File: HFTracer.cpp

package info (click to toggle)
0ad 0.0.26-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 130,460 kB
  • sloc: cpp: 261,824; ansic: 198,392; javascript: 19,067; python: 14,557; sh: 7,629; perl: 4,072; xml: 849; makefile: 741; java: 533; ruby: 229; php: 190; pascal: 30; sql: 21; tcl: 4
file content (360 lines) | stat: -rw-r--r-- 11,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/* Copyright (C) 2021 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * Determine intersection of rays with a heightfield.
 */

#include "precompiled.h"

#include "HFTracer.h"

#include "graphics/Patch.h"
#include "graphics/Terrain.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/MathUtil.h"
#include "maths/Vector3D.h"

#include <cfloat>

// To cope well with points that are slightly off the edge of the map,
// we act as if there's an N-tile margin around the edges of the heightfield.
// (N shouldn't be too huge else it'll hurt performance a little when
// RayIntersect loops through it all.)
// CTerrain::CalcPosition implements clamp-to-edge behaviour so the tracer
// will have that behaviour.
static const int MARGIN_SIZE = 64;

///////////////////////////////////////////////////////////////////////////////
// CHFTracer constructor
CHFTracer::CHFTracer(CTerrain *pTerrain):
	m_pTerrain(pTerrain),
	m_Heightfield(m_pTerrain->GetHeightMap()),
	m_MapSize(m_pTerrain->GetVerticesPerSide()),
	m_CellSize((float)TERRAIN_TILE_SIZE),
	m_HeightScale(HEIGHT_SCALE)
{
}


///////////////////////////////////////////////////////////////////////////////
// RayTriIntersect: intersect a ray with triangle defined by vertices
// v0,v1,v2; return true if ray hits triangle at distance less than dist,
// or false otherwise
static bool RayTriIntersect(const CVector3D& v0, const CVector3D& v1, const CVector3D& v2,
								const CVector3D& origin, const CVector3D& dir, float& dist)
{
	const float EPSILON=0.00001f;

	// calculate edge vectors
	CVector3D edge0=v1-v0;
	CVector3D edge1=v2-v0;

    // begin calculating determinant - also used to calculate U parameter
    CVector3D pvec=dir.Cross(edge1);

    // if determinant is near zero, ray lies in plane of triangle
    float det = edge0.Dot(pvec);
    if (fabs(det)<EPSILON)
        return false;

    float inv_det = 1.0f/det;

    // calculate vector from vert0 to ray origin
    CVector3D tvec=origin-v0;

    // calculate U parameter, test bounds
    float u=tvec.Dot(pvec)*inv_det;
    if (u<-0.01f || u>1.01f)
        return false;

    // prepare to test V parameter
    CVector3D qvec=tvec.Cross(edge0);

    // calculate V parameter and test bounds
    float v=dir.Dot(qvec)*inv_det;
    if (v<0.0f || u+v>1.0f)
        return false;

    // calculate distance to intersection point from ray origin
    float d=edge1.Dot(qvec)*inv_det;
    if (d>=0 && d<dist) {
        dist=d;
        return true;
    }

    return false;
}

///////////////////////////////////////////////////////////////////////////////
// CellIntersect: test if ray intersects either of the triangles in the given
// cell - return hit result, and distance to hit, if hit occurred
bool CHFTracer::CellIntersect(int cx, int cz, const CVector3D& origin, const CVector3D& dir, float& dist) const
{
	bool res=false;

	// get vertices for this cell
	CVector3D vpos[4];
	m_pTerrain->CalcPosition(cx,cz,vpos[0]);
	m_pTerrain->CalcPosition(cx+1,cz,vpos[1]);
	m_pTerrain->CalcPosition(cx+1,cz+1,vpos[2]);
	m_pTerrain->CalcPosition(cx,cz+1,vpos[3]);

	dist=1.0e30f;
	if (RayTriIntersect(vpos[0],vpos[1],vpos[2],origin,dir,dist)) {
		res=true;
	}

	if (RayTriIntersect(vpos[0],vpos[2],vpos[3],origin,dir,dist)) {
		res=true;
	}

	return res;
}

///////////////////////////////////////////////////////////////////////////////
// RayIntersect: intersect ray with this heightfield; return true if
// intersection occurs (and fill in grid coordinates of intersection), or false
// otherwise
bool CHFTracer::RayIntersect(const CVector3D& origin, const CVector3D& dir, int& x, int& z, CVector3D& ipt) const
{
	// If the map is empty (which should never happen),
	// return early before we crash when reading zero-sized heightmaps
	if (!m_MapSize)
	{
		debug_warn(L"CHFTracer::RayIntersect called with zero-size map");
		return false;
	}

	// intersect first against bounding box
	CBoundingBoxAligned bound;
	bound[0] = CVector3D(-MARGIN_SIZE * m_CellSize, 0, -MARGIN_SIZE * m_CellSize);
	bound[1] = CVector3D((m_MapSize + MARGIN_SIZE) * m_CellSize, 65535 * m_HeightScale, (m_MapSize + MARGIN_SIZE) * m_CellSize);

	float tmin,tmax;
	if (!bound.RayIntersect(origin,dir,tmin,tmax)) {
		// ray missed world bounds; no intersection
		return false;
	}

	// project origin onto grid, if necessary, to get starting point for traversal
	CVector3D traversalPt;
	if (tmin>0) {
		traversalPt=origin+dir*tmin;
	} else {
		traversalPt=origin;
	}

	// setup traversal variables
	int sx=dir.X<0 ? -1 : 1;
	int sz=dir.Z<0 ? -1 : 1;

	float invCellSize=1.0f/float(m_CellSize);

	float fcx=traversalPt.X*invCellSize;
	int cx=(int)floor(fcx);

	float fcz=traversalPt.Z*invCellSize;
	int cz=(int)floor(fcz);

	float invdx = 1.0e20f;
	float invdz = 1.0e20f;

	if (fabs(dir.X) > 1.0e-20)
		invdx = float(1.0/fabs(dir.X));
	if (fabs(dir.Z) > 1.0e-20)
		invdz = float(1.0/fabs(dir.Z));

	do {
		// test current cell
		if (cx >= -MARGIN_SIZE && cx < int(m_MapSize + MARGIN_SIZE - 1) && cz >= -MARGIN_SIZE && cz < int(m_MapSize + MARGIN_SIZE - 1))
		{
			float dist;

			if (CellIntersect(cx,cz,origin,dir,dist)) {
				x=cx;
				z=cz;
				ipt=origin+dir*dist;
				return true;
			}
		}
		else
		{
			// Degenerate case: y close to zero
			// catch travelling off the map
			if ((cx < -MARGIN_SIZE) && (sx < 0))
				return false;
			if ((cx >= (int)(m_MapSize + MARGIN_SIZE - 1)) && (sx > 0))
				return false;
			if ((cz < -MARGIN_SIZE) && (sz < 0))
				return false;
			if ((cz >= (int)(m_MapSize + MARGIN_SIZE - 1)) && (sz > 0))
				return false;
		}

		// get coords of current cell
		fcx=traversalPt.X*invCellSize;
		fcz=traversalPt.Z*invCellSize;

		// get distance to next cell in x,z
		float dx=(sx==-1) ? fcx-float(cx) : 1-(fcx-float(cx));
		dx*=invdx;
		float dz=(sz==-1) ? fcz-float(cz) : 1-(fcz-float(cz));
		dz*=invdz;

		// advance ..
		float dist;
		if (dx<dz) {
			cx+=sx;
			dist=dx;
		} else {
			cz+=sz;
			dist=dz;
		}

		traversalPt+=dir*dist;
	} while (traversalPt.Y>=0);

	// fell off end of heightmap with no intersection; return a miss
	return false;
}

static bool TestTile(u16* heightmap, int stride, int i, int j, const CVector3D& pos, const CVector3D& dir, CVector3D& isct)
{
	u16 y00 = heightmap[i + j*stride];
	u16 y10 = heightmap[i+1 + j*stride];
	u16 y01 = heightmap[i + (j+1)*stride];
	u16 y11 = heightmap[i+1 + (j+1)*stride];

	CVector3D p00(    i * TERRAIN_TILE_SIZE, y00 * HEIGHT_SCALE,     j * TERRAIN_TILE_SIZE);
	CVector3D p10((i+1) * TERRAIN_TILE_SIZE, y10 * HEIGHT_SCALE,     j * TERRAIN_TILE_SIZE);
	CVector3D p01(    i * TERRAIN_TILE_SIZE, y01 * HEIGHT_SCALE, (j+1) * TERRAIN_TILE_SIZE);
	CVector3D p11((i+1) * TERRAIN_TILE_SIZE, y11 * HEIGHT_SCALE, (j+1) * TERRAIN_TILE_SIZE);

	int mid1 = y00+y11;
	int mid2 = y01+y10;
	int triDir = (mid1 < mid2);

	float dist = FLT_MAX;

	if (triDir)
	{
		if (RayTriIntersect(p00, p10, p01, pos, dir, dist) || // lower-left triangle
		    RayTriIntersect(p11, p01, p10, pos, dir, dist))   // upper-right triangle
		{
			isct = pos + dir * dist;
			return true;
		}
	}
	else
	{
		if (RayTriIntersect(p00, p11, p01, pos, dir, dist) || // upper-left triangle
		    RayTriIntersect(p00, p10, p11, pos, dir, dist))   // lower-right triangle
		{
			isct = pos + dir * dist;
			return true;
		}
	}
	return false;
}

bool CHFTracer::PatchRayIntersect(CPatch* patch, const CVector3D& origin, const CVector3D& dir, CVector3D* out)
{
	// (TODO: This largely duplicates RayIntersect - some refactoring might be
	// nice in the future.)

	// General approach:
	// Given the ray defined by origin + dir * t, we increase t until it
	// enters the patch's bounding box. The x,z coordinates identify which
	// tile it is currently above/below. Do an intersection test vs the tile's
	// two triangles. If it doesn't hit, do a 2D line rasterisation to find
	// the next tiles the ray will pass through, and test each of them.

	// Start by jumping to the point where the ray enters the bounding box
	CBoundingBoxAligned bound = patch->GetWorldBounds();
	float tmin, tmax;
	if (!bound.RayIntersect(origin, dir, tmin, tmax))
	{
		// Ray missed patch; no intersection
		return false;
	}

	int heightmapStride = patch->m_Parent->GetVerticesPerSide();

	// Get heightmap, offset to start at this patch
	u16* heightmap = patch->m_Parent->GetHeightMap() +
			patch->m_X * PATCH_SIZE +
			patch->m_Z * PATCH_SIZE * heightmapStride;

	// Get patch-space position of ray origin and bbox entry point
	CVector3D patchPos(
			patch->m_X * PATCH_SIZE * TERRAIN_TILE_SIZE,
			0.0f,
			patch->m_Z * PATCH_SIZE * TERRAIN_TILE_SIZE);
	CVector3D originPatch = origin - patchPos;
	CVector3D entryPatch = originPatch + dir * tmin;

	// We want to do a simple 2D line rasterisation (with the 3D ray projected
	// down onto the Y plane). That will tell us which cells are intersected
	// in 2D dimensions, then we can do a more precise 3D intersection test.
	//
	// WLOG, assume the ray has direction dir.x > 0, dir.z > 0, and starts in
	// cell (i,j). The next cell intersecting the line must be either (i+1,j)
	// or (i,j+1). To tell which, just check whether the point (i+1,j+1) is
	// above or below the ray. Advance into that cell and repeat.
	//
	// (If the ray passes precisely through (i+1,j+1), we can pick either.
	// If the ray is parallel to Y, only the first cell matters, then we can
	// carry on rasterising in any direction (a bit of a waste of time but
	// should be extremely rare, and it's safe and simple).)

	// Work out which tile we're starting in
	int i = Clamp<int>(entryPatch.X / TERRAIN_TILE_SIZE, 0, PATCH_SIZE - 1);
	int j = Clamp<int>(entryPatch.Z / TERRAIN_TILE_SIZE, 0, PATCH_SIZE - 1);

	// Work out which direction the ray is going in
	int di = (dir.X >= 0 ? 1 : 0);
	int dj = (dir.Z >= 0 ? 1 : 0);

	do
	{
		CVector3D isct;
		if (TestTile(heightmap, heightmapStride, i, j, originPatch, dir, isct))
		{
			if (out)
				*out = isct + patchPos;
			return true;
		}

		// Get the vertex between the two possible next cells
		float nx = (i + di) * (int)TERRAIN_TILE_SIZE;
		float nz = (j + dj) * (int)TERRAIN_TILE_SIZE;

		// Test which side of the ray the vertex is on, and advance into the
		// appropriate cell, using a test that works for all 4 combinations
		// of di,dj
		float dot = dir.Z * (nx - originPatch.X) - dir.X * (nz - originPatch.Z);
		if ((di == dj) == (dot > 0.0f))
			j += dj*2-1;
		else
			i += di*2-1;
	}
	while (i >= 0 && j >= 0 && i < PATCH_SIZE && j < PATCH_SIZE);

	// Ran off the edge of the patch, so no intersection
	return false;
}