1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
/* Copyright (C) 2016 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "HierarchicalPathfinder.h"
#include "graphics/Overlay.h"
#include "ps/Profile.h"
// Find the root ID of a region, used by InitRegions
inline u16 RootID(u16 x, const std::vector<u16>& v)
{
while (v[x] < x)
x = v[x];
return x;
}
void HierarchicalPathfinder::Chunk::InitRegions(int ci, int cj, Grid<NavcellData>* grid, pass_class_t passClass)
{
ENSURE(ci < 256 && cj < 256); // avoid overflows
m_ChunkI = ci;
m_ChunkJ = cj;
memset(m_Regions, 0, sizeof(m_Regions));
int i0 = ci * CHUNK_SIZE;
int j0 = cj * CHUNK_SIZE;
int i1 = std::min(i0 + CHUNK_SIZE, (int)grid->m_W);
int j1 = std::min(j0 + CHUNK_SIZE, (int)grid->m_H);
// Efficiently flood-fill the m_Regions grid
int regionID = 0;
std::vector<u16> connect;
u16* pCurrentID = NULL;
u16 LeftID = 0;
u16 DownID = 0;
bool Checked = false; // prevent some unneccessary RootID calls
connect.reserve(32); // TODO: What's a sensible number?
connect.push_back(0); // connect[0] = 0
// Start by filling the grid with 0 for blocked,
// and regionID for unblocked
for (int j = j0; j < j1; ++j)
{
for (int i = i0; i < i1; ++i)
{
pCurrentID = &m_Regions[j-j0][i-i0];
if (!IS_PASSABLE(grid->get(i, j), passClass))
{
*pCurrentID = 0;
continue;
}
if (j > j0)
DownID = m_Regions[j-1-j0][i-i0];
if (i == i0)
LeftID = 0;
else
LeftID = m_Regions[j-j0][i-1-i0];
if (LeftID > 0)
{
*pCurrentID = LeftID;
if (*pCurrentID != DownID && DownID > 0 && !Checked)
{
u16 id0 = RootID(DownID, connect);
u16 id1 = RootID(LeftID, connect);
Checked = true; // this avoids repeatedly connecting the same IDs
if (id0 < id1)
connect[id1] = id0;
else if (id0 > id1)
connect[id0] = id1;
}
else if (DownID == 0)
Checked = false;
}
else if (DownID > 0)
{
*pCurrentID = DownID;
Checked = false;
}
else
{
// New ID
*pCurrentID = ++regionID;
connect.push_back(regionID);
Checked = false;
}
}
}
// Directly point the root ID
m_NumRegions = 0;
for (u16 i = 1; i < regionID+1; ++i)
{
if (connect[i] == i)
++m_NumRegions;
else
connect[i] = RootID(i, connect);
}
// Replace IDs by the root ID
for (int j = 0; j < CHUNK_SIZE; ++j)
for (int i = 0; i < CHUNK_SIZE; ++i)
m_Regions[j][i] = connect[m_Regions[j][i]];
}
/**
* Returns a RegionID for the given global navcell coords
* (which must be inside this chunk);
*/
HierarchicalPathfinder::RegionID HierarchicalPathfinder::Chunk::Get(int i, int j) const
{
ENSURE(i < CHUNK_SIZE && j < CHUNK_SIZE);
return RegionID(m_ChunkI, m_ChunkJ, m_Regions[j][i]);
}
/**
* Return the global navcell coords that correspond roughly to the
* center of the given region in this chunk.
* (This is not guaranteed to be actually inside the region.)
*/
void HierarchicalPathfinder::Chunk::RegionCenter(u16 r, int& i_out, int& j_out) const
{
// Find the mean of i,j coords of navcells in this region:
u32 si = 0, sj = 0; // sum of i,j coords
u32 n = 0; // number of navcells in region
cassert(CHUNK_SIZE < 256); // conservative limit to ensure si and sj don't overflow
for (int j = 0; j < CHUNK_SIZE; ++j)
{
for (int i = 0; i < CHUNK_SIZE; ++i)
{
if (m_Regions[j][i] == r)
{
si += i;
sj += j;
n += 1;
}
}
}
// Avoid divide-by-zero
if (n == 0)
n = 1;
i_out = m_ChunkI * CHUNK_SIZE + si / n;
j_out = m_ChunkJ * CHUNK_SIZE + sj / n;
}
/**
* Returns the global navcell coords, and the squared distance to the goal
* navcell, of whichever navcell inside the given region is closest to
* that goal.
*/
void HierarchicalPathfinder::Chunk::RegionNavcellNearest(u16 r, int iGoal, int jGoal, int& iBest, int& jBest, u32& dist2Best) const
{
iBest = 0;
jBest = 0;
dist2Best = std::numeric_limits<u32>::max();
for (int j = 0; j < CHUNK_SIZE; ++j)
{
for (int i = 0; i < CHUNK_SIZE; ++i)
{
if (m_Regions[j][i] != r)
continue;
u32 dist2 = (i + m_ChunkI*CHUNK_SIZE - iGoal)*(i + m_ChunkI*CHUNK_SIZE - iGoal)
+ (j + m_ChunkJ*CHUNK_SIZE - jGoal)*(j + m_ChunkJ*CHUNK_SIZE - jGoal);
if (dist2 < dist2Best)
{
iBest = i + m_ChunkI*CHUNK_SIZE;
jBest = j + m_ChunkJ*CHUNK_SIZE;
dist2Best = dist2;
}
}
}
}
/**
* Gives the global navcell coords, and the squared distance to the (i0,j0)
* navcell, of whichever navcell inside the given region and inside the given goal
* is closest to (i0,j0)
* Returns true if the goal is inside the region, false otherwise.
*/
bool HierarchicalPathfinder::Chunk::RegionNearestNavcellInGoal(u16 r, u16 i0, u16 j0, const PathGoal& goal, u16& iOut, u16& jOut, u32& dist2Best) const
{
// TODO: this should be optimized further.
// Most used cases empirically seem to be SQUARE, INVERTED_CIRCLE and then POINT and CIRCLE somehwat equally
iOut = 0;
jOut = 0;
dist2Best = std::numeric_limits<u32>::max();
// Calculate the navcell that contains the center of the goal.
int gi = (goal.x >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
int gj = (goal.z >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
switch(goal.type)
{
case PathGoal::POINT:
{
// i and j can be equal to CHUNK_SIZE on the top and right borders of the map,
// specially when mapSize is a multiple of CHUNK_SIZE
int i = std::min((int)CHUNK_SIZE - 1, gi - m_ChunkI * CHUNK_SIZE);
int j = std::min((int)CHUNK_SIZE - 1, gj - m_ChunkJ * CHUNK_SIZE);
if (m_Regions[j][i] == r)
{
iOut = gi;
jOut = gj;
dist2Best = (gi - i0)*(gi - i0)
+ (gj - j0)*(gj - j0);
return true;
}
return false;
}
case PathGoal::CIRCLE:
case PathGoal::SQUARE:
{
// restrict ourselves to a square surrounding the goal.
int radius = (std::max(goal.hw*3/2,goal.hh*3/2) >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToInfinity();
int imin = std::max(0, gi-m_ChunkI*CHUNK_SIZE-radius);
int imax = std::min((int)CHUNK_SIZE, gi-m_ChunkI*CHUNK_SIZE+radius+1);
int jmin = std::max(0, gj-m_ChunkJ*CHUNK_SIZE-radius);
int jmax = std::min((int)CHUNK_SIZE, gj-m_ChunkJ*CHUNK_SIZE+radius+1);
bool found = false;
u32 dist2 = std::numeric_limits<u32>::max();
for (u16 j = jmin; j < jmax; ++j)
{
for (u16 i = imin; i < imax; ++i)
{
if (m_Regions[j][i] != r)
continue;
if (found)
{
dist2 = (i + m_ChunkI*CHUNK_SIZE - i0)*(i + m_ChunkI*CHUNK_SIZE - i0)
+ (j + m_ChunkJ*CHUNK_SIZE - j0)*(j + m_ChunkJ*CHUNK_SIZE - j0);
if (dist2 >= dist2Best)
continue;
}
if (goal.NavcellContainsGoal(m_ChunkI * CHUNK_SIZE + i, m_ChunkJ * CHUNK_SIZE + j))
{
if (!found)
{
found = true;
dist2 = (i + m_ChunkI*CHUNK_SIZE - i0)*(i + m_ChunkI*CHUNK_SIZE - i0)
+ (j + m_ChunkJ*CHUNK_SIZE - j0)*(j + m_ChunkJ*CHUNK_SIZE - j0);
}
iOut = i + m_ChunkI*CHUNK_SIZE;
jOut = j + m_ChunkJ*CHUNK_SIZE;
dist2Best = dist2;
}
}
}
return found;
}
case PathGoal::INVERTED_CIRCLE:
case PathGoal::INVERTED_SQUARE:
{
bool found = false;
u32 dist2 = std::numeric_limits<u32>::max();
// loop over all navcells.
for (u16 j = 0; j < CHUNK_SIZE; ++j)
{
for (u16 i = 0; i < CHUNK_SIZE; ++i)
{
if (m_Regions[j][i] != r)
continue;
if (found)
{
dist2 = (i + m_ChunkI*CHUNK_SIZE - i0)*(i + m_ChunkI*CHUNK_SIZE - i0)
+ (j + m_ChunkJ*CHUNK_SIZE - j0)*(j + m_ChunkJ*CHUNK_SIZE - j0);
if (dist2 >= dist2Best)
continue;
}
if (goal.NavcellContainsGoal(m_ChunkI * CHUNK_SIZE + i, m_ChunkJ * CHUNK_SIZE + j))
{
if (!found)
{
found = true;
dist2 = (i + m_ChunkI*CHUNK_SIZE - i0)*(i + m_ChunkI*CHUNK_SIZE - i0)
+ (j + m_ChunkJ*CHUNK_SIZE - j0)*(j + m_ChunkJ*CHUNK_SIZE - j0);
}
iOut = i + m_ChunkI*CHUNK_SIZE;
jOut = j + m_ChunkJ*CHUNK_SIZE;
dist2Best = dist2;
}
}
}
return found;
}
}
return false;
}
HierarchicalPathfinder::HierarchicalPathfinder() : m_DebugOverlay(NULL)
{
}
HierarchicalPathfinder::~HierarchicalPathfinder()
{
SAFE_DELETE(m_DebugOverlay);
}
void HierarchicalPathfinder::SetDebugOverlay(bool enabled, const CSimContext* simContext)
{
if (enabled && !m_DebugOverlay)
{
m_DebugOverlay = new HierarchicalOverlay(*this);
m_DebugOverlayLines.clear();
m_SimContext = simContext;
AddDebugEdges(GetPassabilityClass("default"));
}
else if (!enabled && m_DebugOverlay)
{
SAFE_DELETE(m_DebugOverlay);
m_DebugOverlayLines.clear();
m_SimContext = NULL;
}
}
void HierarchicalPathfinder::Recompute(Grid<NavcellData>* grid,
const std::map<std::string, pass_class_t>& nonPathfindingPassClassMasks,
const std::map<std::string, pass_class_t>& pathfindingPassClassMasks)
{
PROFILE3("Hierarchical Recompute");
m_PassClassMasks = pathfindingPassClassMasks;
std::map<std::string, pass_class_t> allPassClasses = m_PassClassMasks;
allPassClasses.insert(nonPathfindingPassClassMasks.begin(), nonPathfindingPassClassMasks.end());
m_W = grid->m_W;
m_H = grid->m_H;
// Divide grid into chunks with round-to-positive-infinity
m_ChunksW = (grid->m_W + CHUNK_SIZE - 1) / CHUNK_SIZE;
m_ChunksH = (grid->m_H + CHUNK_SIZE - 1) / CHUNK_SIZE;
ENSURE(m_ChunksW < 256 && m_ChunksH < 256); // else the u8 Chunk::m_ChunkI will overflow
m_Chunks.clear();
m_Edges.clear();
for (auto& passClassMask : allPassClasses)
{
pass_class_t passClass = passClassMask.second;
// Compute the regions within each chunk
m_Chunks[passClass].resize(m_ChunksW*m_ChunksH);
for (int cj = 0; cj < m_ChunksH; ++cj)
{
for (int ci = 0; ci < m_ChunksW; ++ci)
{
m_Chunks[passClass].at(cj*m_ChunksW + ci).InitRegions(ci, cj, grid, passClass);
}
}
// Construct the search graph over the regions
EdgesMap& edges = m_Edges[passClass];
for (int cj = 0; cj < m_ChunksH; ++cj)
{
for (int ci = 0; ci < m_ChunksW; ++ci)
{
FindEdges(ci, cj, passClass, edges);
}
}
}
if (m_DebugOverlay)
{
PROFILE("debug overlay");
m_DebugOverlayLines.clear();
AddDebugEdges(GetPassabilityClass("default"));
}
}
void HierarchicalPathfinder::Update(Grid<NavcellData>* grid, const Grid<u8>& dirtinessGrid)
{
PROFILE3("Hierarchical Update");
for (int cj = 0; cj < m_ChunksH; ++cj)
{
int j0 = cj * CHUNK_SIZE;
int j1 = std::min(j0 + CHUNK_SIZE, (int)dirtinessGrid.m_H);
for (int ci = 0; ci < m_ChunksW; ++ci)
{
// Skip chunks where no navcells are dirty.
int i0 = ci * CHUNK_SIZE;
int i1 = std::min(i0 + CHUNK_SIZE, (int)dirtinessGrid.m_W);
if (!dirtinessGrid.any_set_in_square(i0, j0, i1, j1))
continue;
for (const std::pair<std::string, pass_class_t>& passClassMask : m_PassClassMasks)
{
pass_class_t passClass = passClassMask.second;
Chunk& a = m_Chunks[passClass].at(ci + cj*m_ChunksW);
a.InitRegions(ci, cj, grid, passClass);
}
}
}
// TODO: Also be clever with edges
m_Edges.clear();
for (const std::pair<std::string, pass_class_t>& passClassMask : m_PassClassMasks)
{
pass_class_t passClass = passClassMask.second;
EdgesMap& edges = m_Edges[passClass];
for (int cj = 0; cj < m_ChunksH; ++cj)
{
for (int ci = 0; ci < m_ChunksW; ++ci)
{
FindEdges(ci, cj, passClass, edges);
}
}
}
if (m_DebugOverlay)
{
PROFILE("debug overlay");
m_DebugOverlayLines.clear();
AddDebugEdges(GetPassabilityClass("default"));
}
}
/**
* Find edges between regions in this chunk and the adjacent below/left chunks.
*/
void HierarchicalPathfinder::FindEdges(u8 ci, u8 cj, pass_class_t passClass, EdgesMap& edges)
{
std::vector<Chunk>& chunks = m_Chunks[passClass];
Chunk& a = chunks.at(cj*m_ChunksW + ci);
// For each edge between chunks, we loop over every adjacent pair of
// navcells in the two chunks. If they are both in valid regions
// (i.e. are passable navcells) then add a graph edge between those regions.
// (We don't need to test for duplicates since EdgesMap already uses a
// std::set which will drop duplicate entries.)
// But as set.insert can be quite slow on large collection, and that we usually
// try to insert the same values, we cache the previous one for a fast test.
if (ci > 0)
{
Chunk& b = chunks.at(cj*m_ChunksW + (ci-1));
RegionID raPrev(0,0,0);
RegionID rbPrev(0,0,0);
for (int j = 0; j < CHUNK_SIZE; ++j)
{
RegionID ra = a.Get(0, j);
RegionID rb = b.Get(CHUNK_SIZE-1, j);
if (ra.r && rb.r)
{
if (ra == raPrev && rb == rbPrev)
continue;
edges[ra].insert(rb);
edges[rb].insert(ra);
raPrev = ra;
rbPrev = rb;
}
}
}
if (cj > 0)
{
Chunk& b = chunks.at((cj-1)*m_ChunksW + ci);
RegionID raPrev(0,0,0);
RegionID rbPrev(0,0,0);
for (int i = 0; i < CHUNK_SIZE; ++i)
{
RegionID ra = a.Get(i, 0);
RegionID rb = b.Get(i, CHUNK_SIZE-1);
if (ra.r && rb.r)
{
if (ra == raPrev && rb == rbPrev)
continue;
edges[ra].insert(rb);
edges[rb].insert(ra);
raPrev = ra;
rbPrev = rb;
}
}
}
}
/**
* Debug visualisation of graph edges between regions.
*/
void HierarchicalPathfinder::AddDebugEdges(pass_class_t passClass)
{
const EdgesMap& edges = m_Edges[passClass];
const std::vector<Chunk>& chunks = m_Chunks[passClass];
for (auto& edge : edges)
{
for (const RegionID& region: edge.second)
{
// Draw a line between the two regions' centers
int i0, j0, i1, j1;
chunks[edge.first.cj * m_ChunksW + edge.first.ci].RegionCenter(edge.first.r, i0, j0);
chunks[region.cj * m_ChunksW + region.ci].RegionCenter(region.r, i1, j1);
CFixedVector2D a, b;
Pathfinding::NavcellCenter(i0, j0, a.X, a.Y);
Pathfinding::NavcellCenter(i1, j1, b.X, b.Y);
// Push the endpoints inwards a little to avoid overlaps
CFixedVector2D d = b - a;
d.Normalize(entity_pos_t::FromInt(1));
a += d;
b -= d;
std::vector<float> xz;
xz.push_back(a.X.ToFloat());
xz.push_back(a.Y.ToFloat());
xz.push_back(b.X.ToFloat());
xz.push_back(b.Y.ToFloat());
m_DebugOverlayLines.emplace_back();
m_DebugOverlayLines.back().m_Color = CColor(1.0, 1.0, 1.0, 1.0);
SimRender::ConstructLineOnGround(*m_SimContext, xz, m_DebugOverlayLines.back(), true);
}
}
}
HierarchicalPathfinder::RegionID HierarchicalPathfinder::Get(u16 i, u16 j, pass_class_t passClass)
{
int ci = i / CHUNK_SIZE;
int cj = j / CHUNK_SIZE;
ENSURE(ci < m_ChunksW && cj < m_ChunksH);
return m_Chunks[passClass][cj*m_ChunksW + ci].Get(i % CHUNK_SIZE, j % CHUNK_SIZE);
}
void HierarchicalPathfinder::MakeGoalReachable(u16 i0, u16 j0, PathGoal& goal, pass_class_t passClass)
{
PROFILE2("MakeGoalReachable");
RegionID source = Get(i0, j0, passClass);
// Find everywhere that's reachable
std::set<RegionID> reachableRegions;
FindReachableRegions(source, reachableRegions, passClass);
// Check whether any reachable region contains the goal
// And get the navcell that's the closest to the point
u16 bestI = 0;
u16 bestJ = 0;
u32 dist2Best = std::numeric_limits<u32>::max();
for (const RegionID& region : reachableRegions)
{
// Skip region if its chunk doesn't contain the goal area
entity_pos_t x0 = Pathfinding::NAVCELL_SIZE * (region.ci * CHUNK_SIZE);
entity_pos_t z0 = Pathfinding::NAVCELL_SIZE * (region.cj * CHUNK_SIZE);
entity_pos_t x1 = x0 + Pathfinding::NAVCELL_SIZE * CHUNK_SIZE;
entity_pos_t z1 = z0 + Pathfinding::NAVCELL_SIZE * CHUNK_SIZE;
if (!goal.RectContainsGoal(x0, z0, x1, z1))
continue;
u16 i,j;
u32 dist2;
// If the region contains the goal area, the goal is reachable
// Remember the best point for optimization.
if (GetChunk(region.ci, region.cj, passClass).RegionNearestNavcellInGoal(region.r, i0, j0, goal, i, j, dist2))
{
// If it's a point, no need to move it, we're done
if (goal.type == PathGoal::POINT)
return;
if (dist2 < dist2Best)
{
bestI = i;
bestJ = j;
dist2Best = dist2;
}
}
}
// If the goal area wasn't reachable,
// find the navcell that's nearest to the goal's center
if (dist2Best == std::numeric_limits<u32>::max())
{
u16 iGoal, jGoal;
Pathfinding::NearestNavcell(goal.x, goal.z, iGoal, jGoal, m_W, m_H);
FindNearestNavcellInRegions(reachableRegions, iGoal, jGoal, passClass);
// Construct a new point goal at the nearest reachable navcell
PathGoal newGoal;
newGoal.type = PathGoal::POINT;
Pathfinding::NavcellCenter(iGoal, jGoal, newGoal.x, newGoal.z);
goal = newGoal;
return;
}
ENSURE(dist2Best != std::numeric_limits<u32>::max());
PathGoal newGoal;
newGoal.type = PathGoal::POINT;
Pathfinding::NavcellCenter(bestI, bestJ, newGoal.x, newGoal.z);
goal = newGoal;
}
void HierarchicalPathfinder::FindNearestPassableNavcell(u16& i, u16& j, pass_class_t passClass)
{
std::set<RegionID> regions;
FindPassableRegions(regions, passClass);
FindNearestNavcellInRegions(regions, i, j, passClass);
}
void HierarchicalPathfinder::FindNearestNavcellInRegions(const std::set<RegionID>& regions, u16& iGoal, u16& jGoal, pass_class_t passClass)
{
// Find the navcell in the given regions that's nearest to the goal navcell:
// * For each region, record the (squared) minimal distance to the goal point
// * Sort regions by that underestimated distance
// * For each region, find the actual nearest navcell
// * Stop when the underestimated distances are worse than the best real distance
std::vector<std::pair<u32, RegionID> > regionDistEsts; // pair of (distance^2, region)
for (const RegionID& region : regions)
{
int i0 = region.ci * CHUNK_SIZE;
int j0 = region.cj * CHUNK_SIZE;
int i1 = i0 + CHUNK_SIZE - 1;
int j1 = j0 + CHUNK_SIZE - 1;
// Pick the point in the chunk nearest the goal
int iNear = Clamp((int)iGoal, i0, i1);
int jNear = Clamp((int)jGoal, j0, j1);
int dist2 = (iNear - iGoal)*(iNear - iGoal)
+ (jNear - jGoal)*(jNear - jGoal);
regionDistEsts.emplace_back(dist2, region);
}
// Sort by increasing distance (tie-break on RegionID)
std::sort(regionDistEsts.begin(), regionDistEsts.end());
int iBest = iGoal;
int jBest = jGoal;
u32 dist2Best = std::numeric_limits<u32>::max();
for (auto& pair : regionDistEsts)
{
if (pair.first >= dist2Best)
break;
RegionID region = pair.second;
int i, j;
u32 dist2;
GetChunk(region.ci, region.cj, passClass).RegionNavcellNearest(region.r, iGoal, jGoal, i, j, dist2);
if (dist2 < dist2Best)
{
iBest = i;
jBest = j;
dist2Best = dist2;
}
}
iGoal = iBest;
jGoal = jBest;
}
void HierarchicalPathfinder::FindPassableRegions(std::set<RegionID>& regions, pass_class_t passClass)
{
// Construct a set of all regions of all chunks for this pass class
for (const Chunk& chunk : m_Chunks[passClass])
{
// region 0 is impassable tiles
for (int r = 1; r <= chunk.m_NumRegions; ++r)
regions.insert(RegionID(chunk.m_ChunkI, chunk.m_ChunkJ, r));
}
}
void HierarchicalPathfinder::FillRegionOnGrid(const RegionID& region, pass_class_t passClass, u16 value, Grid<u16>& grid)
{
ENSURE(grid.m_W == m_W && grid.m_H == m_H);
int i0 = region.ci * CHUNK_SIZE;
int j0 = region.cj * CHUNK_SIZE;
const Chunk& c = m_Chunks[passClass][region.cj * m_ChunksW + region.ci];
for (int j = 0; j < CHUNK_SIZE; ++j)
for (int i = 0; i < CHUNK_SIZE; ++i)
if (c.m_Regions[j][i] == region.r)
grid.set(i0 + i, j0 + j, value);
}
Grid<u16> HierarchicalPathfinder::GetConnectivityGrid(pass_class_t passClass)
{
Grid<u16> connectivityGrid(m_W, m_H);
connectivityGrid.reset();
u16 idx = 1;
for (size_t i = 0; i < m_W; ++i)
{
for (size_t j = 0; j < m_H; ++j)
{
if (connectivityGrid.get(i, j) != 0)
continue;
RegionID from = Get(i, j, passClass);
if (from.r == 0)
continue;
std::set<RegionID> reachable;
FindReachableRegions(from, reachable, passClass);
for (const RegionID& region : reachable)
FillRegionOnGrid(region, passClass, idx, connectivityGrid);
++idx;
}
}
return connectivityGrid;
}
|