1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/* Copyright (C) 2022 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "Canvas2D.h"
#include "graphics/Color.h"
#include "graphics/ShaderManager.h"
#include "graphics/TextRenderer.h"
#include "graphics/TextureManager.h"
#include "gui/GUIMatrix.h"
#include "maths/Rect.h"
#include "maths/Vector2D.h"
#include "ps/CStrInternStatic.h"
#include "renderer/Renderer.h"
#include <array>
namespace
{
// Array of 2D elements unrolled into 1D array.
using PlaneArray2D = std::array<float, 12>;
struct SBindingSlots
{
int32_t transform;
int32_t colorAdd;
int32_t colorMul;
int32_t grayscaleFactor;
int32_t tex;
};
inline void DrawTextureImpl(
Renderer::Backend::IDeviceCommandContext* deviceCommandContext,
const CTexturePtr& texture, const PlaneArray2D& vertices, PlaneArray2D uvs,
const CColor& multiply, const CColor& add, const float grayscaleFactor,
const SBindingSlots& bindingSlots)
{
texture->UploadBackendTextureIfNeeded(deviceCommandContext);
deviceCommandContext->SetTexture(
bindingSlots.tex, texture->GetBackendTexture());
for (size_t idx = 0; idx < uvs.size(); idx += 2)
{
if (texture->GetWidth() > 0.0f)
uvs[idx + 0] /= texture->GetWidth();
if (texture->GetHeight() > 0.0f)
uvs[idx + 1] /= texture->GetHeight();
}
deviceCommandContext->SetUniform(bindingSlots.colorAdd, add.AsFloatArray());
deviceCommandContext->SetUniform(bindingSlots.colorMul, multiply.AsFloatArray());
deviceCommandContext->SetUniform(bindingSlots.grayscaleFactor, grayscaleFactor);
deviceCommandContext->SetVertexAttributeFormat(
Renderer::Backend::VertexAttributeStream::POSITION,
Renderer::Backend::Format::R32G32_SFLOAT, 0, 0,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0);
deviceCommandContext->SetVertexAttributeFormat(
Renderer::Backend::VertexAttributeStream::UV0,
Renderer::Backend::Format::R32G32_SFLOAT, 0, 0,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 1);
deviceCommandContext->SetVertexBufferData(
0, vertices.data(), vertices.size() * sizeof(vertices[0]));
deviceCommandContext->SetVertexBufferData(
1, uvs.data(), uvs.size() * sizeof(uvs[0]));
deviceCommandContext->Draw(0, vertices.size() / 2);
}
} // anonymous namespace
class CCanvas2D::Impl
{
public:
Impl(Renderer::Backend::IDeviceCommandContext* deviceCommandContext)
: DeviceCommandContext(deviceCommandContext)
{
}
void BindTechIfNeeded()
{
if (Tech)
return;
CShaderDefines defines;
Tech = g_Renderer.GetShaderManager().LoadEffect(str_canvas2d, defines);
// The canvas technique must be loaded because we can't render UI without it.
ENSURE(Tech);
DeviceCommandContext->SetGraphicsPipelineState(
Tech->GetGraphicsPipelineStateDesc());
DeviceCommandContext->BeginPass();
Renderer::Backend::IShaderProgram* shader = Tech->GetShader();
BindingSlots.transform = shader->GetBindingSlot(str_transform);
BindingSlots.colorAdd = shader->GetBindingSlot(str_colorAdd);
BindingSlots.colorMul = shader->GetBindingSlot(str_colorMul);
BindingSlots.grayscaleFactor = shader->GetBindingSlot(str_grayscaleFactor);
BindingSlots.tex = shader->GetBindingSlot(str_tex);
const CMatrix3D transform = GetDefaultGuiMatrix();
DeviceCommandContext->SetUniform(
BindingSlots.transform, transform.AsFloatArray());
}
void UnbindTech()
{
if (!Tech)
return;
DeviceCommandContext->EndPass();
Tech.reset();
}
Renderer::Backend::IDeviceCommandContext* DeviceCommandContext = nullptr;
CShaderTechniquePtr Tech;
// We assume that the shader can't be destroyed while it's bound. So these
// bindings remain valid while the shader is alive.
SBindingSlots BindingSlots;
};
CCanvas2D::CCanvas2D(
Renderer::Backend::IDeviceCommandContext* deviceCommandContext)
: m(std::make_unique<Impl>(deviceCommandContext))
{
}
CCanvas2D::~CCanvas2D()
{
Flush();
}
void CCanvas2D::DrawLine(const std::vector<CVector2D>& points, const float width, const CColor& color)
{
if (points.empty())
return;
// We could reuse the terrain line building, but it uses 3D space instead of
// 2D. So it can be less optimal for a canvas.
// Adding a single pixel line with alpha gradient to reduce the aliasing
// effect.
const float halfWidth = width * 0.5f + 1.0f;
struct PointIndex
{
size_t index;
float length;
CVector2D normal;
};
// Normal for the last index is undefined.
std::vector<PointIndex> pointsIndices;
pointsIndices.reserve(points.size());
pointsIndices.emplace_back(PointIndex{0, 0.0f, CVector2D()});
for (size_t index = 0; index < points.size();)
{
size_t nextIndex = index + 1;
CVector2D direction;
float length = 0.0f;
while (nextIndex < points.size())
{
direction = points[nextIndex] - points[pointsIndices.back().index];
length = direction.Length();
if (length >= halfWidth * 2.0f)
{
direction /= length;
break;
}
++nextIndex;
}
if (nextIndex == points.size())
break;
pointsIndices.back().length = length;
pointsIndices.back().normal = CVector2D(-direction.Y, direction.X);
pointsIndices.emplace_back(PointIndex{nextIndex, 0.0f, CVector2D()});
index = nextIndex;
}
if (pointsIndices.size() <= 1)
return;
std::vector<std::array<CVector2D, 3>> vertices;
std::vector<std::array<CVector2D, 3>> uvs;
std::vector<u16> indices;
const size_t reserveSize = 2 * pointsIndices.size() - 1;
vertices.reserve(reserveSize);
uvs.reserve(reserveSize);
indices.reserve(reserveSize * 12);
auto addVertices = [&vertices, &uvs, &indices, &halfWidth](const CVector2D& p1, const CVector2D& p2)
{
if (!vertices.empty())
{
const u16 lastVertexIndex = static_cast<u16>(vertices.size() * 3 - 1);
ENSURE(lastVertexIndex >= 2);
// First vertical half of the segment.
indices.emplace_back(lastVertexIndex - 2);
indices.emplace_back(lastVertexIndex - 1);
indices.emplace_back(lastVertexIndex + 2);
indices.emplace_back(lastVertexIndex - 2);
indices.emplace_back(lastVertexIndex + 2);
indices.emplace_back(lastVertexIndex + 1);
// Second vertical half of the segment.
indices.emplace_back(lastVertexIndex - 1);
indices.emplace_back(lastVertexIndex);
indices.emplace_back(lastVertexIndex + 3);
indices.emplace_back(lastVertexIndex - 1);
indices.emplace_back(lastVertexIndex + 3);
indices.emplace_back(lastVertexIndex + 2);
}
vertices.emplace_back(std::array<CVector2D, 3>{p1, (p1 + p2) / 2.0f, p2});
uvs.emplace_back(std::array<CVector2D, 3>{
CVector2D(0.0f, 0.0f),
CVector2D(std::max(1.0f, halfWidth - 1.0f), 0.0f),
CVector2D(0.0f, 0.0f)});
};
addVertices(
points[pointsIndices.front().index] - pointsIndices.front().normal * halfWidth,
points[pointsIndices.front().index] + pointsIndices.front().normal * halfWidth);
// For each pair of adjacent segments we need to add smooth transition.
for (size_t index = 0; index + 2 < pointsIndices.size(); ++index)
{
const PointIndex& pointIndex = pointsIndices[index];
const PointIndex& nextPointIndex = pointsIndices[index + 1];
// Angle between adjacent segments.
const float cosAlpha = pointIndex.normal.Dot(nextPointIndex.normal);
constexpr float EPS = 1e-3f;
// Use a simple segment if adjacent segments are almost codirectional.
if (cosAlpha > 1.0f - EPS)
{
addVertices(
points[pointIndex.index] - pointIndex.normal * halfWidth,
points[pointIndex.index] + pointIndex.normal * halfWidth);
}
else
{
addVertices(
points[nextPointIndex.index] - pointIndex.normal * halfWidth,
points[nextPointIndex.index] + pointIndex.normal * halfWidth);
// Average normal between adjacent segments. We might want to rotate it but
// for now we assume that it's enough for current line widths.
const CVector2D normal = cosAlpha < -1.0f + EPS
? CVector2D(pointIndex.normal.Y, -pointIndex.normal.X)
: ((pointIndex.normal + nextPointIndex.normal) / 2.0f).Normalized();
addVertices(
points[nextPointIndex.index] - normal * halfWidth,
points[nextPointIndex.index] + normal * halfWidth);
addVertices(
points[nextPointIndex.index] - nextPointIndex.normal * halfWidth,
points[nextPointIndex.index] + nextPointIndex.normal * halfWidth);
}
// We use 16-bit indices, it means that we can't use more than 64K vertices.
const size_t requiredFreeSpace = 3 * 4;
if (vertices.size() * 3 + requiredFreeSpace >= 65536)
break;
}
addVertices(
points[pointsIndices.back().index] - pointsIndices[pointsIndices.size() - 2].normal * halfWidth,
points[pointsIndices.back().index] + pointsIndices[pointsIndices.size() - 2].normal * halfWidth);
m->BindTechIfNeeded();
m->DeviceCommandContext->SetTexture(
m->BindingSlots.tex,
g_Renderer.GetTextureManager().GetAlphaGradientTexture()->GetBackendTexture());
const CColor colorAdd(0.0f, 0.0f, 0.0f, 0.0f);
m->DeviceCommandContext->SetUniform(
m->BindingSlots.colorAdd, colorAdd.AsFloatArray());
m->DeviceCommandContext->SetUniform(
m->BindingSlots.colorMul, color.AsFloatArray());
m->DeviceCommandContext->SetUniform(
m->BindingSlots.grayscaleFactor, 0.0f);
m->DeviceCommandContext->SetVertexAttributeFormat(
Renderer::Backend::VertexAttributeStream::POSITION,
Renderer::Backend::Format::R32G32_SFLOAT, 0, 0,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0);
m->DeviceCommandContext->SetVertexAttributeFormat(
Renderer::Backend::VertexAttributeStream::UV0,
Renderer::Backend::Format::R32G32_SFLOAT, 0, 0,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 1);
m->DeviceCommandContext->SetVertexBufferData(0, vertices.data(), vertices.size() * sizeof(vertices[0]));
m->DeviceCommandContext->SetVertexBufferData(1, uvs.data(), uvs.size() * sizeof(uvs[0]));
m->DeviceCommandContext->SetIndexBufferData(indices.data(), indices.size() * sizeof(indices[0]));
m->DeviceCommandContext->DrawIndexed(0, indices.size(), 0);
}
void CCanvas2D::DrawRect(const CRect& rect, const CColor& color)
{
const PlaneArray2D uvs
{
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
};
const PlaneArray2D vertices =
{
rect.left, rect.bottom,
rect.right, rect.bottom,
rect.right, rect.top,
rect.left, rect.bottom,
rect.right, rect.top,
rect.left, rect.top
};
m->BindTechIfNeeded();
DrawTextureImpl(
m->DeviceCommandContext,
g_Renderer.GetTextureManager().GetTransparentTexture(),
vertices, uvs, CColor(0.0f, 0.0f, 0.0f, 0.0f), color, 0.0f,
m->BindingSlots);
}
void CCanvas2D::DrawTexture(CTexturePtr texture, const CRect& destination)
{
DrawTexture(texture,
destination, CRect(0, 0, texture->GetWidth(), texture->GetHeight()),
CColor(1.0f, 1.0f, 1.0f, 1.0f), CColor(0.0f, 0.0f, 0.0f, 0.0f), 0.0f);
}
void CCanvas2D::DrawTexture(
CTexturePtr texture, const CRect& destination, const CRect& source,
const CColor& multiply, const CColor& add, const float grayscaleFactor)
{
const PlaneArray2D uvs =
{
source.left, source.bottom,
source.right, source.bottom,
source.right, source.top,
source.left, source.bottom,
source.right, source.top,
source.left, source.top
};
const PlaneArray2D vertices =
{
destination.left, destination.bottom,
destination.right, destination.bottom,
destination.right, destination.top,
destination.left, destination.bottom,
destination.right, destination.top,
destination.left, destination.top
};
m->BindTechIfNeeded();
DrawTextureImpl(
m->DeviceCommandContext, texture, vertices, uvs,
multiply, add, grayscaleFactor, m->BindingSlots);
}
void CCanvas2D::DrawText(CTextRenderer& textRenderer)
{
m->BindTechIfNeeded();
m->DeviceCommandContext->SetUniform(
m->BindingSlots.grayscaleFactor, 0.0f);
textRenderer.Render(m->DeviceCommandContext, m->Tech->GetShader(), GetDefaultGuiMatrix());
}
void CCanvas2D::Flush()
{
m->UnbindTech();
}
|