1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/* Copyright (C) 2021 Wildfire Games.
* Copyright (C) 2013-2016 SuperTuxKart-Team.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "StunClient.h"
#include "lib/byte_order.h"
#include "ps/CLogger.h"
#include "ps/ConfigDB.h"
#include "ps/CStr.h"
#include "lib/external_libraries/enet.h"
#include <chrono>
#include <vector>
#include <thread>
namespace StunClient
{
/**
* These constants are defined in Section 6 of RFC 5389.
*/
const u32 m_MagicCookie = 0x2112A442;
const u16 m_MethodTypeBinding = 0x01;
const u32 m_BindingSuccessResponse = 0x0101;
/**
* Bit determining whether comprehension of an attribute is optional.
* Described in Section 15 of RFC 5389.
*/
const u16 m_ComprehensionOptional = 0x1 << 15;
/**
* Bit determining whether the bit was assigned by IETF Review.
* Described in section 18.1. of RFC 5389.
*/
const u16 m_IETFReview = 0x1 << 14;
/**
* These constants are defined in Section 15.1 of RFC 5389.
*/
const u8 m_IPAddressFamilyIPv4 = 0x01;
/**
* These constants are defined in Section 18.2 of RFC 5389.
*/
const u16 m_AttrTypeMappedAddress = 0x001;
const u16 m_AttrTypeXORMappedAddress = 0x0020;
/**
* Described in section 3 of RFC 5389.
*/
u8 m_TransactionID[12];
ENetAddress m_StunServer;
/**
* Public IP + port discovered via the STUN transaction.
*/
ENetAddress m_PublicAddress;
/**
* Push POD data to a network-byte-order buffer.
* TODO: this should be optimised & moved to byte_order.h
*/
template<typename T, size_t n = sizeof(T)>
void AddToBuffer(std::vector<u8>& buffer, const T value)
{
static_assert(std::is_pod_v<T>, "T must be POD");
buffer.reserve(buffer.size() + n);
// std::byte* can alias anything so this is legal.
const std::byte* ptr = reinterpret_cast<const std::byte*>(&value);
for (size_t a = 0; a < n; ++a)
#if BYTE_ORDER == LITTLE_ENDIAN
buffer.push_back(static_cast<u8>(*(ptr + n - 1 - a)));
#else
buffer.push_back(static_cast<u8>(*(ptr + a)));
#endif
}
/**
* Read POD data from a network-byte-order buffer.
* TODO: this should be optimised & moved to byte_order.h
*/
template<typename T, size_t n = sizeof(T)>
bool GetFromBuffer(const std::vector<u8>& buffer, u32& offset, T& result)
{
static_assert(std::is_pod_v<T>, "T must be POD");
if (offset + n > buffer.size())
return false;
// std::byte* can alias anything so this is legal.
std::byte* ptr = reinterpret_cast<std::byte*>(&result);
for (size_t a = 0; a < n; ++a)
#if BYTE_ORDER == LITTLE_ENDIAN
*ptr++ = static_cast<std::byte>(buffer[offset + n - 1 - a]);
#else
*ptr++ = static_cast<std::byte>(buffer[offset + a]);
#endif
offset += n;
return true;
}
void SendStunRequest(ENetHost& transactionHost, ENetAddress addr)
{
std::vector<u8> buffer;
AddToBuffer<u16>(buffer, m_MethodTypeBinding);
AddToBuffer<u16>(buffer, 0); // length
AddToBuffer<u32>(buffer, m_MagicCookie);
for (std::size_t i = 0; i < sizeof(m_TransactionID); ++i)
{
u8 random_byte = rand() % 256;
buffer.push_back(random_byte);
m_TransactionID[i] = random_byte;
}
ENetBuffer enetBuffer;
enetBuffer.data = buffer.data();
enetBuffer.dataLength = buffer.size();
enet_socket_send(transactionHost.socket, &addr, &enetBuffer, 1);
}
/**
* Creates a STUN request and sends it to a STUN server.
* The request is sent through transactionHost, from which the answer
* will be retrieved by ReceiveStunResponse and interpreted by ParseStunResponse.
*/
bool CreateStunRequest(ENetHost& transactionHost)
{
CStr server_name;
int port;
CFG_GET_VAL("lobby.stun.server", server_name);
CFG_GET_VAL("lobby.stun.port", port);
LOGMESSAGE("StunClient: Using STUN server %s:%d\n", server_name.c_str(), port);
ENetAddress addr;
addr.port = port;
if (enet_address_set_host(&addr, server_name.c_str()) == -1)
return false;
m_StunServer = addr;
StunClient::SendStunRequest(transactionHost, addr);
return true;
}
/**
* Gets the response from the STUN server and checks it for its validity.
*/
bool ReceiveStunResponse(ENetHost& transactionHost, std::vector<u8>& buffer)
{
// TransportAddress sender;
const int LEN = 2048;
char input_buffer[LEN];
memset(input_buffer, 0, LEN);
ENetBuffer enetBuffer;
enetBuffer.data = input_buffer;
enetBuffer.dataLength = LEN;
ENetAddress sender = m_StunServer;
int len = enet_socket_receive(transactionHost.socket, &sender, &enetBuffer, 1);
int delay = 200;
CFG_GET_VAL("lobby.stun.delay", delay);
// Wait to receive the message because enet sockets are non-blocking
const int max_tries = 5;
for (int count = 0; len <= 0 && (count < max_tries || max_tries == -1); ++count)
{
std::this_thread::sleep_for(std::chrono::milliseconds(delay));
len = enet_socket_receive(transactionHost.socket, &sender, &enetBuffer, 1);
}
if (len <= 0)
{
LOGERROR("ReceiveStunResponse: recvfrom error (%d): %s", errno, strerror(errno));
return false;
}
if (memcmp(&sender, &m_StunServer, sizeof(m_StunServer)) != 0)
LOGERROR("ReceiveStunResponse: Received stun response from different address: %d.%d.%d.%d:%d %s",
(sender.host >> 24) & 0xff,
(sender.host >> 16) & 0xff,
(sender.host >> 8) & 0xff,
(sender.host >> 0) & 0xff,
sender.port,
input_buffer);
// Convert to network string.
buffer.resize(len);
memcpy(buffer.data(), reinterpret_cast<u8*>(input_buffer), len);
return true;
}
bool ParseStunResponse(const std::vector<u8>& buffer)
{
u32 offset = 0;
u16 responseType = 0;
if (!GetFromBuffer(buffer, offset, responseType) || responseType != m_BindingSuccessResponse)
{
LOGERROR("STUN response isn't a binding success response");
return false;
}
// Ignore message size
offset += 2;
u32 cookie = 0;
if (!GetFromBuffer(buffer, offset, cookie) || cookie != m_MagicCookie)
{
LOGERROR("STUN response doesn't contain the magic cookie");
return false;
}
for (std::size_t i = 0; i < sizeof(m_TransactionID); ++i)
{
u8 transactionChar = 0;
if (!GetFromBuffer(buffer, offset, transactionChar) || transactionChar != m_TransactionID[i])
{
LOGERROR("STUN response doesn't contain the transaction ID");
return false;
}
}
while (offset < buffer.size())
{
u16 type = 0;
u16 size = 0;
if (!GetFromBuffer(buffer, offset, type) ||
!GetFromBuffer(buffer, offset, size))
{
LOGERROR("STUN response contains invalid attribute");
return false;
}
// The first two bits are irrelevant to the type
type &= ~(m_ComprehensionOptional | m_IETFReview);
switch (type)
{
case m_AttrTypeMappedAddress:
case m_AttrTypeXORMappedAddress:
{
if (size != 8)
{
LOGERROR("Invalid STUN Mapped Address length");
return false;
}
// Ignore the first byte as mentioned in Section 15.1 of RFC 5389.
++offset;
u8 ipFamily = 0;
if (!GetFromBuffer(buffer, offset, ipFamily) || ipFamily != m_IPAddressFamilyIPv4)
{
LOGERROR("Unsupported address family, IPv4 is expected");
return false;
}
u16 port = 0;
u32 ip = 0;
if (!GetFromBuffer(buffer, offset, port) ||
!GetFromBuffer(buffer, offset, ip))
{
LOGERROR("Mapped address doesn't contain IP and port");
return false;
}
// Obfuscation is described in Section 15.2 of RFC 5389.
if (type == m_AttrTypeXORMappedAddress)
{
port ^= m_MagicCookie >> 16;
ip ^= m_MagicCookie;
}
// ENetAddress takes a host byte-order port and network byte-order IP.
// Network byte order is big endian, so convert appropriately.
m_PublicAddress.host = to_be32(ip);
m_PublicAddress.port = port;
break;
}
default:
{
// We don't care about other attributes at all
// Skip attribute
offset += size;
// Skip padding
int padding = size % 4;
if (padding)
offset += 4 - padding;
break;
}
}
}
return true;
}
bool STUNRequestAndResponse(ENetHost& transactionHost)
{
if (!CreateStunRequest(transactionHost))
return false;
std::vector<u8> buffer;
return ReceiveStunResponse(transactionHost, buffer) &&
ParseStunResponse(buffer);
}
bool FindPublicIP(ENetHost& transactionHost, CStr& ip, u16& port)
{
if (!STUNRequestAndResponse(transactionHost))
return false;
// Convert m_IP to string
char ipStr[256] = "(error)";
enet_address_get_host_ip(&m_PublicAddress, ipStr, ARRAY_SIZE(ipStr));
ip = ipStr;
port = m_PublicAddress.port;
LOGMESSAGE("StunClient: external IP address is %s:%i", ip.c_str(), port);
return true;
}
void SendHolePunchingMessages(ENetHost& enetClient, const std::string& serverAddress, u16 serverPort)
{
// Convert ip string to int64
ENetAddress addr;
addr.port = serverPort;
enet_address_set_host(&addr, serverAddress.c_str());
int delay = 200;
CFG_GET_VAL("lobby.stun.delay", delay);
// Send an UDP message from enet host to ip:port
for (int i = 0; i < 3; ++i)
{
SendStunRequest(enetClient, addr);
std::this_thread::sleep_for(std::chrono::milliseconds(delay));
}
}
bool FindLocalIP(CStr& ip)
{
// Open an UDP socket.
ENetSocket socket = enet_socket_create(ENET_SOCKET_TYPE_DATAGRAM);
ENetAddress addr;
addr.port = 9; // Use the debug port (which we pick does not matter).
// Connect to a random address. It does not need to be valid, only to not be the loopback address.
if (enet_address_set_host(&addr, "100.0.100.0") == -1)
return false;
// Connect the socket. Being UDP, there is no actual outgoing traffic, this just binds it
// to a valid port locally, allowing us to get the local IP of the machine.
if (enet_socket_connect(socket, &addr) == -1)
return false;
// Fetch the local port & IP.
if (enet_socket_get_address(socket, &addr) == -1)
return false;
enet_socket_destroy(socket);
// Convert to a human readable string.
char buf[50];
if (enet_address_get_host_ip(&addr, buf, ARRAY_SIZE(buf)) == -1)
return false;
ip = buf;
return true;
}
}
|