1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/* Copyright (C) 2021 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Determine intersection of rays with a heightfield.
*/
#include "precompiled.h"
#include "HFTracer.h"
#include "graphics/Patch.h"
#include "graphics/Terrain.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/MathUtil.h"
#include "maths/Vector3D.h"
#include <cfloat>
// To cope well with points that are slightly off the edge of the map,
// we act as if there's an N-tile margin around the edges of the heightfield.
// (N shouldn't be too huge else it'll hurt performance a little when
// RayIntersect loops through it all.)
// CTerrain::CalcPosition implements clamp-to-edge behaviour so the tracer
// will have that behaviour.
static const int MARGIN_SIZE = 64;
///////////////////////////////////////////////////////////////////////////////
// CHFTracer constructor
CHFTracer::CHFTracer(CTerrain *pTerrain):
m_pTerrain(pTerrain),
m_Heightfield(m_pTerrain->GetHeightMap()),
m_MapSize(m_pTerrain->GetVerticesPerSide()),
m_CellSize((float)TERRAIN_TILE_SIZE),
m_HeightScale(HEIGHT_SCALE)
{
}
///////////////////////////////////////////////////////////////////////////////
// RayTriIntersect: intersect a ray with triangle defined by vertices
// v0,v1,v2; return true if ray hits triangle at distance less than dist,
// or false otherwise
static bool RayTriIntersect(const CVector3D& v0, const CVector3D& v1, const CVector3D& v2,
const CVector3D& origin, const CVector3D& dir, float& dist)
{
const float EPSILON=0.00001f;
// calculate edge vectors
CVector3D edge0=v1-v0;
CVector3D edge1=v2-v0;
// begin calculating determinant - also used to calculate U parameter
CVector3D pvec=dir.Cross(edge1);
// if determinant is near zero, ray lies in plane of triangle
float det = edge0.Dot(pvec);
if (fabs(det)<EPSILON)
return false;
float inv_det = 1.0f/det;
// calculate vector from vert0 to ray origin
CVector3D tvec=origin-v0;
// calculate U parameter, test bounds
float u=tvec.Dot(pvec)*inv_det;
if (u<-0.01f || u>1.01f)
return false;
// prepare to test V parameter
CVector3D qvec=tvec.Cross(edge0);
// calculate V parameter and test bounds
float v=dir.Dot(qvec)*inv_det;
if (v<0.0f || u+v>1.0f)
return false;
// calculate distance to intersection point from ray origin
float d=edge1.Dot(qvec)*inv_det;
if (d>=0 && d<dist) {
dist=d;
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
// CellIntersect: test if ray intersects either of the triangles in the given
// cell - return hit result, and distance to hit, if hit occurred
bool CHFTracer::CellIntersect(int cx, int cz, const CVector3D& origin, const CVector3D& dir, float& dist) const
{
bool res=false;
// get vertices for this cell
CVector3D vpos[4];
m_pTerrain->CalcPosition(cx,cz,vpos[0]);
m_pTerrain->CalcPosition(cx+1,cz,vpos[1]);
m_pTerrain->CalcPosition(cx+1,cz+1,vpos[2]);
m_pTerrain->CalcPosition(cx,cz+1,vpos[3]);
dist=1.0e30f;
if (RayTriIntersect(vpos[0],vpos[1],vpos[2],origin,dir,dist)) {
res=true;
}
if (RayTriIntersect(vpos[0],vpos[2],vpos[3],origin,dir,dist)) {
res=true;
}
return res;
}
///////////////////////////////////////////////////////////////////////////////
// RayIntersect: intersect ray with this heightfield; return true if
// intersection occurs (and fill in grid coordinates of intersection), or false
// otherwise
bool CHFTracer::RayIntersect(const CVector3D& origin, const CVector3D& dir, int& x, int& z, CVector3D& ipt) const
{
// If the map is empty (which should never happen),
// return early before we crash when reading zero-sized heightmaps
if (!m_MapSize)
{
debug_warn(L"CHFTracer::RayIntersect called with zero-size map");
return false;
}
// intersect first against bounding box
CBoundingBoxAligned bound;
bound[0] = CVector3D(-MARGIN_SIZE * m_CellSize, 0, -MARGIN_SIZE * m_CellSize);
bound[1] = CVector3D((m_MapSize + MARGIN_SIZE) * m_CellSize, 65535 * m_HeightScale, (m_MapSize + MARGIN_SIZE) * m_CellSize);
float tmin,tmax;
if (!bound.RayIntersect(origin,dir,tmin,tmax)) {
// ray missed world bounds; no intersection
return false;
}
// project origin onto grid, if necessary, to get starting point for traversal
CVector3D traversalPt;
if (tmin>0) {
traversalPt=origin+dir*tmin;
} else {
traversalPt=origin;
}
// setup traversal variables
int sx=dir.X<0 ? -1 : 1;
int sz=dir.Z<0 ? -1 : 1;
float invCellSize=1.0f/float(m_CellSize);
float fcx=traversalPt.X*invCellSize;
int cx=(int)floor(fcx);
float fcz=traversalPt.Z*invCellSize;
int cz=(int)floor(fcz);
float invdx = 1.0e20f;
float invdz = 1.0e20f;
if (fabs(dir.X) > 1.0e-20)
invdx = float(1.0/fabs(dir.X));
if (fabs(dir.Z) > 1.0e-20)
invdz = float(1.0/fabs(dir.Z));
do {
// test current cell
if (cx >= -MARGIN_SIZE && cx < int(m_MapSize + MARGIN_SIZE - 1) && cz >= -MARGIN_SIZE && cz < int(m_MapSize + MARGIN_SIZE - 1))
{
float dist;
if (CellIntersect(cx,cz,origin,dir,dist)) {
x=cx;
z=cz;
ipt=origin+dir*dist;
return true;
}
}
else
{
// Degenerate case: y close to zero
// catch travelling off the map
if ((cx < -MARGIN_SIZE) && (sx < 0))
return false;
if ((cx >= (int)(m_MapSize + MARGIN_SIZE - 1)) && (sx > 0))
return false;
if ((cz < -MARGIN_SIZE) && (sz < 0))
return false;
if ((cz >= (int)(m_MapSize + MARGIN_SIZE - 1)) && (sz > 0))
return false;
}
// get coords of current cell
fcx=traversalPt.X*invCellSize;
fcz=traversalPt.Z*invCellSize;
// get distance to next cell in x,z
float dx=(sx==-1) ? fcx-float(cx) : 1-(fcx-float(cx));
dx*=invdx;
float dz=(sz==-1) ? fcz-float(cz) : 1-(fcz-float(cz));
dz*=invdz;
// advance ..
float dist;
if (dx<dz) {
cx+=sx;
dist=dx;
} else {
cz+=sz;
dist=dz;
}
traversalPt+=dir*dist;
} while (traversalPt.Y>=0);
// fell off end of heightmap with no intersection; return a miss
return false;
}
static bool TestTile(u16* heightmap, int stride, int i, int j, const CVector3D& pos, const CVector3D& dir, CVector3D& isct)
{
u16 y00 = heightmap[i + j*stride];
u16 y10 = heightmap[i+1 + j*stride];
u16 y01 = heightmap[i + (j+1)*stride];
u16 y11 = heightmap[i+1 + (j+1)*stride];
CVector3D p00( i * TERRAIN_TILE_SIZE, y00 * HEIGHT_SCALE, j * TERRAIN_TILE_SIZE);
CVector3D p10((i+1) * TERRAIN_TILE_SIZE, y10 * HEIGHT_SCALE, j * TERRAIN_TILE_SIZE);
CVector3D p01( i * TERRAIN_TILE_SIZE, y01 * HEIGHT_SCALE, (j+1) * TERRAIN_TILE_SIZE);
CVector3D p11((i+1) * TERRAIN_TILE_SIZE, y11 * HEIGHT_SCALE, (j+1) * TERRAIN_TILE_SIZE);
int mid1 = y00+y11;
int mid2 = y01+y10;
int triDir = (mid1 < mid2);
float dist = FLT_MAX;
if (triDir)
{
if (RayTriIntersect(p00, p10, p01, pos, dir, dist) || // lower-left triangle
RayTriIntersect(p11, p01, p10, pos, dir, dist)) // upper-right triangle
{
isct = pos + dir * dist;
return true;
}
}
else
{
if (RayTriIntersect(p00, p11, p01, pos, dir, dist) || // upper-left triangle
RayTriIntersect(p00, p10, p11, pos, dir, dist)) // lower-right triangle
{
isct = pos + dir * dist;
return true;
}
}
return false;
}
bool CHFTracer::PatchRayIntersect(CPatch* patch, const CVector3D& origin, const CVector3D& dir, CVector3D* out)
{
// (TODO: This largely duplicates RayIntersect - some refactoring might be
// nice in the future.)
// General approach:
// Given the ray defined by origin + dir * t, we increase t until it
// enters the patch's bounding box. The x,z coordinates identify which
// tile it is currently above/below. Do an intersection test vs the tile's
// two triangles. If it doesn't hit, do a 2D line rasterisation to find
// the next tiles the ray will pass through, and test each of them.
// Start by jumping to the point where the ray enters the bounding box
CBoundingBoxAligned bound = patch->GetWorldBounds();
float tmin, tmax;
if (!bound.RayIntersect(origin, dir, tmin, tmax))
{
// Ray missed patch; no intersection
return false;
}
int heightmapStride = patch->m_Parent->GetVerticesPerSide();
// Get heightmap, offset to start at this patch
u16* heightmap = patch->m_Parent->GetHeightMap() +
patch->m_X * PATCH_SIZE +
patch->m_Z * PATCH_SIZE * heightmapStride;
// Get patch-space position of ray origin and bbox entry point
CVector3D patchPos(
patch->m_X * PATCH_SIZE * TERRAIN_TILE_SIZE,
0.0f,
patch->m_Z * PATCH_SIZE * TERRAIN_TILE_SIZE);
CVector3D originPatch = origin - patchPos;
CVector3D entryPatch = originPatch + dir * tmin;
// We want to do a simple 2D line rasterisation (with the 3D ray projected
// down onto the Y plane). That will tell us which cells are intersected
// in 2D dimensions, then we can do a more precise 3D intersection test.
//
// WLOG, assume the ray has direction dir.x > 0, dir.z > 0, and starts in
// cell (i,j). The next cell intersecting the line must be either (i+1,j)
// or (i,j+1). To tell which, just check whether the point (i+1,j+1) is
// above or below the ray. Advance into that cell and repeat.
//
// (If the ray passes precisely through (i+1,j+1), we can pick either.
// If the ray is parallel to Y, only the first cell matters, then we can
// carry on rasterising in any direction (a bit of a waste of time but
// should be extremely rare, and it's safe and simple).)
// Work out which tile we're starting in
int i = Clamp<int>(entryPatch.X / TERRAIN_TILE_SIZE, 0, PATCH_SIZE - 1);
int j = Clamp<int>(entryPatch.Z / TERRAIN_TILE_SIZE, 0, PATCH_SIZE - 1);
// Work out which direction the ray is going in
int di = (dir.X >= 0 ? 1 : 0);
int dj = (dir.Z >= 0 ? 1 : 0);
do
{
CVector3D isct;
if (TestTile(heightmap, heightmapStride, i, j, originPatch, dir, isct))
{
if (out)
*out = isct + patchPos;
return true;
}
// Get the vertex between the two possible next cells
float nx = (i + di) * (int)TERRAIN_TILE_SIZE;
float nz = (j + dj) * (int)TERRAIN_TILE_SIZE;
// Test which side of the ray the vertex is on, and advance into the
// appropriate cell, using a test that works for all 4 combinations
// of di,dj
float dot = dir.Z * (nx - originPatch.X) - dir.X * (nz - originPatch.Z);
if ((di == dj) == (dot > 0.0f))
j += dj*2-1;
else
i += di*2-1;
}
while (i >= 0 && j >= 0 && i < PATCH_SIZE && j < PATCH_SIZE);
// Ran off the edge of the patch, so no intersection
return false;
}
|