1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "lib/self_test.h"
#include "lib/posix/posix.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/BoundingBoxOriented.h"
#include "maths/Matrix3D.h"
#define TS_ASSERT_VEC_DELTA(v, x, y, z, delta) \
TS_ASSERT_DELTA(v.X, x, delta); \
TS_ASSERT_DELTA(v.Y, y, delta); \
TS_ASSERT_DELTA(v.Z, z, delta);
class TestBound : public CxxTest::TestSuite
{
public:
void setUp()
{
CxxTest::setAbortTestOnFail(true);
}
void test_empty_aabb()
{
CBoundingBoxAligned bound;
TS_ASSERT(bound.IsEmpty());
bound += CVector3D(1, 2, 3);
TS_ASSERT(! bound.IsEmpty());
bound.SetEmpty();
TS_ASSERT(bound.IsEmpty());
}
void test_empty_obb()
{
CBoundingBoxOriented bound;
TS_ASSERT(bound.IsEmpty());
bound.m_Basis[0] = CVector3D(1,0,0);
bound.m_Basis[1] = CVector3D(0,1,0);
bound.m_Basis[2] = CVector3D(0,0,1);
bound.m_HalfSizes = CVector3D(1,2,3);
TS_ASSERT(!bound.IsEmpty());
bound.SetEmpty();
TS_ASSERT(bound.IsEmpty());
}
void test_extend_vector()
{
CBoundingBoxAligned bound;
CVector3D v (1, 2, 3);
bound += v;
CVector3D center;
bound.GetCenter(center);
TS_ASSERT_EQUALS(center, v);
}
void test_extend_bound()
{
CBoundingBoxAligned bound;
CVector3D v (1, 2, 3);
CBoundingBoxAligned b (v, v);
bound += b;
CVector3D center;
bound.GetCenter(center);
TS_ASSERT_EQUALS(center, v);
}
void test_aabb_to_obb_translation()
{
CBoundingBoxAligned aabb(CVector3D(-1,-2,-1), CVector3D(1,2,1));
CMatrix3D translation;
translation.SetTranslation(CVector3D(1,3,7));
CBoundingBoxOriented result;
aabb.Transform(translation, result);
TS_ASSERT_VEC_DELTA(result.m_Center, 1.f, 3.f, 7.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[0], 1.f, 0.f, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[1], 0.f, 1.f, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[2], 0.f, 0.f, 1.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_HalfSizes, 1.f, 2.f, 1.f, 1e-7f);
}
void test_aabb_to_obb_rotation_around_origin()
{
// rotate a 4x3x3 AABB centered at (5,0,0) 90 degrees CCW around the Z axis, and verify that the
// resulting OBB is correct
CBoundingBoxAligned aabb(CVector3D(3, -1.5f, -1.5f), CVector3D(7, 1.5f, 1.5f));
CMatrix3D rotation;
rotation.SetZRotation(float(M_PI)/2.f);
CBoundingBoxOriented result;
aabb.Transform(rotation, result);
TS_ASSERT_VEC_DELTA(result.m_Center, 0.f, 5.f, 0.f, 1e-6f); // involves some trigonometry, lower precision
TS_ASSERT_VEC_DELTA(result.m_Basis[0], 0.f, 1.f, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[1], -1.f, 0.f, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[2], 0.f, 0.f, 1.f, 1e-7f);
}
void test_aabb_to_obb_rotation_around_point()
{
// rotate a 4x3x3 AABB centered at (5,0,0) 45 degrees CW around the Z axis through (2,0,0)
CBoundingBoxAligned aabb(CVector3D(3, -1.5f, -1.5f), CVector3D(7, 1.5f, 1.5f));
// move everything so (2,0,0) becomes the origin, do the rotation, then move everything back
CMatrix3D translate;
CMatrix3D rotate;
CMatrix3D translateBack;
translate.SetTranslation(-2.f, 0, 0);
rotate.SetZRotation(-float(M_PI)/4.f);
translateBack.SetTranslation(2.f, 0, 0);
CMatrix3D transform;
transform.SetIdentity();
transform.Concatenate(translate);
transform.Concatenate(rotate);
transform.Concatenate(translateBack);
CBoundingBoxOriented result;
aabb.Transform(transform, result);
const float invSqrt2 = 1.f/sqrtf(2.f);
TS_ASSERT_VEC_DELTA(result.m_Center, 3*invSqrt2 + 2, -3*invSqrt2, 0.f, 1e-6f); // involves some trigonometry, lower precision
TS_ASSERT_VEC_DELTA(result.m_Basis[0], invSqrt2, -invSqrt2, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[1], invSqrt2, invSqrt2, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[2], 0.f, 0.f, 1.f, 1e-7f);
}
void test_aabb_to_obb_scale()
{
CBoundingBoxAligned aabb(CVector3D(3, -1.5f, -1.5f), CVector3D(7, 1.5f, 1.5f));
CMatrix3D scale;
scale.SetScaling(1.f, 3.f, 7.f);
CBoundingBoxOriented result;
aabb.Transform(scale, result);
TS_ASSERT_VEC_DELTA(result.m_Center, 5.f, 0.f, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_HalfSizes, 2.f, 4.5f, 10.5f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[0], 1.f, 0.f, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[1], 0.f, 1.f, 0.f, 1e-7f);
TS_ASSERT_VEC_DELTA(result.m_Basis[2], 0.f, 0.f, 1.f, 1e-7f);
}
// Verify that ray/OBB intersection is correctly determined in degenerate case where the
// box has zero size in one of its dimensions.
void test_degenerate_obb_ray_intersect()
{
// create OBB of a flat 1x1 square in the X/Z plane, with 0 size in the Y dimension
CBoundingBoxOriented bound;
bound.m_Basis[0] = CVector3D(1,0,0); // X
bound.m_Basis[1] = CVector3D(0,1,0); // Y
bound.m_Basis[2] = CVector3D(0,0,1); // Z
bound.m_HalfSizes[0] = 1.f;
bound.m_HalfSizes[1] = 0.f; // no height, i.e. a "flat" OBB
bound.m_HalfSizes[2] = 1.f;
bound.m_Center = CVector3D(0,0,0);
// create two rays; one that should hit the OBB, and one that should miss it
CVector3D ray1origin(-3.5f, 3.f, 0.f);
CVector3D ray1direction(1.f, -1.f, 0.f);
CVector3D ray2origin(-4.5f, 3.f, 0.f);
CVector3D ray2direction(1.f, -1.f, 0.f);
float tMin, tMax;
TSM_ASSERT("Ray 1 should intersect the OBB", bound.RayIntersect(ray1origin, ray1direction, tMin, tMax));
TSM_ASSERT("Ray 2 should not intersect the OBB", !bound.RayIntersect(ray2origin, ray2direction, tMin, tMax));
}
// Verify that transforming a flat AABB to an OBB does not produce NaN basis vectors in the
// resulting OBB (see http://trac.wildfiregames.com/ticket/1121)
void test_degenerate_aabb_to_obb_transform()
{
// create a flat AABB, transform it with some matrix (can even be the identity matrix),
// and verify that the result does not contain any NaN values in its basis vectors
// and/or half-sizes
CBoundingBoxAligned flatAabb(CVector3D(-1,0,-1), CVector3D(1,0,1));
CMatrix3D transform;
transform.SetIdentity();
CBoundingBoxOriented result;
flatAabb.Transform(transform, result);
TS_ASSERT(!isnan(result.m_Basis[0].X) && !isnan(result.m_Basis[0].Y) && !isnan(result.m_Basis[0].Z));
TS_ASSERT(!isnan(result.m_Basis[1].X) && !isnan(result.m_Basis[1].Y) && !isnan(result.m_Basis[1].Z));
TS_ASSERT(!isnan(result.m_Basis[2].X) && !isnan(result.m_Basis[2].Y) && !isnan(result.m_Basis[2].Z));
}
void test_point_visibility()
{
const CBoundingBoxAligned bb(CVector3D(1.0f, -10.0f, 3.0f), CVector3D(3.0f, -8.0f, 5.0f));
TS_ASSERT(!bb.IsPointInside(CVector3D(0.0f, 0.0f, 0.0f)));
TS_ASSERT(bb.IsPointInside(bb[0]));
TS_ASSERT(bb.IsPointInside(bb[1]));
CVector3D center;
bb.GetCenter(center);
TS_ASSERT(bb.IsPointInside(center));
for (int offsetX = -1; offsetX <= 1; ++offsetX)
for (int offsetY = -1; offsetY <= 1; ++offsetY)
for (int offsetZ = -1; offsetZ <= 1; ++offsetZ)
{
TS_ASSERT(bb.IsPointInside(
center + CVector3D(offsetX, offsetY, offsetZ) * 0.9f));
const bool isInside = bb.IsPointInside(
center + CVector3D(offsetX, offsetY, offsetZ) * 1.1f);
if (offsetX == 0 && offsetY == 0 && offsetZ == 0)
{
TS_ASSERT(isInside);
}
else
{
TS_ASSERT(!isInside);
}
}
}
};
|