File: PathGoal.cpp

package info (click to toggle)
0ad 0.0.23.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,412 kB
  • sloc: cpp: 245,162; ansic: 200,249; javascript: 19,244; python: 13,754; sh: 6,104; perl: 4,620; makefile: 977; xml: 810; java: 533; ruby: 229; erlang: 46; pascal: 30; sql: 21; tcl: 4
file content (376 lines) | stat: -rw-r--r-- 10,610 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/* Copyright (C) 2018 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "precompiled.h"

#include "PathGoal.h"

#include "graphics/Terrain.h"
#include "Pathfinding.h"

#include "Geometry.h"

static bool NavcellContainsCircle(int i, int j, fixed x, fixed z, fixed r, bool inside)
{
	// Accept any navcell (i,j) that contains a point which is inside[/outside]
	// (or on the edge of) the circle

	// Get world-space bounds of navcell
	entity_pos_t x0 = entity_pos_t::FromInt(i).Multiply(Pathfinding::NAVCELL_SIZE);
	entity_pos_t z0 = entity_pos_t::FromInt(j).Multiply(Pathfinding::NAVCELL_SIZE);
	entity_pos_t x1 = x0 + Pathfinding::NAVCELL_SIZE;
	entity_pos_t z1 = z0 + Pathfinding::NAVCELL_SIZE;

	if (inside)
	{
		// Get the point inside the navcell closest to (x,z)
		entity_pos_t nx = Clamp(x, x0, x1);
		entity_pos_t nz = Clamp(z, z0, z1);
		// Check if that point is inside the circle
		return (CFixedVector2D(nx, nz) - CFixedVector2D(x, z)).CompareLength(r) <= 0;
	}
	else
	{
		// If any corner of the navcell is outside the circle, return true.
		// Otherwise, since the circle is convex, there cannot be any other point
		// in the navcell that is outside the circle.
		return (
		    (CFixedVector2D(x0, z0) - CFixedVector2D(x, z)).CompareLength(r) >= 0
		 || (CFixedVector2D(x1, z0) - CFixedVector2D(x, z)).CompareLength(r) >= 0
		 || (CFixedVector2D(x0, z1) - CFixedVector2D(x, z)).CompareLength(r) >= 0
		 || (CFixedVector2D(x1, z1) - CFixedVector2D(x, z)).CompareLength(r) >= 0
		);
	}
}

static bool NavcellContainsSquare(int i, int j,
	fixed x, fixed z, CFixedVector2D u, CFixedVector2D v, fixed hw, fixed hh,
	bool inside)
{
	// Accept any navcell (i,j) that contains a point which is inside[/outside]
	// (or on the edge of) the square

	// Get world-space bounds of navcell
	entity_pos_t x0 = entity_pos_t::FromInt(i).Multiply(Pathfinding::NAVCELL_SIZE);
	entity_pos_t z0 = entity_pos_t::FromInt(j).Multiply(Pathfinding::NAVCELL_SIZE);
	entity_pos_t x1 = x0 + Pathfinding::NAVCELL_SIZE;
	entity_pos_t z1 = z0 + Pathfinding::NAVCELL_SIZE;

	if (inside)
	{
		// Get the point inside the navcell closest to (x,z)
		entity_pos_t nx = Clamp(x, x0, x1);
		entity_pos_t nz = Clamp(z, z0, z1);
		// Check if that point is inside the circle
		return Geometry::PointIsInSquare(CFixedVector2D(nx - x, nz - z), u, v, CFixedVector2D(hw, hh));
	}
	else
	{
		// If any corner of the navcell is outside the square, return true.
		// Otherwise, since the square is convex, there cannot be any other point
		// in the navcell that is outside the square.
		return (
		    !Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
		 || !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
		 || !Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
		 || !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
		);
	}
}

bool PathGoal::NavcellContainsGoal(int i, int j) const
{
	switch (type)
	{
	case POINT:
	{
		// Only accept a single navcell
		int gi = (x >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
		int gj = (z >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
		return gi == i && gj == j;
	}
	case CIRCLE:
		return NavcellContainsCircle(i, j, x, z, hw, true);
	case INVERTED_CIRCLE:
		return NavcellContainsCircle(i, j, x, z, hw, false);
	case SQUARE:
		return NavcellContainsSquare(i, j, x, z, u, v, hw, hh, true);
	case INVERTED_SQUARE:
		return NavcellContainsSquare(i, j, x, z, u, v, hw, hh, false);
	NODEFAULT;
	}
}

bool PathGoal::NavcellRectContainsGoal(int i0, int j0, int i1, int j1, int* gi, int* gj) const
{
	// Get min/max to simplify range checks
	int imin = std::min(i0, i1);
	int imax = std::max(i0, i1);
	int jmin = std::min(j0, j1);
	int jmax = std::max(j0, j1);

	// Direction to iterate from (i0,j0) towards (i1,j1)
	int di = i1 < i0 ? -1 : +1;
	int dj = j1 < j0 ? -1 : +1;

	switch (type)
	{
	case POINT:
	{
		// Calculate the navcell that contains the point goal
		int i = (x >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
		int j = (z >> Pathfinding::NAVCELL_SIZE_LOG2).ToInt_RoundToNegInfinity();
		// If that goal navcell is in the given range, return it
		if (imin <= i && i <= imax && jmin <= j && j <= jmax)
		{
			if (gi)
				*gi = i;
			if (gj)
				*gj = j;
			return true;
		}
		return false;
	}

	case CIRCLE:
	{
		// Loop over all navcells in the given range (starting at (i0,j0) since
		// this function is meant to find the goal navcell nearest to there
		// assuming jmin==jmax || imin==imax),
		// and check whether any point in each navcell is within the goal circle.
		// (TODO: this is pretty inefficient.)
		for (int j = j0; jmin <= j && j <= jmax; j += dj)
		{
			for (int i = i0; imin <= i && i <= imax; i += di)
			{
				if (NavcellContainsCircle(i, j, x, z, hw, true))
				{
					if (gi)
						*gi = i;
					if (gj)
						*gj = j;
					return true;
				}
			}
		}
		return false;
	}

	case INVERTED_CIRCLE:
	{
		// Loop over all navcells in the given range (starting at (i0,j0) since
		// this function is meant to find the goal navcell nearest to there
		// assuming jmin==jmax || imin==imax),
		// and check whether any point in each navcell is outside the goal circle.
		// (TODO: this is pretty inefficient.)
		for (int j = j0; jmin <= j && j <= jmax; j += dj)
		{
			for (int i = i0; imin <= i && i <= imax; i += di)
			{
				if (NavcellContainsCircle(i, j, x, z, hw, false))
				{
					if (gi)
						*gi = i;
					if (gj)
						*gj = j;
					return true;
				}
			}
		}
		return false;
	}

	case SQUARE:
	{
		// Loop over all navcells in the given range (starting at (i0,j0) since
		// this function is meant to find the goal navcell nearest to there
		// assuming jmin==jmax || imin==imax),
		// and check whether any point in each navcell is within the goal square.
		// (TODO: this is pretty inefficient.)
		for (int j = j0; jmin <= j && j <= jmax; j += dj)
		{
			for (int i = i0; imin <= i && i <= imax; i += di)
			{
				if (NavcellContainsSquare(i, j, x, z, u, v, hw, hh, true))
				{
					if (gi)
						*gi = i;
					if (gj)
						*gj = j;
					return true;
				}
			}
		}
		return false;
	}

	case INVERTED_SQUARE:
	{
		// Loop over all navcells in the given range (starting at (i0,j0) since
		// this function is meant to find the goal navcell nearest to there
		// assuming jmin==jmax || imin==imax),
		// and check whether any point in each navcell is outside the goal square.
		// (TODO: this is pretty inefficient.)
		for (int j = j0; jmin <= j && j <= jmax; j += dj)
		{
			for (int i = i0; imin <= i && i <= imax; i += di)
			{
				if (NavcellContainsSquare(i, j, x, z, u, v, hw, hh, false))
				{
					if (gi)
						*gi = i;
					if (gj)
						*gj = j;
					return true;
				}
			}
		}
		return false;
	}

	NODEFAULT;
	}
}

bool PathGoal::RectContainsGoal(entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1) const
{
	switch (type)
	{
	case POINT:
		return x0 <= x && x <= x1 && z0 <= z && z <= z1;

	case CIRCLE:
	{
		entity_pos_t nx = Clamp(x, x0, x1);
		entity_pos_t nz = Clamp(z, z0, z1);
		return (CFixedVector2D(nx, nz) - CFixedVector2D(x, z)).CompareLength(hw) <= 0;
	}

	case INVERTED_CIRCLE:
	{
		return (
		    (CFixedVector2D(x0, z0) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
		 || (CFixedVector2D(x1, z0) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
		 || (CFixedVector2D(x0, z1) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
		 || (CFixedVector2D(x1, z1) - CFixedVector2D(x, z)).CompareLength(hw) >= 0
		);
	}

	case SQUARE:
	{
		entity_pos_t nx = Clamp(x, x0, x1);
		entity_pos_t nz = Clamp(z, z0, z1);
		return Geometry::PointIsInSquare(CFixedVector2D(nx - x, nz - z), u, v, CFixedVector2D(hw, hh));
	}

	case INVERTED_SQUARE:
	{
		return (
		    !Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
		 || !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z0 - z), u, v, CFixedVector2D(hw, hh))
		 || !Geometry::PointIsInSquare(CFixedVector2D(x0 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
		 || !Geometry::PointIsInSquare(CFixedVector2D(x1 - x, z1 - z), u, v, CFixedVector2D(hw, hh))
		);
	}

	NODEFAULT;
	}
}

fixed PathGoal::DistanceToPoint(CFixedVector2D pos) const
{
	CFixedVector2D d(pos.X - x, pos.Y - z);

	switch (type)
	{
	case POINT:
		return d.Length();

	case CIRCLE:
		return d.CompareLength(hw) <= 0 ? fixed::Zero() : d.Length() - hw;

	case INVERTED_CIRCLE:
		return d.CompareLength(hw) >= 0 ? fixed::Zero() : hw - d.Length();

	case SQUARE:
	{
		CFixedVector2D halfSize(hw, hh);
		return Geometry::PointIsInSquare(d, u, v, halfSize) ?
			fixed::Zero() : Geometry::DistanceToSquare(d, u, v, halfSize);
	}

	case INVERTED_SQUARE:
	{
		CFixedVector2D halfSize(hw, hh);
		return !Geometry::PointIsInSquare(d, u, v, halfSize) ?
			fixed::Zero() : Geometry::DistanceToSquare(d, u, v, halfSize);
	}

	NODEFAULT;
	}
}

CFixedVector2D PathGoal::NearestPointOnGoal(CFixedVector2D pos) const
{
	CFixedVector2D g(x, z);

	switch (type)
	{
	case POINT:
		return g;

	case CIRCLE:
	{
		CFixedVector2D d(pos.X - x, pos.Y - z);
		if (d.CompareLength(hw) <= 0)
			return pos;

		d.Normalize(hw);
		return g + d;
	}

	case INVERTED_CIRCLE:
	{
		CFixedVector2D d(pos.X - x, pos.Y - z);
		if (d.CompareLength(hw) >= 0)
			return pos;

		if (d.IsZero())
			d = CFixedVector2D(fixed::FromInt(1), fixed::Zero()); // some arbitrary direction
		d.Normalize(hw);
		return g + d;
	}

	case SQUARE:
	{
		CFixedVector2D halfSize(hw, hh);
		CFixedVector2D d(pos.X - x, pos.Y - z);
		return Geometry::PointIsInSquare(d, u, v, halfSize) ?
			pos : g + Geometry::NearestPointOnSquare(d, u, v, halfSize);
	}

	case INVERTED_SQUARE:
	{
		CFixedVector2D halfSize(hw, hh);
		CFixedVector2D d(pos.X - x, pos.Y - z);
		return !Geometry::PointIsInSquare(d, u, v, halfSize) ?
			pos : g + Geometry::NearestPointOnSquare(d, u, v, halfSize);
	}

	NODEFAULT;
	}
}