1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
/* Copyright (C) 2022 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "ParticleEmitterType.h"
#include "graphics/Color.h"
#include "graphics/ParticleEmitter.h"
#include "graphics/ParticleManager.h"
#include "graphics/TextureManager.h"
#include "maths/MathUtil.h"
#include "ps/CLogger.h"
#include "ps/Filesystem.h"
#include "ps/XML/Xeromyces.h"
#include "renderer/Renderer.h"
#include <boost/random/uniform_real_distribution.hpp>
/**
* Interface for particle state variables, which get evaluated for each newly
* constructed particle.
*/
class IParticleVar
{
public:
IParticleVar() : m_LastValue(0) { }
virtual ~IParticleVar() {}
/// Computes and returns a new value.
float Evaluate(CParticleEmitter& emitter)
{
m_LastValue = Compute(*emitter.m_Type, emitter);
return m_LastValue;
}
/**
* Returns the last value that Evaluate returned.
* This is used for variables that depend on other variables (which is kind
* of fragile since it's very order-dependent), so they don't get re-randomised
* and don't have a danger of infinite recursion.
*/
float LastValue() { return m_LastValue; }
/**
* Returns the minimum value that Evaluate might ever return,
* for computing bounds.
*/
virtual float Min(CParticleEmitterType& type) = 0;
/**
* Returns the maximum value that Evaluate might ever return,
* for computing bounds.
*/
virtual float Max(CParticleEmitterType& type) = 0;
protected:
virtual float Compute(CParticleEmitterType& type, CParticleEmitter& emitter) = 0;
private:
float m_LastValue;
};
/**
* Particle variable that returns a constant value.
*/
class CParticleVarConstant : public IParticleVar
{
public:
CParticleVarConstant(float val) :
m_Value(val)
{
}
virtual float Compute(CParticleEmitterType& UNUSED(type), CParticleEmitter& UNUSED(emitter))
{
return m_Value;
}
virtual float Min(CParticleEmitterType& UNUSED(type))
{
return m_Value;
}
virtual float Max(CParticleEmitterType& UNUSED(type))
{
return m_Value;
}
private:
float m_Value;
};
/**
* Particle variable that returns a uniformly-distributed random value.
*/
class CParticleVarUniform : public IParticleVar
{
public:
CParticleVarUniform(float min, float max) :
m_Min(min), m_Max(max)
{
}
virtual float Compute(CParticleEmitterType& type, CParticleEmitter& UNUSED(emitter))
{
return boost::random::uniform_real_distribution<float>(m_Min, m_Max)(type.m_Manager.m_RNG);
}
virtual float Min(CParticleEmitterType& UNUSED(type))
{
return m_Min;
}
virtual float Max(CParticleEmitterType& UNUSED(type))
{
return m_Max;
}
private:
float m_Min;
float m_Max;
};
/**
* Particle variable that returns the same value as some other variable
* (assuming that variable was evaluated before this one).
*/
class CParticleVarCopy : public IParticleVar
{
public:
CParticleVarCopy(int from) :
m_From(from)
{
}
virtual float Compute(CParticleEmitterType& type, CParticleEmitter& UNUSED(emitter))
{
return type.m_Variables[m_From]->LastValue();
}
virtual float Min(CParticleEmitterType& type)
{
return type.m_Variables[m_From]->Min(type);
}
virtual float Max(CParticleEmitterType& type)
{
return type.m_Variables[m_From]->Max(type);
}
private:
int m_From;
};
/**
* A terrible ad-hoc attempt at handling some particular variable calculation,
* which really needs to be cleaned up and generalised.
*/
class CParticleVarExpr : public IParticleVar
{
public:
CParticleVarExpr(const CStr& from, float mul, float max) :
m_From(from), m_Mul(mul), m_Max(max)
{
}
virtual float Compute(CParticleEmitterType& UNUSED(type), CParticleEmitter& emitter)
{
return std::min(m_Max, emitter.m_EntityVariables[m_From] * m_Mul);
}
virtual float Min(CParticleEmitterType& UNUSED(type))
{
return 0.f;
}
virtual float Max(CParticleEmitterType& UNUSED(type))
{
return m_Max;
}
private:
CStr m_From;
float m_Mul;
float m_Max;
};
/**
* Interface for particle effectors, which get evaluated every frame to
* update particles.
*/
class IParticleEffector
{
public:
IParticleEffector() { }
virtual ~IParticleEffector() {}
/// Updates all particles.
virtual void Evaluate(std::vector<SParticle>& particles, float dt) = 0;
/// Returns maximum acceleration caused by this effector.
virtual CVector3D Max() = 0;
};
/**
* Particle effector that applies a constant acceleration.
*/
class CParticleEffectorForce : public IParticleEffector
{
public:
CParticleEffectorForce(float x, float y, float z) :
m_Accel(x, y, z)
{
}
virtual void Evaluate(std::vector<SParticle>& particles, float dt)
{
CVector3D dv = m_Accel * dt;
for (size_t i = 0; i < particles.size(); ++i)
particles[i].velocity += dv;
}
virtual CVector3D Max()
{
return m_Accel;
}
private:
CVector3D m_Accel;
};
CParticleEmitterType::CParticleEmitterType(const VfsPath& path, CParticleManager& manager) :
m_Manager(manager)
{
LoadXML(path);
// TODO: handle load failure
// Upper bound on number of particles depends on maximum rate and lifetime
m_MaxLifetime = m_Variables[VAR_LIFETIME]->Max(*this);
m_MaxParticles = ceil(m_Variables[VAR_EMISSIONRATE]->Max(*this) * m_MaxLifetime);
// Compute the worst-case bounds of all possible particles,
// based on the min/max values of positions and velocities and accelerations
// and sizes. (This isn't a guaranteed bound but it should be sufficient for
// culling.)
// Assuming constant acceleration,
// p = p0 + v0*t + 1/2 a*t^2
// => dp/dt = v0 + a*t
// = 0 at t = -v0/a
// max(p) is at t=0, or t=tmax, or t=-v0/a if that's between 0 and tmax
// => max(p) = max(p0, p0 + v0*tmax + 1/2 a*tmax, p0 - 1/2 v0^2/a)
// Compute combined acceleration (assume constant)
CVector3D accel;
for (size_t i = 0; i < m_Effectors.size(); ++i)
accel += m_Effectors[i]->Max();
CVector3D vmin(m_Variables[VAR_VELOCITY_X]->Min(*this), m_Variables[VAR_VELOCITY_Y]->Min(*this), m_Variables[VAR_VELOCITY_Z]->Min(*this));
CVector3D vmax(m_Variables[VAR_VELOCITY_X]->Max(*this), m_Variables[VAR_VELOCITY_Y]->Max(*this), m_Variables[VAR_VELOCITY_Z]->Max(*this));
// Start by assuming p0 = 0; compute each XYZ component individually
m_MaxBounds.SetEmpty();
// Lower/upper bounds at t=0, t=tmax
m_MaxBounds[0].X = std::min(0.f, vmin.X*m_MaxLifetime + 0.5f*accel.X*m_MaxLifetime*m_MaxLifetime);
m_MaxBounds[0].Y = std::min(0.f, vmin.Y*m_MaxLifetime + 0.5f*accel.Y*m_MaxLifetime*m_MaxLifetime);
m_MaxBounds[0].Z = std::min(0.f, vmin.Z*m_MaxLifetime + 0.5f*accel.Z*m_MaxLifetime*m_MaxLifetime);
m_MaxBounds[1].X = std::max(0.f, vmax.X*m_MaxLifetime + 0.5f*accel.X*m_MaxLifetime*m_MaxLifetime);
m_MaxBounds[1].Y = std::max(0.f, vmax.Y*m_MaxLifetime + 0.5f*accel.Y*m_MaxLifetime*m_MaxLifetime);
m_MaxBounds[1].Z = std::max(0.f, vmax.Z*m_MaxLifetime + 0.5f*accel.Z*m_MaxLifetime*m_MaxLifetime);
// Extend bounds to include position at t where dp/dt=0, if 0 < t < tmax
if (accel.X && 0 < -vmin.X/accel.X && -vmin.X/accel.X < m_MaxLifetime)
m_MaxBounds[0].X = std::min(m_MaxBounds[0].X, -0.5f*vmin.X*vmin.X / accel.X);
if (accel.Y && 0 < -vmin.Y/accel.Y && -vmin.Y/accel.Y < m_MaxLifetime)
m_MaxBounds[0].Y = std::min(m_MaxBounds[0].Y, -0.5f*vmin.Y*vmin.Y / accel.Y);
if (accel.Z && 0 < -vmin.Z/accel.Z && -vmin.Z/accel.Z < m_MaxLifetime)
m_MaxBounds[0].Z = std::min(m_MaxBounds[0].Z, -0.5f*vmin.Z*vmin.Z / accel.Z);
if (accel.X && 0 < -vmax.X/accel.X && -vmax.X/accel.X < m_MaxLifetime)
m_MaxBounds[1].X = std::max(m_MaxBounds[1].X, -0.5f*vmax.X*vmax.X / accel.X);
if (accel.Y && 0 < -vmax.Y/accel.Y && -vmax.Y/accel.Y < m_MaxLifetime)
m_MaxBounds[1].Y = std::max(m_MaxBounds[1].Y, -0.5f*vmax.Y*vmax.Y / accel.Y);
if (accel.Z && 0 < -vmax.Z/accel.Z && -vmax.Z/accel.Z < m_MaxLifetime)
m_MaxBounds[1].Z = std::max(m_MaxBounds[1].Z, -0.5f*vmax.Z*vmax.Z / accel.Z);
// Offset by the initial positions
m_MaxBounds[0] += CVector3D(m_Variables[VAR_POSITION_X]->Min(*this), m_Variables[VAR_POSITION_Y]->Min(*this), m_Variables[VAR_POSITION_Z]->Min(*this));
m_MaxBounds[1] += CVector3D(m_Variables[VAR_POSITION_X]->Max(*this), m_Variables[VAR_POSITION_Y]->Max(*this), m_Variables[VAR_POSITION_Z]->Max(*this));
}
int CParticleEmitterType::GetVariableID(const std::string& name)
{
if (name == "emissionrate") return VAR_EMISSIONRATE;
if (name == "lifetime") return VAR_LIFETIME;
if (name == "position.x") return VAR_POSITION_X;
if (name == "position.y") return VAR_POSITION_Y;
if (name == "position.z") return VAR_POSITION_Z;
if (name == "angle") return VAR_ANGLE;
if (name == "velocity.x") return VAR_VELOCITY_X;
if (name == "velocity.y") return VAR_VELOCITY_Y;
if (name == "velocity.z") return VAR_VELOCITY_Z;
if (name == "velocity.angle") return VAR_VELOCITY_ANGLE;
if (name == "size") return VAR_SIZE;
if (name == "size.growthRate") return VAR_SIZE_GROWTHRATE;
if (name == "color.r") return VAR_COLOR_R;
if (name == "color.g") return VAR_COLOR_G;
if (name == "color.b") return VAR_COLOR_B;
LOGWARNING("Particle sets unknown variable '%s'", name.c_str());
return -1;
}
bool CParticleEmitterType::LoadXML(const VfsPath& path)
{
// Initialise with sane defaults
m_Variables.clear();
m_Variables.resize(VAR__MAX);
m_Variables[VAR_EMISSIONRATE] = IParticleVarPtr(new CParticleVarConstant(10.f));
m_Variables[VAR_LIFETIME] = IParticleVarPtr(new CParticleVarConstant(3.f));
m_Variables[VAR_POSITION_X] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_POSITION_Y] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_POSITION_Z] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_ANGLE] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_VELOCITY_X] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_VELOCITY_Y] = IParticleVarPtr(new CParticleVarConstant(1.f));
m_Variables[VAR_VELOCITY_Z] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_VELOCITY_ANGLE] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_SIZE] = IParticleVarPtr(new CParticleVarConstant(1.f));
m_Variables[VAR_SIZE_GROWTHRATE] = IParticleVarPtr(new CParticleVarConstant(0.f));
m_Variables[VAR_COLOR_R] = IParticleVarPtr(new CParticleVarConstant(1.f));
m_Variables[VAR_COLOR_G] = IParticleVarPtr(new CParticleVarConstant(1.f));
m_Variables[VAR_COLOR_B] = IParticleVarPtr(new CParticleVarConstant(1.f));
m_BlendMode = BlendMode::ADD;
m_StartFull = false;
m_UseRelativeVelocity = false;
m_Texture = g_Renderer.GetTextureManager().GetErrorTexture();
CXeromyces XeroFile;
PSRETURN ret = XeroFile.Load(g_VFS, path, "particle");
if (ret != PSRETURN_OK)
return false;
// Define all the elements and attributes used in the XML file
#define EL(x) int el_##x = XeroFile.GetElementID(#x)
#define AT(x) int at_##x = XeroFile.GetAttributeID(#x)
EL(texture);
EL(blend);
EL(start_full);
EL(use_relative_velocity);
EL(constant);
EL(uniform);
EL(copy);
EL(expr);
EL(force);
AT(mode);
AT(name);
AT(value);
AT(min);
AT(max);
AT(mul);
AT(from);
AT(x);
AT(y);
AT(z);
#undef AT
#undef EL
XMBElement Root = XeroFile.GetRoot();
XERO_ITER_EL(Root, Child)
{
if (Child.GetNodeName() == el_texture)
{
CTextureProperties textureProps(Child.GetText().FromUTF8());
textureProps.SetAddressMode(
Renderer::Backend::Sampler::AddressMode::CLAMP_TO_EDGE);
m_Texture = g_Renderer.GetTextureManager().CreateTexture(textureProps);
}
else if (Child.GetNodeName() == el_blend)
{
const CStr mode = Child.GetAttributes().GetNamedItem(at_mode);
if (mode == "add")
m_BlendMode = BlendMode::ADD;
else if (mode == "subtract")
m_BlendMode = BlendMode::SUBTRACT;
else if (mode == "over")
m_BlendMode = BlendMode::OVERLAY;
else if (mode == "multiply")
m_BlendMode = BlendMode::MULTIPLY;
}
else if (Child.GetNodeName() == el_start_full)
{
m_StartFull = true;
}
else if (Child.GetNodeName() == el_use_relative_velocity)
{
m_UseRelativeVelocity = true;
}
else if (Child.GetNodeName() == el_constant)
{
int id = GetVariableID(Child.GetAttributes().GetNamedItem(at_name));
if (id != -1)
{
m_Variables[id] = IParticleVarPtr(new CParticleVarConstant(
Child.GetAttributes().GetNamedItem(at_value).ToFloat()
));
}
}
else if (Child.GetNodeName() == el_uniform)
{
int id = GetVariableID(Child.GetAttributes().GetNamedItem(at_name));
if (id != -1)
{
float min = Child.GetAttributes().GetNamedItem(at_min).ToFloat();
float max = Child.GetAttributes().GetNamedItem(at_max).ToFloat();
// To avoid hangs in the RNG, only use it if [min, max) is non-empty
if (min < max)
m_Variables[id] = IParticleVarPtr(new CParticleVarUniform(min, max));
else
m_Variables[id] = IParticleVarPtr(new CParticleVarConstant(min));
}
}
else if (Child.GetNodeName() == el_copy)
{
int id = GetVariableID(Child.GetAttributes().GetNamedItem(at_name));
int from = GetVariableID(Child.GetAttributes().GetNamedItem(at_from));
if (id != -1 && from != -1)
m_Variables[id] = IParticleVarPtr(new CParticleVarCopy(from));
}
else if (Child.GetNodeName() == el_expr)
{
int id = GetVariableID(Child.GetAttributes().GetNamedItem(at_name));
CStr from = Child.GetAttributes().GetNamedItem(at_from);
float mul = Child.GetAttributes().GetNamedItem(at_mul).ToFloat();
float max = Child.GetAttributes().GetNamedItem(at_max).ToFloat();
if (id != -1)
m_Variables[id] = IParticleVarPtr(new CParticleVarExpr(from, mul, max));
}
else if (Child.GetNodeName() == el_force)
{
float x = Child.GetAttributes().GetNamedItem(at_x).ToFloat();
float y = Child.GetAttributes().GetNamedItem(at_y).ToFloat();
float z = Child.GetAttributes().GetNamedItem(at_z).ToFloat();
m_Effectors.push_back(IParticleEffectorPtr(new CParticleEffectorForce(x, y, z)));
}
}
return true;
}
void CParticleEmitterType::UpdateEmitter(CParticleEmitter& emitter, float dt)
{
// If dt is very large, we should do the update in multiple small
// steps to prevent all the particles getting clumped together at
// low framerates
const float maxStepLength = 0.2f;
// Avoid wasting time by computing periods longer than the lifetime
// period of the particles
dt = std::min(dt, m_MaxLifetime);
while (dt > maxStepLength)
{
UpdateEmitterStep(emitter, maxStepLength);
dt -= maxStepLength;
}
UpdateEmitterStep(emitter, dt);
}
void CParticleEmitterType::UpdateEmitterStep(CParticleEmitter& emitter, float dt)
{
ENSURE(emitter.m_Type.get() == this);
if (emitter.m_Active)
{
float emissionRate = m_Variables[VAR_EMISSIONRATE]->Evaluate(emitter);
// Find how many new particles to spawn, and accumulate any rounding errors
// (to maintain a constant emission rate even if dt is very small)
int newParticles = floor(emitter.m_EmissionRoundingError + dt*emissionRate);
emitter.m_EmissionRoundingError += dt*emissionRate - newParticles;
// If dt was very large, there's no point spawning new particles that
// we'll immediately overwrite, so clamp it
newParticles = std::min(newParticles, (int)m_MaxParticles);
for (int i = 0; i < newParticles; ++i)
{
// Compute new particle state based on variables
SParticle particle;
particle.pos.X = m_Variables[VAR_POSITION_X]->Evaluate(emitter);
particle.pos.Y = m_Variables[VAR_POSITION_Y]->Evaluate(emitter);
particle.pos.Z = m_Variables[VAR_POSITION_Z]->Evaluate(emitter);
particle.pos += emitter.m_Pos;
if (m_UseRelativeVelocity)
{
float xVel = m_Variables[VAR_VELOCITY_X]->Evaluate(emitter);
float yVel = m_Variables[VAR_VELOCITY_Y]->Evaluate(emitter);
float zVel = m_Variables[VAR_VELOCITY_Z]->Evaluate(emitter);
CVector3D EmitterAngle = emitter.GetRotation().ToMatrix().Transform(CVector3D(xVel,yVel,zVel));
particle.velocity.X = EmitterAngle.X;
particle.velocity.Y = EmitterAngle.Y;
particle.velocity.Z = EmitterAngle.Z;
} else {
particle.velocity.X = m_Variables[VAR_VELOCITY_X]->Evaluate(emitter);
particle.velocity.Y = m_Variables[VAR_VELOCITY_Y]->Evaluate(emitter);
particle.velocity.Z = m_Variables[VAR_VELOCITY_Z]->Evaluate(emitter);
}
particle.angle = m_Variables[VAR_ANGLE]->Evaluate(emitter);
particle.angleSpeed = m_Variables[VAR_VELOCITY_ANGLE]->Evaluate(emitter);
particle.size = m_Variables[VAR_SIZE]->Evaluate(emitter);
particle.sizeGrowthRate = m_Variables[VAR_SIZE_GROWTHRATE]->Evaluate(emitter);
RGBColor color;
color.X = m_Variables[VAR_COLOR_R]->Evaluate(emitter);
color.Y = m_Variables[VAR_COLOR_G]->Evaluate(emitter);
color.Z = m_Variables[VAR_COLOR_B]->Evaluate(emitter);
particle.color = ConvertRGBColorTo4ub(color);
particle.age = 0.f;
particle.maxAge = m_Variables[VAR_LIFETIME]->Evaluate(emitter);
emitter.AddParticle(particle);
}
}
// Update particle states
for (size_t i = 0; i < emitter.m_Particles.size(); ++i)
{
SParticle& p = emitter.m_Particles[i];
// Don't bother updating particles already at the end of their life
if (p.age > p.maxAge)
continue;
p.pos += p.velocity * dt;
p.angle += p.angleSpeed * dt;
p.age += dt;
p.size += p.sizeGrowthRate * dt;
// Make alpha fade in/out nicely
// TODO: this should probably be done as a variable or something,
// instead of hardcoding
float ageFrac = p.age / p.maxAge;
float a = std::min(1.f - ageFrac, 5.f * ageFrac);
p.color.A = Clamp(static_cast<int>(a * 255.f), 0, 255);
}
for (size_t i = 0; i < m_Effectors.size(); ++i)
{
m_Effectors[i]->Evaluate(emitter.m_Particles, dt);
}
}
CBoundingBoxAligned CParticleEmitterType::CalculateBounds(CVector3D emitterPos, CBoundingBoxAligned emittedBounds)
{
CBoundingBoxAligned bounds = m_MaxBounds;
bounds[0] += emitterPos;
bounds[1] += emitterPos;
bounds += emittedBounds;
// The current bounds is for the particles' centers, so expand by
// sqrt(2) * max_size/2 to ensure any rotated billboards fit in
bounds.Expand(m_Variables[VAR_SIZE]->Max(*this)/2.f * sqrt(2.f));
return bounds;
}
|