1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
/* Copyright (C) 2018 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "PathGoal.h"
#include "graphics/Terrain.h"
#include "Pathfinding.h"
#include "Geometry.h"
static bool NavcellContainsCircle(int i, int j, fixed x, fixed z, fixed r, bool inside)
{
// Accept any navcell (i,j) that contains a point which is inside[/outside]
// (or on the edge of) the circle
// Get world-space bounds of navcell
entity_pos_t x0 = entity_pos_t::FromInt(i).Multiply(Pathfinding::NAVCELL_SIZE);
entity_pos_t z0 = entity_pos_t::FromInt(j).Multiply(Pathfinding::NAVCELL_SIZE);
entity_pos_t x1 = x0 + Pathfinding::NAVCELL_SIZE;
entity_pos_t z1 = z0 + Pathfinding::NAVCELL_SIZE;
if (inside)
{
// Get the point inside the navcell closest to (x,z)
entity_pos_t nx = Clamp(x, x0, x1);
entity_pos_t nz = Clamp(z, z0, z1);
// Check if that point is inside the circle
return (CFixedVector2D(nx, nz) - CFixedVector2D(x, z)).CompareLength(r) <= 0;
}
else
{
// If any corner of the navcell is outside the circle, return true.
// Otherwise, since the circle is convex, there cannot be any other point
// in the navcell that is outside the circle.
return (
(CFixedVector2D(x0, z0) - CFixedVector2D(x, z)).CompareLength(r) >= 0
|| (CFixedVector2D(x1, z0) - CFixedVector2D(x, z)).CompareLength(r) >= 0
|| (CFixedVector2D(x0, z1) - CFixedVector2D(x, z)).CompareLength(r) >= 0
|| (CFixedVector2D(x1, z1) - CFixedVector2D(x, z)).CompareLength(r) >= 0
);
}
}
static bool NavcellContainsSquare(int i, int j,
fixed x, fixed z, CFixedVector2D u, CFixedVector2D v, fixed hw, fixed hh,
bool inside)
{
// Accept any navcell (i,j) that contains a point which is inside[/outside]
// (or on the edge of) the square
// Get world-space bounds of navcell
entity_pos_t x0 = entity_pos_t::FromInt(i).Multiply(Pathfinding::NAVCELL_SIZE);
entity_pos_t z0 = entity_pos_t::FromInt(j).Multiply(Pathfinding::NAVCELL_SIZE);
entity_pos_t x1 = x0 + Pathfinding::NAVCELL_SIZE;
entity_pos_t z1 = z0 + Pathfinding::NAVCELL_SIZE;
if (inside)
{
// Get the point inside the navcell closest to (x,z)
entity_pos_t nx = Clamp(x, x0, x1);
entity_pos_t nz = Clamp(z, z0, z1);
// Check if that point is inside the circle
return Geometry::PointIsInSquare(CFixedVector2D(nx - x, nz - z), u, v, CFixedVector2D(hw, hh));
}
else
{
// If any corner of the navcell is outside the square, return true.
// Otherwise, since the square is convex, there cannot be any other point
// in the navcell that is outside the square.
return (
!Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
|| !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
|| !Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
|| !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
);
}
}
bool PathGoal::NavcellContainsGoal(int i, int j) const
{
switch (type)
{
case POINT:
{
// Only accept a single navcell
int gi = (x >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
int gj = (z >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
return gi == i && gj == j;
}
case CIRCLE:
return NavcellContainsCircle(i, j, x, z, hw, true);
case INVERTED_CIRCLE:
return NavcellContainsCircle(i, j, x, z, hw, false);
case SQUARE:
return NavcellContainsSquare(i, j, x, z, u, v, hw, hh, true);
case INVERTED_SQUARE:
return NavcellContainsSquare(i, j, x, z, u, v, hw, hh, false);
NODEFAULT;
}
}
bool PathGoal::NavcellRectContainsGoal(int i0, int j0, int i1, int j1, int* gi, int* gj) const
{
// Get min/max to simplify range checks
int imin = std::min(i0, i1);
int imax = std::max(i0, i1);
int jmin = std::min(j0, j1);
int jmax = std::max(j0, j1);
// Direction to iterate from (i0,j0) towards (i1,j1)
int di = i1 < i0 ? -1 : +1;
int dj = j1 < j0 ? -1 : +1;
switch (type)
{
case POINT:
{
// Calculate the navcell that contains the point goal
int i = (x >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
int j = (z >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
// If that goal navcell is in the given range, return it
if (imin <= i && i <= imax && jmin <= j && j <= jmax)
{
if (gi)
*gi = i;
if (gj)
*gj = j;
return true;
}
return false;
}
case CIRCLE:
{
// Loop over all navcells in the given range (starting at (i0,j0) since
// this function is meant to find the goal navcell nearest to there
// assuming jmin==jmax || imin==imax),
// and check whether any point in each navcell is within the goal circle.
// (TODO: this is pretty inefficient.)
for (int j = j0; jmin <= j && j <= jmax; j += dj)
{
for (int i = i0; imin <= i && i <= imax; i += di)
{
if (NavcellContainsCircle(i, j, x, z, hw, true))
{
if (gi)
*gi = i;
if (gj)
*gj = j;
return true;
}
}
}
return false;
}
case INVERTED_CIRCLE:
{
// Loop over all navcells in the given range (starting at (i0,j0) since
// this function is meant to find the goal navcell nearest to there
// assuming jmin==jmax || imin==imax),
// and check whether any point in each navcell is outside the goal circle.
// (TODO: this is pretty inefficient.)
for (int j = j0; jmin <= j && j <= jmax; j += dj)
{
for (int i = i0; imin <= i && i <= imax; i += di)
{
if (NavcellContainsCircle(i, j, x, z, hw, false))
{
if (gi)
*gi = i;
if (gj)
*gj = j;
return true;
}
}
}
return false;
}
case SQUARE:
{
// Loop over all navcells in the given range (starting at (i0,j0) since
// this function is meant to find the goal navcell nearest to there
// assuming jmin==jmax || imin==imax),
// and check whether any point in each navcell is within the goal square.
// (TODO: this is pretty inefficient.)
for (int j = j0; jmin <= j && j <= jmax; j += dj)
{
for (int i = i0; imin <= i && i <= imax; i += di)
{
if (NavcellContainsSquare(i, j, x, z, u, v, hw, hh, true))
{
if (gi)
*gi = i;
if (gj)
*gj = j;
return true;
}
}
}
return false;
}
case INVERTED_SQUARE:
{
// Loop over all navcells in the given range (starting at (i0,j0) since
// this function is meant to find the goal navcell nearest to there
// assuming jmin==jmax || imin==imax),
// and check whether any point in each navcell is outside the goal square.
// (TODO: this is pretty inefficient.)
for (int j = j0; jmin <= j && j <= jmax; j += dj)
{
for (int i = i0; imin <= i && i <= imax; i += di)
{
if (NavcellContainsSquare(i, j, x, z, u, v, hw, hh, false))
{
if (gi)
*gi = i;
if (gj)
*gj = j;
return true;
}
}
}
return false;
}
NODEFAULT;
}
}
bool PathGoal::RectContainsGoal(entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1) const
{
switch (type)
{
case POINT:
return x0 <= x && x <= x1 && z0 <= z && z <= z1;
case CIRCLE:
{
entity_pos_t nx = Clamp(x, x0, x1);
entity_pos_t nz = Clamp(z, z0, z1);
return (CFixedVector2D(nx, nz) - CFixedVector2D(x, z)).CompareLength(hw) <= 0;
}
case INVERTED_CIRCLE:
{
return (
(CFixedVector2D(x0, z0) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
|| (CFixedVector2D(x1, z0) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
|| (CFixedVector2D(x0, z1) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
|| (CFixedVector2D(x1, z1) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
);
}
case SQUARE:
{
entity_pos_t nx = Clamp(x, x0, x1);
entity_pos_t nz = Clamp(z, z0, z1);
return Geometry::PointIsInSquare(CFixedVector2D(nx - x, nz - z), u, v, CFixedVector2D(hw, hh));
}
case INVERTED_SQUARE:
{
return (
!Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
|| !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
|| !Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
|| !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
);
}
NODEFAULT;
}
}
fixed PathGoal::DistanceToPoint(CFixedVector2D pos) const
{
CFixedVector2D d(pos.X - x, pos.Y - z);
switch (type)
{
case POINT:
return d.Length();
case CIRCLE:
return d.CompareLength(hw) <= 0 ? fixed::Zero() : d.Length() - hw;
case INVERTED_CIRCLE:
return d.CompareLength(hw) >= 0 ? fixed::Zero() : hw - d.Length();
case SQUARE:
{
CFixedVector2D halfSize(hw, hh);
return Geometry::PointIsInSquare(d, u, v, halfSize) ?
fixed::Zero() : Geometry::DistanceToSquare(d, u, v, halfSize);
}
case INVERTED_SQUARE:
{
CFixedVector2D halfSize(hw, hh);
return !Geometry::PointIsInSquare(d, u, v, halfSize) ?
fixed::Zero() : Geometry::DistanceToSquare(d, u, v, halfSize);
}
NODEFAULT;
}
}
CFixedVector2D PathGoal::NearestPointOnGoal(CFixedVector2D pos) const
{
CFixedVector2D g(x, z);
switch (type)
{
case POINT:
return g;
case CIRCLE:
{
CFixedVector2D d(pos.X - x, pos.Y - z);
if (d.CompareLength(hw) <= 0)
return pos;
d.Normalize(hw);
return g + d;
}
case INVERTED_CIRCLE:
{
CFixedVector2D d(pos.X - x, pos.Y - z);
if (d.CompareLength(hw) >= 0)
return pos;
if (d.IsZero())
d = CFixedVector2D(fixed::FromInt(1), fixed::Zero()); // some arbitrary direction
d.Normalize(hw);
return g + d;
}
case SQUARE:
{
CFixedVector2D halfSize(hw, hh);
CFixedVector2D d(pos.X - x, pos.Y - z);
return Geometry::PointIsInSquare(d, u, v, halfSize) ?
pos : g + Geometry::NearestPointOnSquare(d, u, v, halfSize);
}
case INVERTED_SQUARE:
{
CFixedVector2D halfSize(hw, hh);
CFixedVector2D d(pos.X - x, pos.Y - z);
return !Geometry::PointIsInSquare(d, u, v, halfSize) ?
pos : g + Geometry::NearestPointOnSquare(d, u, v, halfSize);
}
NODEFAULT;
}
}
|