File: format.h

package info (click to toggle)
0ad 0.0.23.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,412 kB
  • sloc: cpp: 245,162; ansic: 200,249; javascript: 19,244; python: 13,754; sh: 6,104; perl: 4,620; makefile: 977; xml: 810; java: 533; ruby: 229; erlang: 46; pascal: 30; sql: 21; tcl: 4
file content (2083 lines) | stat: -rw-r--r-- 63,138 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
/*
 * Slightly modified version of cppformat, by Wildfire Games, for 0 A.D.
 * Based on cppformat v0.11.0 from https://github.com/cppformat/cppformat
 */

/*
 Formatting library for C++

 Copyright (c) 2012 - 2014, Victor Zverovich
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this
    list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef FMT_FORMAT_H_
#define FMT_FORMAT_H_

#include <stdint.h>

#include <cassert>
#include <cstddef>  // for std::ptrdiff_t
#include <cstdio>
#include <algorithm>
#include <limits>
#include <stdexcept>
#include <string>
#include <sstream>

#if defined(_SECURE_SCL) && _SECURE_SCL
# include <iterator>
#endif

#ifdef __GNUC__
# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# define FMT_GCC_EXTENSION __extension__
// Disable warning about "long long" which is sometimes reported even
// when using __extension__.
# if FMT_GCC_VERSION >= 406
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wlong-long"
# endif
#else
# define FMT_GCC_EXTENSION
#endif

#ifdef __GNUC_LIBSTD__
# define FMT_GNUC_LIBSTD_VERSION (__GNUC_LIBSTD__ * 100 + __GNUC_LIBSTD_MINOR__)
#endif

#ifdef __has_feature
# define FMT_HAS_FEATURE(x) __has_feature(x)
#else
# define FMT_HAS_FEATURE(x) 0
#endif

#ifdef __has_builtin
# define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
# define FMT_HAS_BUILTIN(x) 0
#endif

#ifndef FMT_USE_VARIADIC_TEMPLATES
// Variadic templates are available in GCC since version 4.4
// (http://gcc.gnu.org/projects/cxx0x.html) and in Visual C++
// since version 2013.
# if defined(_MSC_VER) && _MSC_VER >= 1800
#  define FMT_USE_VARIADIC_TEMPLATES 1
# else
# define FMT_USE_VARIADIC_TEMPLATES \
   (FMT_HAS_FEATURE(cxx_variadic_templates) || \
       (FMT_GCC_VERSION >= 404 && __cplusplus >= 201103))
# endif
#endif

#ifndef FMT_USE_RVALUE_REFERENCES
// Don't use rvalue references when compiling with clang and an old libstdc++
// as the latter doesn't provide std::move.
# if defined(FMT_GNUC_LIBSTD_VERSION) && FMT_GNUC_LIBSTD_VERSION <= 402
#  define FMT_USE_RVALUE_REFERENCES 0
# elif defined(_MSC_VER) && _MSC_VER >= 1600
#  define FMT_USE_RVALUE_REFERENCES 1
# else
#  define FMT_USE_RVALUE_REFERENCES \
    (FMT_HAS_FEATURE(cxx_rvalue_references) || \
        (FMT_GCC_VERSION >= 403 && __cplusplus >= 201103))
# endif
#endif

#if FMT_USE_RVALUE_REFERENCES
# include <utility>  // for std::move
#endif

// Define FMT_USE_NOEXCEPT to make C++ Format use noexcept (C++11 feature).
#if (defined(FMT_USE_NOEXCEPT) && FMT_USE_NOEXCEPT) || FMT_HAS_FEATURE(cxx_noexcept) || \
  (FMT_GCC_VERSION >= 408 && __cplusplus >= 201103)
# define FMT_NOEXCEPT(expr) noexcept(expr)
#else
# define FMT_NOEXCEPT(expr)
#endif

// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
#define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&); \
  void operator=(const TypeName&)

namespace fmt {

// Fix the warning about long long on older versions of GCC
// that don't support the diagnostic pragma.
FMT_GCC_EXTENSION typedef long long LongLong;
FMT_GCC_EXTENSION typedef unsigned long long ULongLong;

#if FMT_USE_RVALUE_REFERENCES
using std::move;
#endif

template <typename Char>
class BasicWriter;

typedef BasicWriter<char> Writer;
typedef BasicWriter<wchar_t> WWriter;

template <typename Char>
class BasicFormatter;

template <typename Char, typename T>
void format(BasicFormatter<Char> &f, const Char *format_str, const T &value);

/**
  \rst
  A string reference. It can be constructed from a C string or
  ``std::string``.
  
  You can use one of the following typedefs for common character types:

  +------------+-------------------------+
  | Type       | Definition              |
  +============+=========================+
  | StringRef  | BasicStringRef<char>    |
  +------------+-------------------------+
  | WStringRef | BasicStringRef<wchar_t> |
  +------------+-------------------------+

  This class is most useful as a parameter type to allow passing
  different types of strings to a function, for example::

    template<typename... Args>
    std::string format(StringRef format, const Args & ... args);

    format("{}", 42);
    format(std::string("{}"), 42);
  \endrst
 */
template <typename Char>
class BasicStringRef {
 private:
  const Char *data_;
  mutable std::size_t size_;

 public:
  /**
    Constructs a string reference object from a C string and a size.
    If *size* is zero, which is the default, the size is computed
    automatically.
   */
  BasicStringRef(const Char *s, std::size_t size = 0) : data_(s), size_(size) {}

  /**
    Constructs a string reference from an `std::string` object.
   */
  BasicStringRef(const std::basic_string<Char> &s)
  : data_(s.c_str()), size_(s.size()) {}

  /**
    Converts a string reference to an `std::string` object.
   */
  operator std::basic_string<Char>() const {
    return std::basic_string<Char>(data_, size());
  }

  /**
    Returns the pointer to a C string.
   */
  const Char *c_str() const { return data_; }

  /**
    Returns the string size.
   */
  std::size_t size() const {
    if (size_ == 0 && data_) size_ = std::char_traits<Char>::length(data_);
    return size_;
  }

  friend bool operator==(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.data_ == rhs.data_;
  }
  friend bool operator!=(BasicStringRef lhs, BasicStringRef rhs) {
    return lhs.data_ != rhs.data_;
  }
};

typedef BasicStringRef<char> StringRef;
typedef BasicStringRef<wchar_t> WStringRef;

/**
  A formatting error such as invalid format string.
*/
class FormatError : public std::runtime_error {
public:
  explicit FormatError(const std::string &message)
  : std::runtime_error(message) {}
};

namespace internal {

// The number of characters to store in the Array object, representing the
// output buffer, itself to avoid dynamic memory allocation.
enum { INLINE_BUFFER_SIZE = 500 };

#if defined(_SECURE_SCL) && _SECURE_SCL
// Use checked iterator to avoid warnings on MSVC.
template <typename T>
inline stdext::checked_array_iterator<T*> make_ptr(T *ptr, std::size_t size) {
  return stdext::checked_array_iterator<T*>(ptr, size);
}
#else
template <typename T>
inline T *make_ptr(T *ptr, std::size_t) { return ptr; }
#endif

// A simple array for POD types with the first SIZE elements stored in
// the object itself. It supports a subset of std::vector's operations.
template <typename T, std::size_t SIZE>
class Array {
 private:
  std::size_t size_;
  std::size_t capacity_;
  T *ptr_;
  T data_[SIZE];

  void grow(std::size_t size);

  // Free memory allocated by the array.
  void free() {
    if (ptr_ != data_) delete [] ptr_;
  }

  // Move data from other to this array.
  void move(Array &other) {
    size_ = other.size_;
    capacity_ = other.capacity_;
    if (other.ptr_ == other.data_) {
      ptr_ = data_;
      std::copy(other.data_, other.data_ + size_, make_ptr(data_, capacity_));
    } else {
      ptr_ = other.ptr_;
      // Set pointer to the inline array so that delete is not called
      // when freeing.
      other.ptr_ = other.data_;
    }
  }

  FMT_DISALLOW_COPY_AND_ASSIGN(Array);

 public:
  explicit Array(std::size_t size = 0)
    : size_(size), capacity_(SIZE), ptr_(data_) {}
  ~Array() { free(); }

#if FMT_USE_RVALUE_REFERENCES
  Array(Array &&other) {
    move(other);
  }

  Array& operator=(Array &&other) {
    assert(this != &other);
    free();
    move(other);
    return *this;
  }
#endif

  // Returns the size of this array.
  std::size_t size() const { return size_; }

  // Returns the capacity of this array.
  std::size_t capacity() const { return capacity_; }

  // Resizes the array. If T is a POD type new elements are not initialized.
  void resize(std::size_t new_size) {
    if (new_size > capacity_)
      grow(new_size);
    size_ = new_size;
  }

  // Reserves space to store at least capacity elements.
  void reserve(std::size_t capacity) {
    if (capacity > capacity_)
      grow(capacity);
  }

  void clear() { size_ = 0; }

  void push_back(const T &value) {
    if (size_ == capacity_)
      grow(size_ + 1);
    ptr_[size_++] = value;
  }

  // Appends data to the end of the array.
  void append(const T *begin, const T *end);

  T &operator[](std::size_t index) { return ptr_[index]; }
  const T &operator[](std::size_t index) const { return ptr_[index]; }
};

template <typename T, std::size_t SIZE>
void Array<T, SIZE>::grow(std::size_t size) {
  capacity_ = (std::max)(size, capacity_ + capacity_ / 2);
  T *p = new T[capacity_];
  std::copy(ptr_, ptr_ + size_, make_ptr(p, capacity_));
  if (ptr_ != data_)
    delete [] ptr_;
  ptr_ = p;
}

template <typename T, std::size_t SIZE>
void Array<T, SIZE>::append(const T *begin, const T *end) {
  std::ptrdiff_t num_elements = end - begin;
  if (size_ + num_elements > capacity_)
    grow(size_ + num_elements);
  std::copy(begin, end, make_ptr(ptr_, capacity_) + size_);
  size_ += num_elements;
}

template <typename Char>
class BasicCharTraits {
 public:
#if defined(_SECURE_SCL) && _SECURE_SCL
  typedef stdext::checked_array_iterator<Char*> CharPtr;
#else
  typedef Char *CharPtr;
#endif
};

template <typename Char>
class CharTraits;

template <>
class CharTraits<char> : public BasicCharTraits<char> {
 private:
  // Conversion from wchar_t to char is not allowed.
  static char convert(wchar_t);

public:
  typedef const wchar_t *UnsupportedStrType;

  static char convert(char value) { return value; }

  // Formats a floating-point number.
  template <typename T>
  static int format_float(char *buffer, std::size_t size,
      const char *format, unsigned width, int precision, T value);
};

template <>
class CharTraits<wchar_t> : public BasicCharTraits<wchar_t> {
 public:
  typedef const char *UnsupportedStrType;

  static wchar_t convert(char value) { return value; }
  static wchar_t convert(wchar_t value) { return value; }

  template <typename T>
  static int format_float(wchar_t *buffer, std::size_t size,
      const wchar_t *format, unsigned width, int precision, T value);
};

// Selects uint32_t if FitsIn32Bits is true, uint64_t otherwise.
template <bool FitsIn32Bits>
struct TypeSelector { typedef uint32_t Type; };

template <>
struct TypeSelector<false> { typedef uint64_t Type; };

// Checks if a number is negative - used to avoid warnings.
template <bool IsSigned>
struct SignChecker {
  template <typename T>
  static bool is_negative(T) { return false; }
};

template <>
struct SignChecker<true> {
  template <typename T>
  static bool is_negative(T value) { return value < 0; }
};

// Returns true if value is negative, false otherwise.
// Same as (value < 0) but doesn't produce warnings if T is an unsigned type.
template <typename T>
inline bool is_negative(T value) {
  return SignChecker<std::numeric_limits<T>::is_signed>::is_negative(value);
}

template <typename T>
struct IntTraits {
  // Smallest of uint32_t and uint64_t that is large enough to represent
  // all values of T.
  typedef typename
    TypeSelector<std::numeric_limits<T>::digits <= 32>::Type MainType;
};

// MakeUnsigned<T>::Type gives an unsigned type corresponding to integer type T.
template <typename T>
struct MakeUnsigned { typedef T Type; };

#define FMT_SPECIALIZE_MAKE_UNSIGNED(T, U) \
  template <> \
  struct MakeUnsigned<T> { typedef U Type; }

FMT_SPECIALIZE_MAKE_UNSIGNED(char, unsigned char);
FMT_SPECIALIZE_MAKE_UNSIGNED(signed char, unsigned char);
FMT_SPECIALIZE_MAKE_UNSIGNED(short, unsigned short);
FMT_SPECIALIZE_MAKE_UNSIGNED(int, unsigned);
FMT_SPECIALIZE_MAKE_UNSIGNED(long, unsigned long);
FMT_SPECIALIZE_MAKE_UNSIGNED(LongLong, ULongLong);

void report_unknown_type(char code, const char *type);

extern const uint32_t POWERS_OF_10_32[];
extern const uint64_t POWERS_OF_10_64[];

#if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clzll)
// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
inline unsigned count_digits(uint64_t n) {
  // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
  // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits.
  unsigned t = (64 - __builtin_clzll(n | 1)) * 1233 >> 12;
  return t - (n < POWERS_OF_10_64[t]) + 1;
}
# if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clz)
// Optional version of count_digits for better performance on 32-bit platforms.
inline unsigned count_digits(uint32_t n) {
  uint32_t t = (32 - __builtin_clz(n | 1)) * 1233 >> 12;
  return t - (n < POWERS_OF_10_32[t]) + 1;
}
# endif
#else
// Slower version of count_digits used when __builtin_clz is not available.
inline unsigned count_digits(uint64_t n) {
  unsigned count = 1;
  for (;;) {
    // Integer division is slow so do it for a group of four digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    if (n < 10) return count;
    if (n < 100) return count + 1;
    if (n < 1000) return count + 2;
    if (n < 10000) return count + 3;
    n /= 10000u;
    count += 4;
  }
}
#endif

extern const char DIGITS[];

// Formats a decimal unsigned integer value writing into buffer.
template <typename UInt, typename Char>
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) {
  --num_digits;
  while (value >= 100) {
    // Integer division is slow so do it for a group of two digits instead
    // of for every digit. The idea comes from the talk by Alexandrescu
    // "Three Optimization Tips for C++". See speed-test for a comparison.
    unsigned index = (value % 100) * 2;
    value /= 100;
    buffer[num_digits] = DIGITS[index + 1];
    buffer[num_digits - 1] = DIGITS[index];
    num_digits -= 2;
  }
  if (value < 10) {
    *buffer = static_cast<char>('0' + value);
    return;
  }
  unsigned index = static_cast<unsigned>(value * 2);
  buffer[1] = DIGITS[index + 1];
  buffer[0] = DIGITS[index];
}

#ifdef _WIN32
// A converter from UTF-8 to UTF-16.
// It is only provided for Windows since other systems use UTF-8.
class UTF8ToUTF16 {
 private:
  Array<wchar_t, INLINE_BUFFER_SIZE> buffer_;

 public:
  explicit UTF8ToUTF16(StringRef s);
  operator WStringRef() const { return WStringRef(&buffer_[0], size()); }
  size_t size() const { return buffer_.size() - 1; }
  const wchar_t *c_str() const { return &buffer_[0]; }
  std::wstring str() const { return std::wstring(&buffer_[0], size()); }
};

// A converter from UTF-16 to UTF-8.
// It is only provided for Windows since other systems use UTF-8.
class UTF16ToUTF8 {
 private:
  Array<char, INLINE_BUFFER_SIZE> buffer_;

 public:
  UTF16ToUTF8() {}
  explicit UTF16ToUTF8(WStringRef s);
  operator StringRef() const { return StringRef(&buffer_[0], size()); }
  size_t size() const { return buffer_.size() - 1; }
  const char *c_str() const { return &buffer_[0]; }
  std::string str() const { return std::string(&buffer_[0], size()); }

  // Performs conversion returning a system error code instead of
  // throwing exception on error.
  int convert(WStringRef s);
};
#endif

// Portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
//   0      - success
//   ERANGE - buffer is not large enough to store the error message
//   other  - failure
// Buffer should be at least of size 1.
int safe_strerror(int error_code,
    char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT(true);

void format_system_error(
    fmt::Writer &out, int error_code, fmt::StringRef message);

#ifdef _WIN32
void format_windows_error(
    fmt::Writer &out, int error_code, fmt::StringRef message);
#endif

// Throws Exception(message) if format contains '}', otherwise throws
// FormatError reporting unmatched '{'. The idea is that unmatched '{'
// should override other errors.
template <typename Char>
struct FormatErrorReporter {
  int num_open_braces;
  void operator()(const Char *s, fmt::StringRef message) const;
};

// Computes max(Arg, 1) at compile time. It is used to avoid errors about
// allocating an array of 0 size.
template <unsigned Arg>
struct NonZero {
  enum { VALUE = Arg };
};

template <>
struct NonZero<0> {
  enum { VALUE = 1 };
};

// A formatting argument. It is a POD type to allow storage in internal::Array.
struct Arg {
  enum Type {
    // Integer types should go first,
    INT, UINT, LONG_LONG, ULONG_LONG, CHAR, LAST_INTEGER_TYPE = CHAR,
    // followed by floating-point types.
    DOUBLE, LONG_DOUBLE, LAST_NUMERIC_TYPE = LONG_DOUBLE,
    STRING, WSTRING, POINTER, CUSTOM
  };
  Type type;

  template <typename Char>
  struct StringValue {
    const Char *value;
    std::size_t size;
  };

  typedef void (*FormatFunc)(
      void *formatter, const void *arg, const void *format_str);

  struct CustomValue {
    const void *value;
    FormatFunc format;
  };

  union {
    int int_value;
    unsigned uint_value;
    LongLong long_long_value;
    ULongLong ulong_long_value;
    double double_value;
    long double long_double_value;
    const void *pointer_value;
    StringValue<char> string;
    StringValue<wchar_t> wstring;
    CustomValue custom;
  };
};

// Makes an Arg object from any type.
template <typename Char>
class MakeArg : public Arg {
 private:
  // The following two methods are private to disallow formatting of
  // arbitrary pointers. If you want to output a pointer cast it to
  // "void *" or "const void *". In particular, this forbids formatting
  // of "[const] volatile char *" which is printed as bool by iostreams.
  // Do not implement!
  template <typename T>
  MakeArg(const T *value);
  template <typename T>
  MakeArg(T *value);

  void set_string(StringRef str) {
    type = STRING;
    string.value = str.c_str();
    string.size = str.size();
  }

  void set_string(WStringRef str) {
    type = WSTRING;
    CharTraits<Char>::convert(wchar_t());
    wstring.value = str.c_str();
    wstring.size = str.size();
  }

  // Formats an argument of a custom type, such as a user-defined class.
  template <typename T>
  static void format_custom_arg(
      void *formatter, const void *arg, const void *format_str) {
    format(*static_cast<BasicFormatter<Char>*>(formatter),
        static_cast<const Char*>(format_str), *static_cast<const T*>(arg));
  }

public:
  MakeArg() {}
  MakeArg(bool value) { type = INT; int_value = value; }
  MakeArg(short value) { type = INT; int_value = value; }
  MakeArg(unsigned short value) { type = UINT; uint_value = value; }
  MakeArg(int value) { type = INT; int_value = value; }
  MakeArg(unsigned value) { type = UINT; uint_value = value; }
  MakeArg(long value) {
    // To minimize the number of types we need to deal with, long is
    // translated either to int or to long long depending on its size.
    if (sizeof(long) == sizeof(int)) {
      type = INT;
      int_value = static_cast<int>(value);
    } else {
      type = LONG_LONG;
      long_long_value = value;
    }
  }
  MakeArg(unsigned long value) {
    if (sizeof(unsigned long) == sizeof(unsigned)) {
      type = UINT;
      uint_value = static_cast<unsigned>(value);
    } else {
      type = ULONG_LONG;
      ulong_long_value = value;
    }
  }
  MakeArg(LongLong value) { type = LONG_LONG; long_long_value = value; }
  MakeArg(ULongLong value) { type = ULONG_LONG; ulong_long_value = value; }
  MakeArg(float value) { type = DOUBLE; double_value = value; }
  MakeArg(double value) { type = DOUBLE; double_value = value; }
  MakeArg(long double value) { type = LONG_DOUBLE; long_double_value = value; }
  MakeArg(signed char value) { type = CHAR; int_value = value; }
  MakeArg(unsigned char value) { type = CHAR; int_value = value; }
  MakeArg(char value) { type = CHAR; int_value = value; }
  MakeArg(wchar_t value) {
    type = CHAR;
    int_value = internal::CharTraits<Char>::convert(value);
  }

  MakeArg(char *value) { set_string(value); }
  MakeArg(const char *value) { set_string(value); }
  MakeArg(const std::string &value) { set_string(value); }
  MakeArg(StringRef value) { set_string(value); }

  MakeArg(wchar_t *value) { set_string(value); }
  MakeArg(const wchar_t *value) { set_string(value); }
  MakeArg(const std::wstring &value) { set_string(value); }
  MakeArg(WStringRef value) { set_string(value); }

  MakeArg(void *value) { type = POINTER; pointer_value = value; }
  MakeArg(const void *value) { type = POINTER; pointer_value = value; }

#if 0
  // WFG: Removed this because otherwise you can pass a CStr8 or an enum etc
  // into fmt::sprintf, and it will be interpreted as a CUSTOM type and then
  // will throw an exception at runtime, which is terrible behaviour.
  template <typename T>
  MakeArg(const T &value) {
    type = CUSTOM;
    custom.value = &value;
    custom.format = &format_custom_arg<T>;
  }
#endif
};

#define FMT_DISPATCH(call) static_cast<Impl*>(this)->call

// An argument visitor.
// To use ArgVisitor define a subclass that implements some or all of the
// visit methods with the same signatures as the methods in ArgVisitor,
// for example, visit_int(int).
// Specify the subclass name as the Impl template parameter. Then calling
// ArgVisitor::visit for some argument will dispatch to a visit method
// specific to the argument type. For example, if the argument type is
// double then visit_double(double) method of a subclass will be called.
// If the subclass doesn't contain a method with this signature, then
// a corresponding method of ArgVisitor will be called.
//
// Example:
//  class MyArgVisitor : public ArgVisitor<MyArgVisitor, void> {
//   public:
//    void visit_int(int value) { print("{}", value); }
//    void visit_double(double value) { print("{}", value ); }
//  };
//
// ArgVisitor uses the curiously recurring template pattern:
// http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
template <typename Impl, typename Result>
class ArgVisitor {
 public:
  Result visit_unhandled_arg() { return Result(); }

  Result visit_int(int value) {
    return FMT_DISPATCH(visit_any_int(value));
  }
  Result visit_long_long(LongLong value) {
    return FMT_DISPATCH(visit_any_int(value));
  }
  Result visit_uint(unsigned value) {
    return FMT_DISPATCH(visit_any_int(value));
  }
  Result visit_ulong_long(ULongLong value) {
    return FMT_DISPATCH(visit_any_int(value));
  }
  Result visit_char(int value) {
    return FMT_DISPATCH(visit_any_int(value));
  }
  template <typename T>
  Result visit_any_int(T) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  Result visit_double(double value) {
    return FMT_DISPATCH(visit_any_double(value));
  }
  Result visit_long_double(long double value) {
    return FMT_DISPATCH(visit_any_double(value));
  }
  template <typename T>
  Result visit_any_double(T) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  Result visit_string(Arg::StringValue<char>) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }
  Result visit_wstring(Arg::StringValue<wchar_t>) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }
  Result visit_pointer(const void *) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }
  Result visit_custom(Arg::CustomValue) {
    return FMT_DISPATCH(visit_unhandled_arg());
  }

  Result visit(const Arg &arg) {
    switch (arg.type) {
    default:
      assert(false);
      // Fall through.
    case Arg::INT:
      return FMT_DISPATCH(visit_int(arg.int_value));
    case Arg::UINT:
      return FMT_DISPATCH(visit_uint(arg.uint_value));
    case Arg::LONG_LONG:
      return FMT_DISPATCH(visit_long_long(arg.long_long_value));
    case Arg::ULONG_LONG:
      return FMT_DISPATCH(visit_ulong_long(arg.ulong_long_value));
    case Arg::DOUBLE:
      return FMT_DISPATCH(visit_double(arg.double_value));
    case Arg::LONG_DOUBLE:
      return FMT_DISPATCH(visit_long_double(arg.long_double_value));
    case Arg::CHAR:
      return FMT_DISPATCH(visit_char(arg.int_value));
    case Arg::STRING:
      return FMT_DISPATCH(visit_string(arg.string));
    case Arg::WSTRING:
      return FMT_DISPATCH(visit_wstring(arg.wstring));
    case Arg::POINTER:
      return FMT_DISPATCH(visit_pointer(arg.pointer_value));
    case Arg::CUSTOM:
      return FMT_DISPATCH(visit_custom(arg.custom));
    }
  }
};

class RuntimeError : public std::runtime_error {
 protected:
  RuntimeError() : std::runtime_error("") {}
};

template <typename Char>
class ArgFormatter;
}  // namespace internal

/**
  An argument list.
 */
class ArgList {
 private:
  const internal::Arg *args_;
  std::size_t size_;

 public:
  ArgList() : size_(0) {}
  ArgList(const internal::Arg *args, std::size_t size)
  : args_(args), size_(size) {}

  /**
    Returns the list size (the number of arguments).
   */
  std::size_t size() const { return size_; }

  /**
    Returns the argument at specified index.
   */
  const internal::Arg &operator[](std::size_t index) const {
    return args_[index];
  }
};

struct FormatSpec;

namespace internal {

class FormatterBase {
protected:
  ArgList args_;
  int next_arg_index_;
  const char *error_;

  FormatterBase() : error_(0) {}

  const Arg &next_arg();

  const Arg &handle_arg_index(unsigned arg_index);

  template <typename Char>
  void write(BasicWriter<Char> &w, const Char *start, const Char *end) {
    if (start != end)
      w << BasicStringRef<Char>(start, end - start);
  }

  // TODO
};

// A printf formatter.
template <typename Char>
class PrintfFormatter : private FormatterBase {
 private:
  void parse_flags(FormatSpec &spec, const Char *&s);

  // Parses argument index, flags and width and returns the parsed
  // argument index.
  unsigned parse_header(const Char *&s, FormatSpec &spec);

 public:
  void format(BasicWriter<Char> &writer,
    BasicStringRef<Char> format, const ArgList &args);
};
}  // namespace internal

// A formatter.
template <typename Char>
class BasicFormatter : private internal::FormatterBase {
private:
  BasicWriter<Char> &writer_;
  const Char *start_;
  internal::FormatErrorReporter<Char> report_error_;

  // Parses argument index and returns an argument with this index.
  const internal::Arg &parse_arg_index(const Char *&s);

  void check_sign(const Char *&s, const internal::Arg &arg);

public:
  explicit BasicFormatter(BasicWriter<Char> &w) : writer_(w) {}

  BasicWriter<Char> &writer() { return writer_; }

  void format(BasicStringRef<Char> format_str, const ArgList &args);

  const Char *format(const Char *format_str, const internal::Arg &arg);
};

enum Alignment {
  ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC
};

// Flags.
enum {
  SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8,
  CHAR_FLAG = 0x10  // Argument has char type - used in error reporting.
};

// An empty format specifier.
struct EmptySpec {};

// A type specifier.
template <char TYPE>
struct TypeSpec : EmptySpec {
  Alignment align() const { return ALIGN_DEFAULT; }
  unsigned width() const { return 0; }
  int precision() const { return -1; }
  bool flag(unsigned) const { return false; }
  char type() const { return TYPE; }
  char fill() const { return ' '; }
};

// A width specifier.
struct WidthSpec {
  unsigned width_;
  // Fill is always wchar_t and cast to char if necessary to avoid having
  // two specialization of WidthSpec and its subclasses.
  wchar_t fill_;

  WidthSpec(unsigned width, wchar_t fill) : width_(width), fill_(fill) {}

  unsigned width() const { return width_; }
  wchar_t fill() const { return fill_; }
};

// An alignment specifier.
struct AlignSpec : WidthSpec {
  Alignment align_;

  AlignSpec(unsigned width, wchar_t fill, Alignment align = ALIGN_DEFAULT)
  : WidthSpec(width, fill), align_(align) {}

  Alignment align() const { return align_; }

  int precision() const { return -1; }
};

// An alignment and type specifier.
template <char TYPE>
struct AlignTypeSpec : AlignSpec {
  AlignTypeSpec(unsigned width, wchar_t fill) : AlignSpec(width, fill) {}

  bool flag(unsigned) const { return false; }
  char type() const { return TYPE; }
};

// A full format specifier.
struct FormatSpec : AlignSpec {
  unsigned flags_;
  int precision_;
  char type_;

  FormatSpec(
    unsigned width = 0, char type = 0, wchar_t fill = ' ')
  : AlignSpec(width, fill), flags_(0), precision_(-1), type_(type) {}

  bool flag(unsigned f) const { return (flags_ & f) != 0; }
  int precision() const { return precision_; }
  char type() const { return type_; }
};

// An integer format specifier.
template <typename T, typename SpecT = TypeSpec<0>, typename Char = char>
class IntFormatSpec : public SpecT {
 private:
  T value_;

 public:
  IntFormatSpec(T value, const SpecT &spec = SpecT())
  : SpecT(spec), value_(value) {}

  T value() const { return value_; }
};

// A string format specifier.
template <typename T>
class StrFormatSpec : public AlignSpec {
 private:
  const T *str_;

 public:
  StrFormatSpec(const T *str, unsigned width, wchar_t fill)
  : AlignSpec(width, fill), str_(str) {}

  const T *str() const { return str_; }
};

/**
  Returns an integer format specifier to format the value in base 2.
 */
IntFormatSpec<int, TypeSpec<'b'> > bin(int value);

/**
  Returns an integer format specifier to format the value in base 8.
 */
IntFormatSpec<int, TypeSpec<'o'> > oct(int value);

/**
  Returns an integer format specifier to format the value in base 16 using
  lower-case letters for the digits above 9.
 */
IntFormatSpec<int, TypeSpec<'x'> > hex(int value);

/**
  Returns an integer formatter format specifier to format in base 16 using
  upper-case letters for the digits above 9.
 */
IntFormatSpec<int, TypeSpec<'X'> > hexu(int value);

/**
  \rst
  Returns an integer format specifier to pad the formatted argument with the
  fill character to the specified width using the default (right) numeric
  alignment.

  **Example**::

    Writer out;
    out << pad(hex(0xcafe), 8, '0');
    // out.str() == "0000cafe"

  \endrst
 */
template <char TYPE_CODE, typename Char>
IntFormatSpec<int, AlignTypeSpec<TYPE_CODE>, Char> pad(
    int value, unsigned width, Char fill = ' ');

#define FMT_DEFINE_INT_FORMATTERS(TYPE) \
inline IntFormatSpec<TYPE, TypeSpec<'b'> > bin(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'b'> >(value, TypeSpec<'b'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'o'> > oct(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'o'> >(value, TypeSpec<'o'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'x'> > hex(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'x'> >(value, TypeSpec<'x'>()); \
} \
 \
inline IntFormatSpec<TYPE, TypeSpec<'X'> > hexu(TYPE value) { \
  return IntFormatSpec<TYPE, TypeSpec<'X'> >(value, TypeSpec<'X'>()); \
} \
 \
template <char TYPE_CODE> \
inline IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE> > pad( \
    IntFormatSpec<TYPE, TypeSpec<TYPE_CODE> > f, unsigned width) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE> >( \
      f.value(), AlignTypeSpec<TYPE_CODE>(width, ' ')); \
} \
 \
/* For compatibility with older compilers we provide two overloads for pad, */ \
/* one that takes a fill character and one that doesn't. In the future this */ \
/* can be replaced with one overload making the template argument Char      */ \
/* default to char (C++11). */ \
template <char TYPE_CODE, typename Char> \
inline IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE>, Char> pad( \
    IntFormatSpec<TYPE, TypeSpec<TYPE_CODE>, Char> f, \
    unsigned width, Char fill) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<TYPE_CODE>, Char>( \
      f.value(), AlignTypeSpec<TYPE_CODE>(width, fill)); \
} \
 \
inline IntFormatSpec<TYPE, AlignTypeSpec<0> > pad( \
    TYPE value, unsigned width) { \
  return IntFormatSpec<TYPE, AlignTypeSpec<0> >( \
      value, AlignTypeSpec<0>(width, ' ')); \
} \
 \
template <typename Char> \
inline IntFormatSpec<TYPE, AlignTypeSpec<0>, Char> pad( \
   TYPE value, unsigned width, Char fill) { \
 return IntFormatSpec<TYPE, AlignTypeSpec<0>, Char>( \
     value, AlignTypeSpec<0>(width, fill)); \
}

FMT_DEFINE_INT_FORMATTERS(int)
FMT_DEFINE_INT_FORMATTERS(long)
FMT_DEFINE_INT_FORMATTERS(unsigned)
FMT_DEFINE_INT_FORMATTERS(unsigned long)
FMT_DEFINE_INT_FORMATTERS(LongLong)
FMT_DEFINE_INT_FORMATTERS(ULongLong)

/**
  \rst
  Returns a string formatter that pads the formatted argument with the fill
  character to the specified width using the default (left) string alignment.

  **Example**::

    std::string s = str(Writer() << pad("abc", 8));
    // s == "abc     "

  \endrst
 */
template <typename Char>
inline StrFormatSpec<Char> pad(
    const Char *str, unsigned width, Char fill = ' ') {
  return StrFormatSpec<Char>(str, width, fill);
}

inline StrFormatSpec<wchar_t> pad(
    const wchar_t *str, unsigned width, char fill = ' ') {
  return StrFormatSpec<wchar_t>(str, width, fill);
}

// Generates a comma-separated list with results of applying f to numbers 0..n-1.
# define FMT_GEN(n, f) FMT_GEN##n(f)
# define FMT_GEN1(f)  f(0)
# define FMT_GEN2(f)  FMT_GEN1(f), f(1)
# define FMT_GEN3(f)  FMT_GEN2(f), f(2)
# define FMT_GEN4(f)  FMT_GEN3(f), f(3)
# define FMT_GEN5(f)  FMT_GEN4(f), f(4)
# define FMT_GEN6(f)  FMT_GEN5(f), f(5)
# define FMT_GEN7(f)  FMT_GEN6(f), f(6)
# define FMT_GEN8(f)  FMT_GEN7(f), f(7)
# define FMT_GEN9(f)  FMT_GEN8(f), f(8)
# define FMT_GEN10(f) FMT_GEN9(f), f(9)

# define FMT_MAKE_TEMPLATE_ARG(n) typename T##n
# define FMT_MAKE_ARG(n) const T##n &v##n
# define FMT_MAKE_REF_char(n) fmt::internal::MakeArg<char>(v##n)
# define FMT_MAKE_REF_wchar_t(n) fmt::internal::MakeArg<wchar_t>(v##n)

#if FMT_USE_VARIADIC_TEMPLATES
// Defines a variadic function returning void.
# define FMT_VARIADIC_VOID(func, arg_type) \
  template<typename... Args> \
  void func(arg_type arg1, const Args & ... args) { \
    using fmt::internal::Arg; \
    const Arg arg_array[fmt::internal::NonZero<sizeof...(Args)>::VALUE] = { \
      fmt::internal::MakeArg<Char>(args)... \
    }; \
    func(arg1, ArgList(arg_array, sizeof...(Args))); \
  }

// Defines a variadic constructor.
# define FMT_VARIADIC_CTOR(ctor, func, arg0_type, arg1_type) \
  template<typename... Args> \
  ctor(arg0_type arg0, arg1_type arg1, const Args & ... args) { \
    using fmt::internal::Arg; \
    const Arg arg_array[fmt::internal::NonZero<sizeof...(Args)>::VALUE] = { \
      fmt::internal::MakeArg<Char>(args)... \
    }; \
    func(arg0, arg1, ArgList(arg_array, sizeof...(Args))); \
  }

#else

# define FMT_MAKE_REF(n) fmt::internal::MakeArg<Char>(v##n)
// Defines a wrapper for a function taking one argument of type arg_type
// and n additional arguments of arbitrary types.
# define FMT_WRAP1(func, arg_type, n) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  inline void func(arg_type arg1, FMT_GEN(n, FMT_MAKE_ARG)) { \
    const fmt::internal::Arg args[] = {FMT_GEN(n, FMT_MAKE_REF)}; \
    func(arg1, fmt::ArgList(args, sizeof(args) / sizeof(*args))); \
  }

// Emulates a variadic function returning void on a pre-C++11 compiler.
# define FMT_VARIADIC_VOID(func, arg_type) \
  FMT_WRAP1(func, arg_type, 1) FMT_WRAP1(func, arg_type, 2) \
  FMT_WRAP1(func, arg_type, 3) FMT_WRAP1(func, arg_type, 4) \
  FMT_WRAP1(func, arg_type, 5) FMT_WRAP1(func, arg_type, 6) \
  FMT_WRAP1(func, arg_type, 7) FMT_WRAP1(func, arg_type, 8) \
  FMT_WRAP1(func, arg_type, 9) FMT_WRAP1(func, arg_type, 10)

# define FMT_CTOR(ctor, func, arg0_type, arg1_type, n) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  ctor(arg0_type arg0, arg1_type arg1, FMT_GEN(n, FMT_MAKE_ARG)) { \
    const fmt::internal::Arg args[] = {FMT_GEN(n, FMT_MAKE_REF)}; \
    func(arg0, arg1, fmt::ArgList(args, sizeof(args) / sizeof(*args))); \
  }

// Emulates a variadic constructor on a pre-C++11 compiler.
# define FMT_VARIADIC_CTOR(ctor, func, arg0_type, arg1_type) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 1) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 2) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 3) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 4) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 5) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 6) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 7) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 8) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 9) \
  FMT_CTOR(ctor, func, arg0_type, arg1_type, 10)
#endif

// Generates a comma-separated list with results of applying f to pairs
// (argument, index).
#define FMT_FOR_EACH1(f, x0) f(x0, 0)
#define FMT_FOR_EACH2(f, x0, x1) \
  FMT_FOR_EACH1(f, x0), f(x1, 1)
#define FMT_FOR_EACH3(f, x0, x1, x2) \
  FMT_FOR_EACH2(f, x0 ,x1), f(x2, 2)
#define FMT_FOR_EACH4(f, x0, x1, x2, x3) \
  FMT_FOR_EACH3(f, x0, x1, x2), f(x3, 3)
#define FMT_FOR_EACH5(f, x0, x1, x2, x3, x4) \
  FMT_FOR_EACH4(f, x0, x1, x2, x3), f(x4, 4)
#define FMT_FOR_EACH6(f, x0, x1, x2, x3, x4, x5) \
  FMT_FOR_EACH5(f, x0, x1, x2, x3, x4), f(x5, 5)
#define FMT_FOR_EACH7(f, x0, x1, x2, x3, x4, x5, x6) \
  FMT_FOR_EACH6(f, x0, x1, x2, x3, x4, x5), f(x6, 6)
#define FMT_FOR_EACH8(f, x0, x1, x2, x3, x4, x5, x6, x7) \
  FMT_FOR_EACH7(f, x0, x1, x2, x3, x4, x5, x6), f(x7, 7)
#define FMT_FOR_EACH9(f, x0, x1, x2, x3, x4, x5, x6, x7, x8) \
  FMT_FOR_EACH8(f, x0, x1, x2, x3, x4, x5, x6, x7), f(x8, 8)
#define FMT_FOR_EACH10(f, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) \
  FMT_FOR_EACH9(f, x0, x1, x2, x3, x4, x5, x6, x7, x8), f(x9, 9)

/**
An error returned by an operating system or a language runtime,
for example a file opening error.
*/
class SystemError : public internal::RuntimeError {
 private:
  void init(int error_code, StringRef format_str, const ArgList &args);

 protected:
  int error_code_;

  typedef char Char;  // For FMT_VARIADIC_CTOR.

  SystemError() {}

 public:
  /**
   \rst
   Constructs a :cpp:class:`fmt::SystemError` object with the description
   of the form "*<message>*: *<system-message>*", where *<message>* is the
   formatted message and *<system-message>* is the system message corresponding
   to the error code.
   *error_code* is a system error code as given by ``errno``.
   \endrst
  */
  SystemError(int error_code, StringRef message) {
    init(error_code, message, ArgList());
  }
  FMT_VARIADIC_CTOR(SystemError, init, int, StringRef)

  int error_code() const { return error_code_; }
};

/**
  \rst
  This template provides operations for formatting and writing data into
  a character stream. The output is stored in a memory buffer that grows
  dynamically.

  You can use one of the following typedefs for common character types:

  +---------+----------------------+
  | Type    | Definition           |
  +=========+======================+
  | Writer  | BasicWriter<char>    |
  +---------+----------------------+
  | WWriter | BasicWriter<wchar_t> |
  +---------+----------------------+

  **Example**::

     Writer out;
     out << "The answer is " << 42 << "\n";
     out.write("({:+f}, {:+f})", -3.14, 3.14);

  This will write the following output to the ``out`` object:

  .. code-block:: none

     The answer is 42
     (-3.140000, +3.140000)

  The output can be converted to an ``std::string`` with ``out.str()`` or
  accessed as a C string with ``out.c_str()``.
  \endrst
 */
template <typename Char>
class BasicWriter {
 private:
  // Output buffer.
  mutable internal::Array<Char, internal::INLINE_BUFFER_SIZE> buffer_;

  typedef typename internal::CharTraits<Char>::CharPtr CharPtr;

#if defined(_SECURE_SCL) && _SECURE_SCL
  // Returns pointer value.
  static Char *get(CharPtr p) { return p.base(); }
#else
  static Char *get(Char *p) { return p; }
#endif

  static CharPtr fill_padding(CharPtr buffer,
      unsigned total_size, std::size_t content_size, wchar_t fill);

  // Grows the buffer by n characters and returns a pointer to the newly
  // allocated area.
  CharPtr grow_buffer(std::size_t n) {
    std::size_t size = buffer_.size();
    buffer_.resize(size + n);
    return internal::make_ptr(&buffer_[size], n);
  }

  // Prepare a buffer for integer formatting.
  CharPtr prepare_int_buffer(unsigned num_digits,
      const EmptySpec &, const char *prefix, unsigned prefix_size) {
    unsigned size = prefix_size + num_digits;
    CharPtr p = grow_buffer(size);
    std::copy(prefix, prefix + prefix_size, p);
    return p + size - 1;
  }

  template <typename Spec>
  CharPtr prepare_int_buffer(unsigned num_digits,
    const Spec &spec, const char *prefix, unsigned prefix_size);

  // Formats an integer.
  template <typename T, typename Spec>
  void write_int(T value, const Spec &spec);

  // Formats a floating-point number (double or long double).
  template <typename T>
  void write_double(T value, const FormatSpec &spec);

  // Writes a formatted string.
  template <typename StrChar>
  CharPtr write_str(
      const StrChar *s, std::size_t size, const AlignSpec &spec);

  template <typename StrChar>
  void write_str(
      const internal::Arg::StringValue<StrChar> &str, const FormatSpec &spec);

  // This method is private to disallow writing a wide string to a
  // char stream and vice versa. If you want to print a wide string
  // as a pointer as std::ostream does, cast it to const void*.
  // Do not implement!
  void operator<<(typename internal::CharTraits<Char>::UnsupportedStrType);

  friend class internal::ArgFormatter<Char>;
  friend class internal::PrintfFormatter<Char>;

 public:
  /**
    Constructs a ``BasicWriter`` object.
   */
  BasicWriter() {}

#if FMT_USE_RVALUE_REFERENCES
  /**
    Constructs a ``BasicWriter`` object moving the content of the other
    object to it.
   */
  BasicWriter(BasicWriter &&other) : buffer_(std::move(other.buffer_)) {}

  /**
    Moves the content of the other ``BasicWriter`` object to this one.
   */
  BasicWriter& operator=(BasicWriter &&other) {
    assert(this != &other);
    buffer_ = std::move(other.buffer_);
    return *this;
  }
#endif

  /**
    Returns the total number of characters written.
   */
  std::size_t size() const { return buffer_.size(); }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const Char *data() const { return &buffer_[0]; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const Char *c_str() const {
    std::size_t size = buffer_.size();
    buffer_.reserve(size + 1);
    buffer_[size] = '\0';
    return &buffer_[0];
  }

  /**
    Returns the content of the output buffer as an `std::string`.
   */
  std::basic_string<Char> str() const {
    return std::basic_string<Char>(&buffer_[0], buffer_.size());
  }

  /**
    \rst
    Writes formatted data.
    
    *args* is an argument list representing arbitrary arguments.

    **Example**::

       Writer out;
       out.write("Current point:\n");
       out.write("({:+f}, {:+f})", -3.14, 3.14);

    This will write the following output to the ``out`` object:

    .. code-block:: none

       Current point:
       (-3.140000, +3.140000)

    The output can be accessed using :meth:`data`, :meth:`c_str` or :meth:`str`
    methods.

    See also `Format String Syntax`_.
    \endrst
   */
  void write(BasicStringRef<Char> format, const ArgList &args) {
    BasicFormatter<Char>(*this).format(format, args);
  }
  FMT_VARIADIC_VOID(write, fmt::BasicStringRef<Char>)

  BasicWriter &operator<<(int value) {
    return *this << IntFormatSpec<int>(value);
  }
  BasicWriter &operator<<(unsigned value) {
    return *this << IntFormatSpec<unsigned>(value);
  }
  BasicWriter &operator<<(long value) {
    return *this << IntFormatSpec<long>(value);
  }
  BasicWriter &operator<<(unsigned long value) {
    return *this << IntFormatSpec<unsigned long>(value);
  }
  BasicWriter &operator<<(LongLong value) {
    return *this << IntFormatSpec<LongLong>(value);
  }

  /**
    Formats *value* and writes it to the stream.
   */
  BasicWriter &operator<<(ULongLong value) {
    return *this << IntFormatSpec<ULongLong>(value);
  }

  BasicWriter &operator<<(double value) {
    write_double(value, FormatSpec());
    return *this;
  }

  /**
    Formats *value* using the general format for floating-point numbers
    (``'g'``) and writes it to the stream.
   */
  BasicWriter &operator<<(long double value) {
    write_double(value, FormatSpec());
    return *this;
  }

  /**
    Writes a character to the stream.
   */
  BasicWriter &operator<<(char value) {
    buffer_.push_back(value);
    return *this;
  }

  BasicWriter &operator<<(wchar_t value) {
    buffer_.push_back(internal::CharTraits<Char>::convert(value));
    return *this;
  }

  /**
    Writes *value* to the stream.
   */
  BasicWriter &operator<<(fmt::BasicStringRef<Char> value) {
    const Char *str = value.c_str();
    buffer_.append(str, str + value.size());
    return *this;
  }

  template <typename T, typename Spec, typename FillChar>
  BasicWriter &operator<<(const IntFormatSpec<T, Spec, FillChar> &spec) {
    internal::CharTraits<Char>::convert(FillChar());
    write_int(spec.value(), spec);
    return *this;
  }

  template <typename StrChar>
  BasicWriter &operator<<(const StrFormatSpec<StrChar> &spec) {
    const StrChar *s = spec.str();
    // TODO: error if fill is not convertible to Char
    write_str(s, std::char_traits<Char>::length(s), spec);
    return *this;
  }

  void clear() { buffer_.clear(); }
};

template <typename Char>
template <typename StrChar>
typename BasicWriter<Char>::CharPtr BasicWriter<Char>::write_str(
    const StrChar *s, std::size_t size, const AlignSpec &spec) {
  CharPtr out = CharPtr();
  if (spec.width() > size) {
    out = grow_buffer(spec.width());
    Char fill = static_cast<Char>(spec.fill());
    if (spec.align() == ALIGN_RIGHT) {
      std::fill_n(out, spec.width() - size, fill);
      out += spec.width() - size;
    } else if (spec.align() == ALIGN_CENTER) {
      out = fill_padding(out, spec.width(), size, fill);
    } else {
      std::fill_n(out + size, spec.width() - size, fill);
    }
  } else {
    out = grow_buffer(size);
  }
  std::copy(s, s + size, out);
  return out;
}

template <typename Char>
template <typename Spec>
typename fmt::BasicWriter<Char>::CharPtr
  fmt::BasicWriter<Char>::prepare_int_buffer(
    unsigned num_digits, const Spec &spec,
    const char *prefix, unsigned prefix_size) {
  unsigned width = spec.width();
  Alignment align = spec.align();
  Char fill = static_cast<Char>(spec.fill());
  if (spec.precision() > static_cast<int>(num_digits)) {
    // Octal prefix '0' is counted as a digit, so ignore it if precision
    // is specified.
    if (prefix_size > 0 && prefix[prefix_size - 1] == '0')
      --prefix_size;
    unsigned number_size = prefix_size + spec.precision();
    AlignSpec subspec(number_size, '0', ALIGN_NUMERIC);
    if (number_size >= width)
      return prepare_int_buffer(num_digits, subspec, prefix, prefix_size);
    buffer_.reserve(width);
    unsigned fill_size = width - number_size;
    if (align != ALIGN_LEFT) {
      CharPtr p = grow_buffer(fill_size);
      std::fill(p, p + fill_size, fill);
    }
    CharPtr result = prepare_int_buffer(
        num_digits, subspec, prefix, prefix_size);
    if (align == ALIGN_LEFT) {
      CharPtr p = grow_buffer(fill_size);
      std::fill(p, p + fill_size, fill);
    }
    return result;
  }
  unsigned size = prefix_size + num_digits;
  if (width <= size) {
    CharPtr p = grow_buffer(size);
    std::copy(prefix, prefix + prefix_size, p);
    return p + size - 1;
  }
  CharPtr p = grow_buffer(width);
  CharPtr end = p + width;
  if (align == ALIGN_LEFT) {
    std::copy(prefix, prefix + prefix_size, p);
    p += size;
    std::fill(p, end, fill);
  } else if (align == ALIGN_CENTER) {
    p = fill_padding(p, width, size, fill);
    std::copy(prefix, prefix + prefix_size, p);
    p += size;
  } else {
    if (align == ALIGN_NUMERIC) {
      if (prefix_size != 0) {
        p = std::copy(prefix, prefix + prefix_size, p);
        size -= prefix_size;
      }
    } else {
      std::copy(prefix, prefix + prefix_size, end - size);
    }
    std::fill(p, end - size, fill);
    p = end;
  }
  return p - 1;
}

template <typename Char>
template <typename T, typename Spec>
void BasicWriter<Char>::write_int(T value, const Spec &spec) {
  unsigned prefix_size = 0;
  typedef typename internal::IntTraits<T>::MainType UnsignedType;
  UnsignedType abs_value = value;
  char prefix[4] = "";
  if (internal::is_negative(value)) {
    prefix[0] = '-';
    ++prefix_size;
    abs_value = 0 - abs_value;
  } else if (spec.flag(SIGN_FLAG)) {
    prefix[0] = spec.flag(PLUS_FLAG) ? '+' : ' ';
    ++prefix_size;
  }
  switch (spec.type()) {
  case 0: case 'd': {
    unsigned num_digits = internal::count_digits(abs_value);
    CharPtr p = prepare_int_buffer(
      num_digits, spec, prefix, prefix_size) + 1 - num_digits;
    internal::format_decimal(get(p), abs_value, num_digits);
    break;
  }
  case 'x': case 'X': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG)) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = spec.type();
    }
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 4) != 0);
    Char *p = get(prepare_int_buffer(
      num_digits, spec, prefix, prefix_size));
    n = abs_value;
    const char *digits = spec.type() == 'x' ?
        "0123456789abcdef" : "0123456789ABCDEF";
    do {
      *p-- = digits[n & 0xf];
    } while ((n >>= 4) != 0);
    break;
  }
  case 'b': case 'B': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG)) {
      prefix[prefix_size++] = '0';
      prefix[prefix_size++] = spec.type();
    }
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 1) != 0);
    Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
    n = abs_value;
    do {
      *p-- = '0' + (n & 1);
    } while ((n >>= 1) != 0);
    break;
  }
  case 'o': {
    UnsignedType n = abs_value;
    if (spec.flag(HASH_FLAG))
      prefix[prefix_size++] = '0';
    unsigned num_digits = 0;
    do {
      ++num_digits;
    } while ((n >>= 3) != 0);
    Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
    n = abs_value;
    do {
      *p-- = '0' + (n & 7);
    } while ((n >>= 3) != 0);
    break;
  }
  default:
    internal::report_unknown_type(
      spec.type(), spec.flag(CHAR_FLAG) ? "char" : "integer");
    break;
  }
}

// Formats a value.
template <typename Char, typename T>
void format(BasicFormatter<Char> &f, const Char *format_str, const T &value) {
  std::basic_ostringstream<Char> os;
  os << value;
  f.format(format_str, internal::MakeArg<Char>(os.str()));
}

// Reports a system error without throwing an exception.
// Can be used to report errors from destructors.
void report_system_error(int error_code, StringRef message) FMT_NOEXCEPT(true);

#ifdef _WIN32

/**
 A Windows error.
*/
class WindowsError : public SystemError {
 private:
  void init(int error_code, StringRef format_str, const ArgList &args);

 public:
  /**
   \rst
   Constructs a :cpp:class:`fmt::WindowsError` object with the description
   of the form "*<message>*: *<system-message>*", where *<message>* is the
   formatted message and *<system-message>* is the system message corresponding
   to the error code.
   *error_code* is a Windows error code as given by ``GetLastError``.
   \endrst
  */
  WindowsError(int error_code, StringRef message) {
    init(error_code, message, ArgList());
  }
  FMT_VARIADIC_CTOR(WindowsError, init, int, StringRef)
};

// Reports a Windows error without throwing an exception.
// Can be used to report errors from destructors.
void report_windows_error(int error_code, StringRef message) FMT_NOEXCEPT(true);

#endif

enum Color { BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE };

/**
  Formats a string and prints it to stdout using ANSI escape sequences
  to specify color (experimental).
  Example:
    PrintColored(fmt::RED, "Elapsed time: {0:.2f} seconds") << 1.23;
 */
void print_colored(Color c, StringRef format, const ArgList &args);

/**
  \rst
  Formats arguments and returns the result as a string.

  **Example**::

    std::string message = format("The answer is {}", 42);
  \endrst
*/
inline std::string format(StringRef format_str, const ArgList &args) {
  Writer w;
  w.write(format_str, args);
  return w.str();
}

inline std::wstring format(WStringRef format_str, const ArgList &args) {
  WWriter w;
  w.write(format_str, args);
  return w.str();
}

/**
  \rst
  Prints formatted data to the file *f*.

  **Example**::

    print(stderr, "Don't {}!", "panic");
  \endrst
 */
void print(std::FILE *f, StringRef format_str, const ArgList &args);

/**
  \rst
  Prints formatted data to ``stdout``.

  **Example**::

    print("Elapsed time: {0:.2f} seconds", 1.23);
  \endrst
 */
inline void print(StringRef format_str, const ArgList &args) {
  print(stdout, format_str, args);
}

/**
  \rst
  Prints formatted data to the stream *os*.

  **Example**::

    print(cerr, "Don't {}!", "panic");
  \endrst
 */
void print(std::ostream &os, StringRef format_str, const ArgList &args);

template <typename Char>
void printf(BasicWriter<Char> &w,
    BasicStringRef<Char> format, const ArgList &args) {
  internal::PrintfFormatter<Char>().format(w, format, args);
}

/**
  \rst
  Formats arguments and returns the result as a string.

  **Example**::

    std::string message = fmt::sprintf("The answer is %d", 42);
  \endrst
*/
inline std::string sprintf(StringRef format, const ArgList &args) {
  Writer w;
  printf(w, format, args);
  return w.str();
}

/**
  \rst
  Prints formatted data to the file *f*.

  **Example**::

    fmt::fprintf(stderr, "Don't %s!", "panic");
  \endrst
 */
int fprintf(std::FILE *f, StringRef format, const ArgList &args);

/**
  \rst
  Prints formatted data to ``stdout``.

  **Example**::

    fmt::printf("Elapsed time: %.2f seconds", 1.23);
  \endrst
 */
inline int printf(StringRef format, const ArgList &args) {
  return fprintf(stdout, format, args);
}

/**
  Fast integer formatter.
 */
class FormatInt {
 private:
  // Buffer should be large enough to hold all digits (digits10 + 1),
  // a sign and a null character.
  enum {BUFFER_SIZE = std::numeric_limits<ULongLong>::digits10 + 3};
  mutable char buffer_[BUFFER_SIZE];
  char *str_;

  // Formats value in reverse and returns the number of digits.
  char *format_decimal(ULongLong value) {
    char *buffer_end = buffer_ + BUFFER_SIZE - 1;
    while (value >= 100) {
      // Integer division is slow so do it for a group of two digits instead
      // of for every digit. The idea comes from the talk by Alexandrescu
      // "Three Optimization Tips for C++". See speed-test for a comparison.
      unsigned index = (value % 100) * 2;
      value /= 100;
      *--buffer_end = internal::DIGITS[index + 1];
      *--buffer_end = internal::DIGITS[index];
    }
    if (value < 10) {
      *--buffer_end = static_cast<char>('0' + value);
      return buffer_end;
    }
    unsigned index = static_cast<unsigned>(value * 2);
    *--buffer_end = internal::DIGITS[index + 1];
    *--buffer_end = internal::DIGITS[index];
    return buffer_end;
  }

  void FormatSigned(LongLong value) {
    ULongLong abs_value = static_cast<ULongLong>(value);
    bool negative = value < 0;
    if (negative)
      abs_value = 0 - abs_value;
    str_ = format_decimal(abs_value);
    if (negative)
      *--str_ = '-';
  }

 public:
  explicit FormatInt(int value) { FormatSigned(value); }
  explicit FormatInt(long value) { FormatSigned(value); }
  explicit FormatInt(LongLong value) { FormatSigned(value); }
  explicit FormatInt(unsigned value) : str_(format_decimal(value)) {}
  explicit FormatInt(unsigned long value) : str_(format_decimal(value)) {}
  explicit FormatInt(ULongLong value) : str_(format_decimal(value)) {}

  /**
    Returns the number of characters written to the output buffer.
   */
  std::size_t size() const { return buffer_ - str_ + BUFFER_SIZE - 1; }

  /**
    Returns a pointer to the output buffer content. No terminating null
    character is appended.
   */
  const char *data() const { return str_; }

  /**
    Returns a pointer to the output buffer content with terminating null
    character appended.
   */
  const char *c_str() const {
    buffer_[BUFFER_SIZE - 1] = '\0';
    return str_;
  }

  /**
    Returns the content of the output buffer as an `std::string`.
   */
  std::string str() const { return std::string(str_, size()); }
};

// Formats a decimal integer value writing into buffer and returns
// a pointer to the end of the formatted string. This function doesn't
// write a terminating null character.
template <typename T>
inline void format_decimal(char *&buffer, T value) {
  typename internal::IntTraits<T>::MainType abs_value = value;
  if (internal::is_negative(value)) {
    *buffer++ = '-';
    abs_value = 0 - abs_value;
  }
  if (abs_value < 100) {
    if (abs_value < 10) {
      *buffer++ = static_cast<char>('0' + abs_value);
      return;
    }
    unsigned index = static_cast<unsigned>(abs_value * 2);
    *buffer++ = internal::DIGITS[index];
    *buffer++ = internal::DIGITS[index + 1];
    return;
  }
  unsigned num_digits = internal::count_digits(abs_value);
  internal::format_decimal(buffer, abs_value, num_digits);
  buffer += num_digits;
}
}

#if FMT_GCC_VERSION
// Use the system_header pragma to suppress warnings about variadic macros
// because suppressing -Wvariadic-macros with the diagnostic pragma doesn't
// work. It is used at the end because we want to suppress as little warnings
// as possible.
# pragma GCC system_header
#endif

// This is used to work around VC++ bugs in handling variadic macros.
#define FMT_EXPAND(args) args

// Returns the number of arguments.
// Based on https://groups.google.com/forum/#!topic/comp.std.c/d-6Mj5Lko_s.
#define FMT_NARG(...) FMT_NARG_(__VA_ARGS__, FMT_RSEQ_N())
#define FMT_NARG_(...) FMT_EXPAND(FMT_ARG_N(__VA_ARGS__))
#define FMT_ARG_N(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N
#define FMT_RSEQ_N() 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

#define FMT_CONCAT(a, b) a##b
#define FMT_FOR_EACH_(N, f, ...) \
  FMT_EXPAND(FMT_CONCAT(FMT_FOR_EACH, N)(f, __VA_ARGS__))
#define FMT_FOR_EACH(f, ...) \
  FMT_EXPAND(FMT_FOR_EACH_(FMT_NARG(__VA_ARGS__), f, __VA_ARGS__))

#define FMT_ADD_ARG_NAME(type, index) type arg##index
#define FMT_GET_ARG_NAME(type, index) arg##index

#if FMT_USE_VARIADIC_TEMPLATES
# define FMT_VARIADIC_(Char, ReturnType, func, call, ...) \
  template<typename... Args> \
  ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__), \
      const Args & ... args) { \
    using fmt::internal::Arg; \
    const Arg array[fmt::internal::NonZero<sizeof...(Args)>::VALUE] = { \
      fmt::internal::MakeArg<Char>(args)... \
    }; \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), \
      fmt::ArgList(array, sizeof...(Args))); \
  }
#else
// Defines a wrapper for a function taking __VA_ARGS__ arguments
// and n additional arguments of arbitrary types.
# define FMT_WRAP(Char, ReturnType, func, call, n, ...) \
  template <FMT_GEN(n, FMT_MAKE_TEMPLATE_ARG)> \
  inline ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__), \
      FMT_GEN(n, FMT_MAKE_ARG)) { \
    const fmt::internal::Arg args[] = {FMT_GEN(n, FMT_MAKE_REF_##Char)}; \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), \
      fmt::ArgList(args, sizeof(args) / sizeof(*args))); \
  }

# define FMT_VARIADIC_(Char, ReturnType, func, call, ...) \
  inline ReturnType func(FMT_FOR_EACH(FMT_ADD_ARG_NAME, __VA_ARGS__)) { \
    call(FMT_FOR_EACH(FMT_GET_ARG_NAME, __VA_ARGS__), fmt::ArgList()); \
  } \
  FMT_WRAP(Char, ReturnType, func, call, 1, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 2, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 3, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 4, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 5, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 6, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 7, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 8, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 9, __VA_ARGS__) \
  FMT_WRAP(Char, ReturnType, func, call, 10, __VA_ARGS__)
#endif  // FMT_USE_VARIADIC_TEMPLATES

/**
  \rst
  Defines a variadic function with the specified return type, function name
  and argument types passed as variable arguments to this macro.

  **Example**::

    void print_error(const char *file, int line, const char *format,
                     const fmt::ArgList &args) {
      fmt::print("{}: {}: ", file, line);
      fmt::print(format, args);
    }
    FMT_VARIADIC(void, print_error, const char *, int, const char *)

  ``FMT_VARIADIC`` is used for compatibility with legacy C++ compilers that
  don't implement variadic templates. You don't have to use this macro if
  you don't need legacy compiler support and can use variadic templates
  directly::

    template<typename... Args>
    void print_error(const char *file, int line, const char *format,
                     const Args & ... args) {
      fmt::print("{}: {}: ", file, line);
      fmt::print(format, args...);
    }
  \endrst
 */
#define FMT_VARIADIC(ReturnType, func, ...) \
  FMT_VARIADIC_(char, ReturnType, func, return func, __VA_ARGS__)

#define FMT_VARIADIC_W(ReturnType, func, ...) \
  FMT_VARIADIC_(wchar_t, ReturnType, func, return func, __VA_ARGS__)

namespace fmt {
FMT_VARIADIC(std::string, format, StringRef)
FMT_VARIADIC_W(std::wstring, format, WStringRef)
FMT_VARIADIC(void, print, StringRef)
FMT_VARIADIC(void, print, std::FILE *, StringRef)
FMT_VARIADIC(void, print, std::ostream &, StringRef)
FMT_VARIADIC(void, print_colored, Color, StringRef)
FMT_VARIADIC(std::string, sprintf, StringRef)
FMT_VARIADIC(int, printf, StringRef)
FMT_VARIADIC(int, fprintf, std::FILE *, StringRef)
}

// Restore warnings.
#if FMT_GCC_VERSION >= 406
# pragma GCC diagnostic pop
#endif

#endif  // FMT_FORMAT_H_