File: Fixed.h

package info (click to toggle)
0ad 0.0.26-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 130,460 kB
  • sloc: cpp: 261,824; ansic: 198,392; javascript: 19,067; python: 14,557; sh: 7,629; perl: 4,072; xml: 849; makefile: 741; java: 533; ruby: 229; php: 190; pascal: 30; sql: 21; tcl: 4
file content (400 lines) | stat: -rw-r--r-- 12,193 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/* Copyright (C) 2022 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef INCLUDED_FIXED
#define INCLUDED_FIXED

#include "lib/types.h"
#include "maths/Sqrt.h"
#include "ps/CStrForward.h"

#ifndef NDEBUG
#define USE_FIXED_OVERFLOW_CHECKS
#endif

#if MSC_VERSION
// i32*i32 -> i64 multiply: MSVC x86 doesn't optimise i64 multiplies automatically, so use the intrinsic
#include <intrin.h>
#define MUL_I64_I32_I32(a, b)\
	(__emul((a), (b)))
#define SQUARE_U64_FIXED(a)\
	static_cast<u64>(__emul((a).GetInternalValue(), (a).GetInternalValue()))
#else
#define MUL_I64_I32_I32(a, b)\
	static_cast<i64>(a) * static_cast<i64>(b)
#define SQUARE_U64_FIXED(a)\
	static_cast<u64>(static_cast<i64>((a).GetInternalValue()) * static_cast<i64>((a).GetInternalValue()))
#endif

//define overflow macros
#ifndef USE_FIXED_OVERFLOW_CHECKS

#define CheckSignedSubtractionOverflow(type, left, right, overflowWarning, underflowWarning)
#define CheckSignedAdditionOverflow(type, left, right, overflowWarning, underflowWarning)
#define CheckCastOverflow(var, targetType, overflowWarning, underflowWarning)
#define CheckU32CastOverflow(var, targetType, overflowWarning)
#define CheckUnsignedAdditionOverflow(result, operand, overflowWarning)
#define CheckUnsignedSubtractionOverflow(result, operand, overflowWarning)
#define CheckNegationOverflow(var, type, overflowWarning)
#define CheckMultiplicationOverflow(type, left, right, overflowWarning, underflowWarning)
#define CheckDivisionOverflow(type, left, right, overflowWarning)

#else // USE_FIXED_OVERFLOW_CHECKS

#define CheckSignedSubtractionOverflow(type, left, right, overflowWarning, underflowWarning) \
	if(left > 0 && right < 0 && left > std::numeric_limits<type>::max() + right) \
		debug_warn(overflowWarning); \
	else if(left < 0 && right > 0 && left < std::numeric_limits<type>::min() + right) \
		debug_warn(underflowWarning);

#define CheckSignedAdditionOverflow(type, left, right, overflowWarning, underflowWarning) \
	if(left > 0 && right > 0 && std::numeric_limits<type>::max() - left < right) \
		debug_warn(overflowWarning); \
	else if(left < 0 && right < 0 && std::numeric_limits<type>::min() - left > right) \
		debug_warn(underflowWarning);

#define CheckCastOverflow(var, targetType, overflowWarning, underflowWarning) \
	if(var > std::numeric_limits<targetType>::max()) \
		debug_warn(overflowWarning); \
	else if(var < std::numeric_limits<targetType>::min()) \
		debug_warn(underflowWarning);

#define CheckU32CastOverflow(var, targetType, overflowWarning) \
	if(var > (u32)std::numeric_limits<targetType>::max()) \
		debug_warn(overflowWarning);

#define CheckUnsignedAdditionOverflow(result, operand, overflowWarning) \
	if(result < operand) \
		debug_warn(overflowWarning);

#define CheckUnsignedSubtractionOverflow(result, left, overflowWarning) \
	if(result > left) \
		debug_warn(overflowWarning);

#define CheckNegationOverflow(var, type, overflowWarning) \
	if(value == std::numeric_limits<type>::min()) \
		debug_warn(overflowWarning);

#define CheckMultiplicationOverflow(type, left, right, overflowWarning, underflowWarning) \
	i64 res##left = (i64)left * (i64)right; \
	CheckCastOverflow(res##left, type, overflowWarning, underflowWarning)

#define CheckDivisionOverflow(type, left, right, overflowWarning) \
	if(right == -1) { CheckNegationOverflow(left, type, overflowWarning) }

#endif // USE_FIXED_OVERFLOW_CHECKS

template <typename T>
inline T round_away_from_zero(float value)
{
	return (T)(value >= 0 ? value + 0.5f : value - 0.5f);
}

template <typename T>
inline T round_away_from_zero(double value)
{
	return (T)(value >= 0 ? value + 0.5 : value - 0.5);
}

/**
 * A simple fixed-point number class.
 *
 * Use 'fixed' rather than using this class directly.
 */
template<typename T, T max_t, int total_bits, int int_bits, int fract_bits_, int fract_pow2>
class CFixed
{
private:
	T value;

	constexpr explicit CFixed(T v) : value(v) { }

public:
	enum { fract_bits = fract_bits_ };

	CFixed() : value(0) { }

	static CFixed Zero() { return CFixed(0); }
	static CFixed Epsilon() { return CFixed(1); }
	static CFixed Pi();

	T GetInternalValue() const { return value; }
	void SetInternalValue(T n) { value = n; }

	// Conversion to/from primitive types:

	static constexpr CFixed FromInt(int n)
	{
		return CFixed(n << fract_bits);
	}

	// TODO C++20: this won't be necessary when operator/(int) can be made constexpr.
	static constexpr CFixed FromFraction(int n, int d)
	{
		return CFixed(static_cast<int>(static_cast<unsigned int>(n) << fract_bits) / d);
	}

	static constexpr CFixed FromFloat(float n)
	{
		if (!std::isfinite(n))
			return CFixed(0);
		float scaled = n * fract_pow2;
		return CFixed(round_away_from_zero<T>(scaled));
	}

	static constexpr CFixed FromDouble(double n)
	{
		if (!std::isfinite(n))
			return CFixed(0);
		double scaled = n * fract_pow2;
		return CFixed(round_away_from_zero<T>(scaled));
	}

	static CFixed FromString(const CStr8& s);
	static CFixed FromString(const CStrW& s);

	/// Convert to float. May be lossy - float can't represent all values.
	float ToFloat() const
	{
		return (float)value / (float)fract_pow2;
	}

	/// Convert to double. Won't be lossy - double can precisely represent all values.
	double ToDouble() const
	{
		return value / (double)fract_pow2;
	}

	constexpr int ToInt_RoundToZero() const
	{
		if (value > 0)
			return value >> fract_bits;
		else
			return (value + fract_pow2 - 1) >> fract_bits;
	}

	constexpr int ToInt_RoundToInfinity() const
	{
		return (value + fract_pow2 - 1) >> fract_bits;
	}

	constexpr int ToInt_RoundToNegInfinity() const
	{
		return value >> fract_bits;
	}

	constexpr int ToInt_RoundToNearest() const // (ties to infinity)
	{
		return (value + fract_pow2/2) >> fract_bits;
	}

	/// Returns the shortest string such that FromString will parse to the correct value.
	CStr8 ToString() const;

	/// Returns true if the number is precisely 0.
	constexpr bool IsZero() const { return value == 0; }

	/// Equality.
	constexpr bool operator==(CFixed n) const { return (value == n.value); }

	/// Inequality.
	constexpr bool operator!=(CFixed n) const { return (value != n.value); }

	/// Numeric comparison.
	constexpr bool operator<=(CFixed n) const { return (value <= n.value); }

	/// Numeric comparison.
	constexpr bool operator<(CFixed n) const { return (value < n.value); }

	/// Numeric comparison.
	constexpr bool operator>=(CFixed n) const { return (value >= n.value); }

	/// Numeric comparison.
	constexpr bool operator>(CFixed n) const { return (value > n.value); }

	// Basic arithmetic:

	/// Add a CFixed. Might overflow.
	CFixed operator+(CFixed n) const
	{
		CheckSignedAdditionOverflow(T, value, n.value, L"Overflow in CFixed::operator+(CFixed n)", L"Underflow in CFixed::operator+(CFixed n)")
		return CFixed(value + n.value);
	}

	/// Subtract a CFixed. Might overflow.
	CFixed operator-(CFixed n) const
	{
		CheckSignedSubtractionOverflow(T, value, n.value, L"Overflow in CFixed::operator-(CFixed n)", L"Underflow in CFixed::operator-(CFixed n)")
		return CFixed(value - n.value);
	}

	/// Add a CFixed. Might overflow.
	constexpr CFixed& operator+=(CFixed n) { *this = *this + n; return *this; }

	/// Subtract a CFixed. Might overflow.
	constexpr CFixed& operator-=(CFixed n) { *this = *this - n; return *this; }

	/// Negate a CFixed.
	CFixed operator-() const
	{
		CheckNegationOverflow(value, T, L"Overflow in CFixed::operator-()")
		return CFixed(-value);
	}

	CFixed operator>>(int n) const
	{
		ASSERT(n >= 0 && n < 32);
		return CFixed(value >> n);
	}

	CFixed operator<<(int n) const
	{
		ASSERT(n >= 0 && n < 32);
		// TODO: check for overflow
		return CFixed(value << n);
	}

	/// Divide by a CFixed. Must not have n.IsZero(). Might overflow.
	CFixed operator/(CFixed n) const
	{
		i64 t = (i64)value << fract_bits;
		i64 result = t / (i64)n.value;

		CheckCastOverflow(result, T, L"Overflow in CFixed::operator/(CFixed n)", L"Underflow in CFixed::operator/(CFixed n)")
		return CFixed((T)result);
	}

	/// Multiply by an integer. Might overflow.
	CFixed operator*(int n) const
	{
		CheckMultiplicationOverflow(T, value, n, L"Overflow in CFixed::operator*(int n)", L"Underflow in CFixed::operator*(int n)")
		return CFixed(value * n);
	}

	/// Multiply by an integer. Avoids overflow by clamping to min/max representable value.
	constexpr CFixed MultiplyClamp(int n) const
	{
		i64 t = (i64)value * n;
		t = std::max((i64)std::numeric_limits<T>::min(), std::min((i64)std::numeric_limits<T>::max(), t));
		return CFixed((i32)t);
	}

	/// Divide by an integer. Must not have n == 0. Cannot overflow unless n == -1.
	CFixed operator/(int n) const
	{
		CheckDivisionOverflow(T, value, n, L"Overflow in CFixed::operator/(int n)")
		return CFixed(value / n);
	}

	/// Mod by a fixed. Must not have n == 0. Result has the same sign as n.
	constexpr CFixed operator%(CFixed n) const
	{
		T t = value % n.value;
		if (n.value > 0 && t < 0)
			t += n.value;
		else if (n.value < 0 && t > 0)
			t += n.value;

		return CFixed(t);
	}

	constexpr CFixed Absolute() const { return CFixed(abs(value)); }

	/**
	 * Multiply by a CFixed. Likely to overflow if both numbers are large,
	 * so we use an ugly name instead of operator* to make it obvious.
	 */
	CFixed Multiply(CFixed n) const
	{
		i64 t = MUL_I64_I32_I32(value, n.value);
		t >>= fract_bits;

		CheckCastOverflow(t, T, L"Overflow in CFixed::Multiply(CFixed n)", L"Underflow in CFixed::Multiply(CFixed n)")
		return CFixed((T)t);
	}

	/**
	 * Multiply the value by itself. Might overflow.
	 */
	constexpr CFixed Square() const
	{
		return (*this).Multiply(*this);
	}

	/**
	 * Compute this*m/d. Must not have d == 0. Won't overflow if the result can be represented as a CFixed.
	 */
	CFixed MulDiv(CFixed m, CFixed d) const
	{
		i64 t = MUL_I64_I32_I32(value, m.value) / static_cast<i64>(d.value);
		CheckCastOverflow(t, T, L"Overflow in CFixed::Multiply(CFixed n)", L"Underflow in CFixed::Multiply(CFixed n)")
		return CFixed((T)t);
	}

	constexpr CFixed Sqrt() const
	{
		if (value <= 0)
			return CFixed(0);
		u32 s = isqrt64((u64)value << fract_bits);
		return CFixed(s);
	}

private:
	// Prevent dangerous accidental implicit conversions of floats to ints in certain operations
	CFixed operator*(float n) const;
	CFixed operator/(float n) const;
};

/**
 * A fixed-point number class with 1-bit sign, 15-bit integral part, 16-bit fractional part.
 */
typedef CFixed<i32, (i32)0x7fffffff, 32, 15, 16, 65536> CFixed_15_16;

/**
 * Default fixed-point type used by the engine.
 */
typedef CFixed_15_16 fixed;

namespace std
{
/**
 * std::numeric_limits specialisation, currently just providing min and max
 */
template<typename T, T max_t, int total_bits, int int_bits, int fract_bits_, int fract_pow2>
struct numeric_limits<CFixed<T, max_t, total_bits, int_bits, fract_bits_, fract_pow2> >
{
	typedef CFixed<T, max_t, total_bits, int_bits, fract_bits_, fract_pow2> fixed;
public:
	static const bool is_specialized = true;
	static fixed min() throw() { fixed f; f.SetInternalValue(std::numeric_limits<T>::min()); return f; }
	static fixed max() throw() { fixed f; f.SetInternalValue(std::numeric_limits<T>::max()); return f; }
};
}

/**
 * Inaccurate approximation of atan2 over fixed-point numbers.
 * Maximum error is almost 0.08 radians (4.5 degrees).
 */
CFixed_15_16 atan2_approx(CFixed_15_16 y, CFixed_15_16 x);

/**
 * Compute sin(a) and cos(a).
 * Maximum error for -2pi < a < 2pi is almost 0.0005.
 */
void sincos_approx(CFixed_15_16 a, CFixed_15_16& sin_out, CFixed_15_16& cos_out);

#endif // INCLUDED_FIXED