1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
/* Copyright (C) 2018 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "SilhouetteRenderer.h"
#include "graphics/Camera.h"
#include "graphics/HFTracer.h"
#include "graphics/Model.h"
#include "graphics/Patch.h"
#include "graphics/ShaderManager.h"
#include "maths/MathUtil.h"
#include "ps/Profile.h"
#include "renderer/Renderer.h"
#include "renderer/Scene.h"
#include <cfloat>
extern int g_xres, g_yres;
// For debugging
static const bool g_DisablePreciseIntersections = false;
SilhouetteRenderer::SilhouetteRenderer()
{
m_DebugEnabled = false;
}
void SilhouetteRenderer::AddOccluder(CPatch* patch)
{
m_SubmittedPatchOccluders.push_back(patch);
}
void SilhouetteRenderer::AddOccluder(CModel* model)
{
m_SubmittedModelOccluders.push_back(model);
}
void SilhouetteRenderer::AddCaster(CModel* model)
{
m_SubmittedModelCasters.push_back(model);
}
/*
* Silhouettes are the solid-colored versions of units that are rendered when
* standing behind a building or terrain, so the player won't lose them.
*
* The rendering is done in CRenderer::RenderSilhouettes, by rendering the
* units (silhouette casters) and buildings/terrain (silhouette occluders)
* in an extra pass using depth and stencil buffers. It's very inefficient to
* render those objects when they're not actually going to contribute to a
* silhouette.
*
* This class is responsible for finding the subset of casters/occluders
* that might contribute to a silhouette and will need to be rendered.
*
* The algorithm is largely based on sweep-and-prune for detecting intersection
* along a single axis:
*
* First we compute the 2D screen-space bounding box of every occluder, and
* their minimum distance from the camera. We also compute the screen-space
* position of each caster (approximating them as points, which is not perfect
* but almost always good enough).
*
* We split each occluder's screen-space bounds into a left ('in') edge and
* right ('out') edge. We put those edges plus the caster points into a list,
* and sort by x coordinate.
*
* Then we walk through the list, maintaining an active set of occluders.
* An 'in' edge will add an occluder to the set, an 'out' edge will remove it.
* When we reach a caster point, the active set contains all the occluders that
* intersect it in x. We do a quick test of y and depth coordinates against
* each occluder in the set. If they pass that test, we do a more precise ray
* vs bounding box test (for model occluders) or ray vs patch (for terrain
* occluders) to see if we really need to render that caster and occluder.
*
* Performance relies on the active set being quite small. Given the game's
* typical occluder sizes and camera angles, this works out okay.
*
* We have to do precise ray/patch intersection tests for terrain, because
* if we just used the patch's bounding box, pretty much every unit would
* be seen as intersecting the patch it's standing on.
*
* We store screen-space coordinates as 14-bit integers (0..16383) because
* that lets us pack and sort the edge/point list efficiently.
*/
static const u16 g_MaxCoord = 1 << 14;
static const u16 g_HalfMaxCoord = g_MaxCoord / 2;
struct Occluder
{
CRenderableObject* renderable;
bool isPatch;
u16 x0, y0, x1, y1;
float z;
bool rendered;
};
struct Caster
{
CModel* model;
u16 x, y;
float z;
bool rendered;
};
enum { EDGE_IN, EDGE_OUT, POINT };
// Entry is essentially:
// struct Entry {
// u16 id; // index into occluders array
// u16 type : 2;
// u16 x : 14;
// };
// where x is in the most significant bits, so that sorting as a uint32_t
// is the same as sorting by x. To avoid worrying about endianness and the
// compiler's ability to handle bitfields efficiently, we use uint32_t instead
// of the actual struct.
typedef uint32_t Entry;
static Entry EntryCreate(int type, u16 id, u16 x) { return (x << 18) | (type << 16) | id; }
static int EntryGetId(Entry e) { return e & 0xffff; }
static int EntryGetType(Entry e) { return (e >> 16) & 3; }
struct ActiveList
{
std::vector<u16> m_Ids;
void Add(u16 id)
{
m_Ids.push_back(id);
}
void Remove(u16 id)
{
ssize_t sz = m_Ids.size();
for (ssize_t i = sz-1; i >= 0; --i)
{
if (m_Ids[i] == id)
{
m_Ids[i] = m_Ids[sz-1];
m_Ids.pop_back();
return;
}
}
debug_warn(L"Failed to find id");
}
};
static void ComputeScreenBounds(Occluder& occluder, const CBoundingBoxAligned& bounds, CMatrix3D& proj)
{
u16 x0 = std::numeric_limits<u16>::max();
u16 y0 = std::numeric_limits<u16>::max();
u16 x1 = std::numeric_limits<u16>::min();
u16 y1 = std::numeric_limits<u16>::min();
float z0 = std::numeric_limits<float>::max();
for (size_t ix = 0; ix <= 1; ++ix)
{
for (size_t iy = 0; iy <= 1; ++iy)
{
for (size_t iz = 0; iz <= 1; ++iz)
{
CVector4D svec = proj.Transform(CVector4D(bounds[ix].X, bounds[iy].Y, bounds[iz].Z, 1.0f));
x0 = std::min(x0, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.X / svec.W)));
y0 = std::min(y0, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.Y / svec.W)));
x1 = std::max(x1, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.X / svec.W)));
y1 = std::max(y1, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.Y / svec.W)));
z0 = std::min(z0, svec.Z / svec.W);
}
}
}
// TODO: there must be a quicker way to do this than to test every vertex,
// given the symmetry of the bounding box
occluder.x0 = clamp(x0, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.y0 = clamp(y0, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.x1 = clamp(x1, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.y1 = clamp(y1, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.z = z0;
}
static void ComputeScreenPos(Caster& caster, const CVector3D& pos, CMatrix3D& proj)
{
CVector4D svec = proj.Transform(CVector4D(pos.X, pos.Y, pos.Z, 1.0f));
u16 x = g_HalfMaxCoord + static_cast<int>(g_HalfMaxCoord * svec.X / svec.W);
u16 y = g_HalfMaxCoord + static_cast<int>(g_HalfMaxCoord * svec.Y / svec.W);
caster.x = clamp(x, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
caster.y = clamp(y, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
caster.z = svec.Z / svec.W;
}
void SilhouetteRenderer::ComputeSubmissions(const CCamera& camera)
{
PROFILE3("compute silhouettes");
m_DebugBounds.clear();
m_DebugRects.clear();
m_DebugSpheres.clear();
m_VisiblePatchOccluders.clear();
m_VisibleModelOccluders.clear();
m_VisibleModelCasters.clear();
std::vector<Occluder> occluders;
std::vector<Caster> casters;
std::vector<Entry> entries;
occluders.reserve(m_SubmittedModelOccluders.size() + m_SubmittedPatchOccluders.size());
casters.reserve(m_SubmittedModelCasters.size());
entries.reserve((m_SubmittedModelOccluders.size() + m_SubmittedPatchOccluders.size()) * 2 + m_SubmittedModelCasters.size());
CMatrix3D proj = camera.GetViewProjection();
// Bump the positions of unit casters upwards a bit, so they're not always
// detected as intersecting the terrain they're standing on
CVector3D posOffset(0.0f, 0.1f, 0.0f);
#if 0
// For debugging ray-patch intersections - casts a ton of rays and draws
// a sphere where they intersect
for (int y = 0; y < g_yres; y += 8)
{
for (int x = 0; x < g_xres; x += 8)
{
SOverlaySphere sphere;
sphere.m_Color = CColor(1, 0, 0, 1);
sphere.m_Radius = 0.25f;
sphere.m_Center = camera.GetWorldCoordinates(x, y, false);
CVector3D origin, dir;
camera.BuildCameraRay(x, y, origin, dir);
for (size_t i = 0; i < m_SubmittedPatchOccluders.size(); ++i)
{
CPatch* occluder = m_SubmittedPatchOccluders[i];
if (CHFTracer::PatchRayIntersect(occluder, origin, dir, &sphere.m_Center))
sphere.m_Color = CColor(0, 0, 1, 1);
}
m_DebugSpheres.push_back(sphere);
}
}
#endif
{
PROFILE("compute bounds");
for (size_t i = 0; i < m_SubmittedModelOccluders.size(); ++i)
{
CModel* occluder = m_SubmittedModelOccluders[i];
Occluder d;
d.renderable = occluder;
d.isPatch = false;
d.rendered = false;
ComputeScreenBounds(d, occluder->GetWorldBounds(), proj);
// Skip zero-sized occluders, so we don't need to worry about EDGE_OUT
// getting sorted before EDGE_IN
if (d.x0 == d.x1 || d.y0 == d.y1)
continue;
u16 id = static_cast<u16>(occluders.size());
occluders.push_back(d);
entries.push_back(EntryCreate(EDGE_IN, id, d.x0));
entries.push_back(EntryCreate(EDGE_OUT, id, d.x1));
}
for (size_t i = 0; i < m_SubmittedPatchOccluders.size(); ++i)
{
CPatch* occluder = m_SubmittedPatchOccluders[i];
Occluder d;
d.renderable = occluder;
d.isPatch = true;
d.rendered = false;
ComputeScreenBounds(d, occluder->GetWorldBounds(), proj);
// Skip zero-sized occluders
if (d.x0 == d.x1 || d.y0 == d.y1)
continue;
u16 id = static_cast<u16>(occluders.size());
occluders.push_back(d);
entries.push_back(EntryCreate(EDGE_IN, id, d.x0));
entries.push_back(EntryCreate(EDGE_OUT, id, d.x1));
}
for (size_t i = 0; i < m_SubmittedModelCasters.size(); ++i)
{
CModel* model = m_SubmittedModelCasters[i];
CVector3D pos = model->GetTransform().GetTranslation() + posOffset;
Caster d;
d.model = model;
d.rendered = false;
ComputeScreenPos(d, pos, proj);
u16 id = static_cast<u16>(casters.size());
casters.push_back(d);
entries.push_back(EntryCreate(POINT, id, d.x));
}
}
// Make sure the u16 id didn't overflow
ENSURE(occluders.size() < 65536 && casters.size() < 65536);
{
PROFILE("sorting");
std::sort(entries.begin(), entries.end());
}
{
PROFILE("sweeping");
ActiveList active;
CVector3D cameraPos = camera.GetOrientation().GetTranslation();
for (size_t i = 0; i < entries.size(); ++i)
{
Entry e = entries[i];
int type = EntryGetType(e);
u16 id = EntryGetId(e);
if (type == EDGE_IN)
active.Add(id);
else if (type == EDGE_OUT)
active.Remove(id);
else
{
Caster& caster = casters[id];
for (size_t j = 0; j < active.m_Ids.size(); ++j)
{
Occluder& occluder = occluders[active.m_Ids[j]];
if (caster.y < occluder.y0 || caster.y > occluder.y1)
continue;
if (caster.z < occluder.z)
continue;
// No point checking further if both are already being rendered
if (caster.rendered && occluder.rendered)
continue;
if (!g_DisablePreciseIntersections)
{
CVector3D pos = caster.model->GetTransform().GetTranslation() + posOffset;
if (occluder.isPatch)
{
CPatch* patch = static_cast<CPatch*>(occluder.renderable);
if (!CHFTracer::PatchRayIntersect(patch, pos, cameraPos - pos, NULL))
continue;
}
else
{
float tmin, tmax;
if (!occluder.renderable->GetWorldBounds().RayIntersect(pos, cameraPos - pos, tmin, tmax))
continue;
}
}
caster.rendered = true;
occluder.rendered = true;
}
}
}
}
if (m_DebugEnabled)
{
for (size_t i = 0; i < occluders.size(); ++i)
{
DebugRect r;
r.color = occluders[i].rendered ? CColor(1.0f, 1.0f, 0.0f, 1.0f) : CColor(0.2f, 0.2f, 0.0f, 1.0f);
r.x0 = occluders[i].x0;
r.y0 = occluders[i].y0;
r.x1 = occluders[i].x1;
r.y1 = occluders[i].y1;
m_DebugRects.push_back(r);
DebugBounds b;
b.color = r.color;
b.bounds = occluders[i].renderable->GetWorldBounds();
m_DebugBounds.push_back(b);
}
}
for (size_t i = 0; i < occluders.size(); ++i)
{
if (occluders[i].rendered)
{
if (occluders[i].isPatch)
m_VisiblePatchOccluders.push_back(static_cast<CPatch*>(occluders[i].renderable));
else
m_VisibleModelOccluders.push_back(static_cast<CModel*>(occluders[i].renderable));
}
}
for (size_t i = 0; i < casters.size(); ++i)
if (casters[i].rendered)
m_VisibleModelCasters.push_back(casters[i].model);
}
void SilhouetteRenderer::RenderSubmitOverlays(SceneCollector& collector)
{
for (size_t i = 0; i < m_DebugSpheres.size(); i++)
collector.Submit(&m_DebugSpheres[i]);
}
void SilhouetteRenderer::RenderSubmitOccluders(SceneCollector& collector)
{
for (size_t i = 0; i < m_VisiblePatchOccluders.size(); ++i)
collector.Submit(m_VisiblePatchOccluders[i]);
for (size_t i = 0; i < m_VisibleModelOccluders.size(); ++i)
collector.SubmitNonRecursive(m_VisibleModelOccluders[i]);
}
void SilhouetteRenderer::RenderSubmitCasters(SceneCollector& collector)
{
for (size_t i = 0; i < m_VisibleModelCasters.size(); ++i)
collector.SubmitNonRecursive(m_VisibleModelCasters[i]);
}
void SilhouetteRenderer::RenderDebugOverlays(const CCamera& camera)
{
CShaderTechniquePtr shaderTech = g_Renderer.GetShaderManager().LoadEffect(str_gui_solid);
shaderTech->BeginPass();
CShaderProgramPtr shader = shaderTech->GetShader();
glDepthMask(0);
glDisable(GL_CULL_FACE);
shader->Uniform(str_transform, camera.GetViewProjection());
for (size_t i = 0; i < m_DebugBounds.size(); ++i)
{
shader->Uniform(str_color, m_DebugBounds[i].color);
m_DebugBounds[i].bounds.RenderOutline(shader);
}
CMatrix3D m;
m.SetIdentity();
m.Scale(1.0f, -1.f, 1.0f);
m.Translate(0.0f, (float)g_yres, -1000.0f);
CMatrix3D proj;
proj.SetOrtho(0.f, g_MaxCoord, 0.f, g_MaxCoord, -1.f, 1000.f);
m = proj * m;
shader->Uniform(str_transform, proj);
for (size_t i = 0; i < m_DebugRects.size(); ++i)
{
const DebugRect& r = m_DebugRects[i];
shader->Uniform(str_color, r.color);
u16 verts[] = {
r.x0, r.y0,
r.x1, r.y0,
r.x1, r.y1,
r.x0, r.y1,
r.x0, r.y0,
};
shader->VertexPointer(2, GL_SHORT, 0, verts);
glDrawArrays(GL_LINE_STRIP, 0, 5);
}
shaderTech->EndPass();
glEnable(GL_CULL_FACE);
glDepthMask(1);
}
void SilhouetteRenderer::EndFrame()
{
m_SubmittedPatchOccluders.clear();
m_SubmittedModelOccluders.clear();
m_SubmittedModelCasters.clear();
}
|