1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/* Copyright (C) 2021 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "lib/self_test.h"
#include "maths/Brush.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/Frustum.h"
class TestBrush : public CxxTest::TestSuite
{
public:
void setUp()
{
CxxTest::setAbortTestOnFail(true);
}
void tearDown()
{
}
void test_slice_empty_brush()
{
// verifies that the result of slicing an empty bound with a plane yields an empty bound
CBrush brush;
CPlane plane(CVector4D(0, 0, -1, 0.5f)); // can be anything, really
CBrush result;
brush.Slice(plane, result);
TS_ASSERT(brush.IsEmpty());
}
void test_slice_plane_simple()
{
// slice a 1x1x1 cube vertically down the middle at z = 0.5, with the plane normal pointing towards the negative
// end of the Z axis (i.e., anything with Z lower than 0.5 is considered 'in front of' the plane and is kept)
CPlane plane(CVector4D(0, 0, -1, 0.5f));
CBrush brush(CBoundingBoxAligned(CVector3D(0,0,0), CVector3D(1,1,1)));
CBrush result;
brush.Slice(plane, result);
// verify that the resulting brush consists of exactly our 8 expected, unique vertices
TS_ASSERT_EQUALS((size_t)8, result.GetVertices().size());
size_t LBF = GetUniqueVertexIndex(result, CVector3D(0, 0, 0)); // left-bottom-front <=> XYZ
size_t RBF = GetUniqueVertexIndex(result, CVector3D(1, 0, 0)); // right-bottom-front
size_t RBB = GetUniqueVertexIndex(result, CVector3D(1, 0, 0.5f)); // right-bottom-back
size_t LBB = GetUniqueVertexIndex(result, CVector3D(0, 0, 0.5f)); // etc.
size_t LTF = GetUniqueVertexIndex(result, CVector3D(0, 1, 0));
size_t RTF = GetUniqueVertexIndex(result, CVector3D(1, 1, 0));
size_t RTB = GetUniqueVertexIndex(result, CVector3D(1, 1, 0.5f));
size_t LTB = GetUniqueVertexIndex(result, CVector3D(0, 1, 0.5f));
// verify that the brush contains the six expected planes (one of which is the slicing plane)
VerifyFacePresent(result, 5, LBF, RBF, RBB, LBB, LBF); // bottom face
VerifyFacePresent(result, 5, LTF, RTF, RTB, LTB, LTF); // top face
VerifyFacePresent(result, 5, LBF, LBB, LTB, LTF, LBF); // left face
VerifyFacePresent(result, 5, RBF, RBB, RTB, RTF, RBF); // right face
VerifyFacePresent(result, 5, LBF, RBF, RTF, LTF, LBF); // front face
VerifyFacePresent(result, 5, LBB, RBB, RTB, LTB, LBB); // back face
}
void test_slice_plane_behind_brush()
{
// slice the (0,0,0) to (1,1,1) cube by the plane z = 1.5, with the plane normal pointing towards the negative
// end of the Z axis (i.e. the entire cube is 'in front of' the plane and should be kept)
CPlane plane(CVector4D(0, 0, -1, 1.5f));
CBrush brush(CBoundingBoxAligned(CVector3D(0,0,0), CVector3D(1,1,1)));
CBrush result;
brush.Slice(plane, result);
// verify that the resulting brush consists of exactly our 8 expected, unique vertices
TS_ASSERT_EQUALS((size_t)8, result.GetVertices().size());
size_t LBF = GetUniqueVertexIndex(result, CVector3D(0, 0, 0)); // left-bottom-front <=> XYZ
size_t RBF = GetUniqueVertexIndex(result, CVector3D(1, 0, 0)); // right-bottom-front
size_t RBB = GetUniqueVertexIndex(result, CVector3D(1, 0, 1)); // right-bottom-back
size_t LBB = GetUniqueVertexIndex(result, CVector3D(0, 0, 1)); // etc.
size_t LTF = GetUniqueVertexIndex(result, CVector3D(0, 1, 0));
size_t RTF = GetUniqueVertexIndex(result, CVector3D(1, 1, 0));
size_t RTB = GetUniqueVertexIndex(result, CVector3D(1, 1, 1));
size_t LTB = GetUniqueVertexIndex(result, CVector3D(0, 1, 1));
// verify that the brush contains the six expected planes (one of which is the slicing plane)
VerifyFacePresent(result, 5, LBF, RBF, RBB, LBB, LBF); // bottom face
VerifyFacePresent(result, 5, LTF, RTF, RTB, LTB, LTF); // top face
VerifyFacePresent(result, 5, LBF, LBB, LTB, LTF, LBF); // left face
VerifyFacePresent(result, 5, RBF, RBB, RTB, RTF, RBF); // right face
VerifyFacePresent(result, 5, LBF, RBF, RTF, LTF, LBF); // front face
VerifyFacePresent(result, 5, LBB, RBB, RTB, LTB, LBB); // back face
}
void test_slice_plane_in_front_of_brush()
{
// slices the (0,0,0) to (1,1,1) cube by the plane z = -0.5, with the plane normal pointing towards the negative
// end of the Z axis (i.e. the entire cube is 'behind' the plane and should be cut away)
CPlane plane(CVector4D(0, 0, -1, -0.5f));
CBrush brush(CBoundingBoxAligned(CVector3D(0,0,0), CVector3D(1,1,1)));
CBrush result;
brush.Slice(plane, result);
TS_ASSERT_EQUALS((size_t)0, result.GetVertices().size());
std::vector<std::vector<size_t> > faces;
result.GetFaces(faces);
TS_ASSERT_EQUALS((size_t)0, faces.size());
}
private:
size_t GetUniqueVertexIndex(const CBrush& brush, const CVector3D& vertex, float eps = 1e-6f)
{
std::vector<CVector3D> vertices = brush.GetVertices();
for (size_t i = 0; i < vertices.size(); ++i)
{
const CVector3D& v = vertices[i];
if (fabs(v.X - vertex.X) < eps
&& fabs(v.Y - vertex.Y) < eps
&& fabs(v.Z - vertex.Z) < eps)
return i;
}
TS_FAIL("Vertex not found in brush");
return ~0u;
}
void VerifyFacePresent(const CBrush& brush, int count, ...)
{
std::vector<size_t> face;
va_list args;
va_start(args, count);
for (int x = 0; x < count; ++x)
face.push_back(va_arg(args, size_t));
va_end(args);
if (face.size() == 0)
return;
std::vector<std::vector<size_t> > faces;
brush.GetFaces(faces);
// the brush is free to use any starting vertex along the face, and to use any winding order, so have 'face'
// cycle through various starting values and see if any of them (or their reverse) matches one found in the brush.
for (size_t c = 0; c < face.size() - 1; ++c)
{
std::vector<std::vector<size_t> >::iterator it1 = std::find(faces.begin(), faces.end(), face);
if (it1 != faces.end())
return;
// no match, try the reverse
std::vector<size_t> faceReverse = face;
std::reverse(faceReverse.begin(), faceReverse.end());
std::vector<std::vector<size_t> >::iterator it2 = std::find(faces.begin(), faces.end(), faceReverse);
if (it2 != faces.end())
return;
// no match, cycle it
face.erase(face.begin());
face.push_back(face[0]);
}
TS_FAIL("Face not found in brush");
}
};
|