatchKey& maskPair = it->first;
shader->BindTexture(str_baseTex, maskPair.m_Texture->GetHandle());
shader->BindTexture(str_maskTex, maskPair.m_TextureMask->GetHandle());
int streamflags = shader->GetStreamFlags();
if (streamflags & STREAM_POS)
shader->VertexPointer(m->quadAttributePos.elems, m->quadAttributePos.type, vertexStride, vertexBase + m->quadAttributePos.offset);
if (streamflags & STREAM_UV0)
shader->TexCoordPointer(GL_TEXTURE0, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset);
if (streamflags & STREAM_UV1)
shader->TexCoordPointer(GL_TEXTURE1, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset);
if (streamflags & STREAM_COLOR)
shader->ColorPointer(m->quadAttributeColor.elems, m->quadAttributeColor.type, vertexStride, vertexBase + m->quadAttributeColor.offset);
shader->AssertPointersBound();
glDrawElements(GL_TRIANGLES, (GLsizei)(batchNumQuads * 6), GL_UNSIGNED_SHORT, indexBase + indexStride * batchRenderData.m_IndicesBase);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += batchNumQuads*2;
}
shader->Unbind();
}
// ----------------------------------------------------------------------------------------
// TODO: the shader should probably be responsible for unbinding its textures
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(0, 0);
CVertexBuffer::Unbind();
glDepthMask(1);
glDisable(GL_BLEND);
}
void OverlayRenderer::RenderForegroundOverlays(const CCamera& viewCamera)
{
PROFILE3_GPU("overlays (fg)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderForegroundOverlays for GLES
#else
pglActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
CVector3D right = -viewCamera.m_Orientation.GetLeft();
CVector3D up = viewCamera.m_Orientation.GetUp();
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
CShaderProgramPtr shader;
CShaderTechniquePtr tech;
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
{
tech = g_Renderer.GetShaderManager().LoadEffect(str_foreground_overlay);
tech->BeginPass();
shader = tech->GetShader();
}
float uvs[8] = { 0,1, 1,1, 1,0, 0,0 };
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, sizeof(float)*2, &uvs[0]);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(float)*2, &uvs);
for (size_t i = 0; i < m->sprites.size(); ++i)
{
SOverlaySprite* sprite = m->sprites[i];
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shader->BindTexture(str_baseTex, sprite->m_Texture);
else
sprite->m_Texture->Bind();
shader->Uniform(str_colorMul, sprite->m_Color);
CVector3D pos[4] = {
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y1,
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y1
};
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shader->VertexPointer(3, GL_FLOAT, sizeof(float)*3, &pos[0].X);
else
glVertexPointer(3, GL_FLOAT, sizeof(float)*3, &pos[0].X);
glDrawArrays(GL_QUADS, 0, (GLsizei)4);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += 2;
}
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
tech->EndPass();
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
#endif
}
static void TessellateSphereFace(const CVector3D& a, u16 ai,
const CVector3D& b, u16 bi,
const CVector3D& c, u16 ci,
std::vector<float>& vertexes, std::vector<u16>& indexes, int level)
{
if (level == 0)
{
indexes.push_back(ai);
indexes.push_back(bi);
indexes.push_back(ci);
}
else
{
CVector3D d = (a + b).Normalized();
CVector3D e = (b + c).Normalized();
CVector3D f = (c + a).Normalized();
int di = vertexes.size() / 3; vertexes.push_back(d.X); vertexes.push_back(d.Y); vertexes.push_back(d.Z);
int ei = vertexes.size() / 3; vertexes.push_back(e.X); vertexes.push_back(e.Y); vertexes.push_back(e.Z);
int fi = vertexes.size() / 3; vertexes.push_back(f.X); vertexes.push_back(f.Y); vertexes.push_back(f.Z);
TessellateSphereFace(a,ai, d,di, f,fi, vertexes, indexes, level-1);
TessellateSphereFace(d,di, b,bi, e,ei, vertexes, indexes, level-1);
TessellateSphereFace(f,fi, e,ei, c,ci, vertexes, indexes, level-1);
TessellateSphereFace(d,di, e,ei, f,fi, vertexes, indexes, level-1);
}
}
static void TessellateSphere(std::vector<float>& vertexes, std::vector<u16>& indexes, int level)
{
/* Start with a tetrahedron, then tessellate */
float s = sqrtf(0.5f);
#define VERT(a,b,c) vertexes.push_back(a); vertexes.push_back(b); vertexes.push_back(c);
VERT(-s, 0, -s);
VERT( s, 0, -s);
VERT( s, 0, s);
VERT(-s, 0, s);
VERT( 0, -1, 0);
VERT( 0, 1, 0);
#define FACE(a,b,c) \
TessellateSphereFace( \
CVector3D(vertexes[a*3], vertexes[a*3+1], vertexes[a*3+2]), a, \
CVector3D(vertexes[b*3], vertexes[b*3+1], vertexes[b*3+2]), b, \
CVector3D(vertexes[c*3], vertexes[c*3+1], vertexes[c*3+2]), c, \
vertexes, indexes, level);
FACE(0,4,1);
FACE(1,4,2);
FACE(2,4,3);
FACE(3,4,0);
FACE(1,5,0);
FACE(2,5,1);
FACE(3,5,2);
FACE(0,5,3);
#undef FACE
#undef VERT
}
void OverlayRendererInternals::GenerateSphere()
{
if (sphereVertexes.empty())
TessellateSphere(sphereVertexes, sphereIndexes, 3);
}
void OverlayRenderer::RenderSphereOverlays()
{
PROFILE3_GPU("overlays (spheres)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderSphereOverlays for GLES
#else
if (g_Renderer.GetRenderPath() != CRenderer::RP_SHADER)
return;
if (m->spheres.empty())
return;
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
glEnableClientState(GL_VERTEX_ARRAY);
CShaderProgramPtr shader;
CShaderTechniquePtr tech;
tech = g_Renderer.GetShaderManager().LoadEffect(str_overlay_solid);
tech->BeginPass();
shader = tech->GetShader();
m->GenerateSphere();
shader->VertexPointer(3, GL_FLOAT, 0, &m->sphereVertexes[0]);
for (size_t i = 0; i < m->spheres.size(); ++i)
{
SOverlaySphere* sphere = m->spheres[i];
CMatrix3D transform;
transform.SetIdentity();
transform.Scale(sphere->m_Radius, sphere->m_Radius, sphere->m_Radius);
transform.Translate(sphere->m_Center);
shader->Uniform(str_transform, transform);
shader->Uniform(str_color, sphere->m_Color);
glDrawElements(GL_TRIANGLES, m->sphereIndexes.size(), GL_UNSIGNED_SHORT, &m->sphereIndexes[0]);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris = m->sphereIndexes.size()/3;
}
tech->EndPass();
glDisableClientState(GL_VERTEX_ARRAY);
glDepthMask(1);
glDisable(GL_BLEND);
#endif
}
|