File: VertexBuffer.cpp

package info (click to toggle)
0ad 0.0.26-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 130,460 kB
  • sloc: cpp: 261,824; ansic: 198,392; javascript: 19,067; python: 14,557; sh: 7,629; perl: 4,072; xml: 849; makefile: 741; java: 533; ruby: 229; php: 190; pascal: 30; sql: 21; tcl: 4
file content (324 lines) | stat: -rw-r--r-- 9,718 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/* Copyright (C) 2022 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "precompiled.h"

#include "VertexBuffer.h"

#include "lib/sysdep/cpu.h"
#include "ps/CLogger.h"
#include "ps/Errors.h"
#include "ps/VideoMode.h"
#include "renderer/backend/IDevice.h"
#include "renderer/Renderer.h"

#include <algorithm>
#include <cstring>
#include <iterator>

// Absolute maximum (bytewise) size of each GL vertex buffer object.
// Make it large enough for the maximum feasible mesh size (64K vertexes,
// 64 bytes per vertex in InstancingModelRenderer).
// TODO: measure what influence this has on performance
constexpr std::size_t MAX_VB_SIZE_BYTES = 4 * 1024 * 1024;

CVertexBuffer::CVertexBuffer(
	const char* name, const size_t vertexSize,
	const Renderer::Backend::IBuffer::Type type, const bool dynamic)
	: CVertexBuffer(name, vertexSize, type, dynamic, MAX_VB_SIZE_BYTES)
{
}

CVertexBuffer::CVertexBuffer(
	const char* name, const size_t vertexSize,
	const Renderer::Backend::IBuffer::Type type, const bool dynamic,
	const size_t maximumBufferSize)
	: m_VertexSize(vertexSize), m_HasNeededChunks(false)
{
	size_t size = maximumBufferSize;

	if (type == Renderer::Backend::IBuffer::Type::VERTEX)
	{
		// We want to store 16-bit indices to any vertex in a buffer, so the
		// buffer must never be bigger than vertexSize*64K bytes since we can
		// address at most 64K of them with 16-bit indices
		size = std::min(size, vertexSize * 65536);
	}
	else if (type == Renderer::Backend::IBuffer::Type::INDEX)
	{
		ENSURE(vertexSize == sizeof(u16));
	}

	// store max/free vertex counts
	m_MaxVertices = m_FreeVertices = size / vertexSize;

	m_Buffer = g_VideoMode.GetBackendDevice()->CreateBuffer(
		name, type, m_MaxVertices * m_VertexSize, dynamic);

	// create sole free chunk
	VBChunk* chunk = new VBChunk;
	chunk->m_Owner = this;
	chunk->m_Count = m_FreeVertices;
	chunk->m_Index = 0;
	m_FreeList.emplace_back(chunk);
}

CVertexBuffer::~CVertexBuffer()
{
	// Must have released all chunks before destroying the buffer
	ENSURE(m_AllocList.empty());

	m_Buffer.reset();

	for (VBChunk* const& chunk : m_FreeList)
		delete chunk;
}

bool CVertexBuffer::CompatibleVertexType(
	const size_t vertexSize, const Renderer::Backend::IBuffer::Type type,
	const bool dynamic) const
{
	ENSURE(m_Buffer);
	return type == m_Buffer->GetType() && dynamic == m_Buffer->IsDynamic() && vertexSize == m_VertexSize;
}

///////////////////////////////////////////////////////////////////////////////
// Allocate: try to allocate a buffer of given number of vertices (each of
// given size), with the given type, and using the given texture - return null
// if no free chunks available
CVertexBuffer::VBChunk* CVertexBuffer::Allocate(
	const size_t vertexSize, const size_t numberOfVertices,
	const Renderer::Backend::IBuffer::Type type, const bool dynamic,
	void* backingStore)
{
	// check this is the right kind of buffer
	if (!CompatibleVertexType(vertexSize, type, dynamic))
		return nullptr;

	if (UseStreaming(dynamic))
		ENSURE(backingStore != nullptr);

	// quick check there's enough vertices spare to allocate
	if (numberOfVertices > m_FreeVertices)
		return nullptr;

	// trawl free list looking for first free chunk with enough space
	std::vector<VBChunk*>::iterator best_iter = m_FreeList.end();
	for (std::vector<VBChunk*>::iterator iter = m_FreeList.begin(); iter != m_FreeList.end(); ++iter)
	{
		if (numberOfVertices == (*iter)->m_Count)
		{
			best_iter = iter;
			break;
		}
		else if (numberOfVertices < (*iter)->m_Count && (best_iter == m_FreeList.end() || (*best_iter)->m_Count < (*iter)->m_Count))
			best_iter = iter;
	}

	// We could not find a large enough chunk.
	if (best_iter == m_FreeList.end())
		return nullptr;

	VBChunk* chunk = *best_iter;
	m_FreeList.erase(best_iter);
	m_FreeVertices -= chunk->m_Count;

	chunk->m_BackingStore = backingStore;
	chunk->m_Dirty = false;
	chunk->m_Needed = false;

	// split chunk into two; - allocate a new chunk using all unused vertices in the
	// found chunk, and add it to the free list
	if (chunk->m_Count > numberOfVertices)
	{
		VBChunk* newchunk = new VBChunk;
		newchunk->m_Owner = this;
		newchunk->m_Count = chunk->m_Count - numberOfVertices;
		newchunk->m_Index = chunk->m_Index + numberOfVertices;
		m_FreeList.emplace_back(newchunk);
		m_FreeVertices += newchunk->m_Count;

		// resize given chunk
		chunk->m_Count = numberOfVertices;
	}

	// return found chunk
	m_AllocList.push_back(chunk);
	return chunk;
}

///////////////////////////////////////////////////////////////////////////////
// Release: return given chunk to this buffer
void CVertexBuffer::Release(VBChunk* chunk)
{
	// Update total free count before potentially modifying this chunk's count
	m_FreeVertices += chunk->m_Count;

	m_AllocList.erase(std::find(m_AllocList.begin(), m_AllocList.end(), chunk));

	// Sorting O(nlogn) shouldn't be too far from O(n) by performance, because
	// the container is partly sorted already.
	std::sort(
		m_FreeList.begin(), m_FreeList.end(),
		[](const VBChunk* chunk1, const VBChunk* chunk2) -> bool
		{
			return chunk1->m_Index < chunk2->m_Index;
		});

	// Coalesce with any free-list items that are adjacent to this chunk;
	// merge the found chunk with the new one, and remove the old one
	// from the list.
	for (std::vector<VBChunk*>::iterator iter = m_FreeList.begin(); iter != m_FreeList.end();)
	{
		if ((*iter)->m_Index == chunk->m_Index + chunk->m_Count
		 || (*iter)->m_Index + (*iter)->m_Count == chunk->m_Index)
		{
			chunk->m_Index = std::min(chunk->m_Index, (*iter)->m_Index);
			chunk->m_Count += (*iter)->m_Count;
			delete *iter;
			iter = m_FreeList.erase(iter);
			if (!m_FreeList.empty() && iter != m_FreeList.begin())
				iter = std::prev(iter);
		}
		else
		{
			++iter;
		}
	}

	m_FreeList.emplace_back(chunk);
}

///////////////////////////////////////////////////////////////////////////////
// UpdateChunkVertices: update vertex data for given chunk
void CVertexBuffer::UpdateChunkVertices(VBChunk* chunk, void* data)
{
	ENSURE(m_Buffer);
	if (UseStreaming(m_Buffer->IsDynamic()))
	{
		// The backend buffer is now out of sync with the backing store.
		chunk->m_Dirty = true;

		// Sanity check: Make sure the caller hasn't tried to reallocate
		// their backing store.
		ENSURE(data == chunk->m_BackingStore);
	}
	else
	{
		ENSURE(data);
		g_Renderer.GetDeviceCommandContext()->UploadBufferRegion(
			m_Buffer.get(), data, chunk->m_Index * m_VertexSize, chunk->m_Count * m_VertexSize);
	}
}

void CVertexBuffer::UploadIfNeeded(
	Renderer::Backend::IDeviceCommandContext* deviceCommandContext)
{
	if (UseStreaming(m_Buffer->IsDynamic()))
	{
		if (!m_HasNeededChunks)
			return;

		// If any chunks are out of sync with the current backend buffer, and are
		// needed for rendering this frame, we'll need to re-upload the backend buffer.
		bool needUpload = false;
		for (VBChunk* const& chunk : m_AllocList)
		{
			if (chunk->m_Dirty && chunk->m_Needed)
			{
				needUpload = true;
				break;
			}
		}

		if (needUpload)
		{
			deviceCommandContext->UploadBuffer(m_Buffer.get(), [&](u8* mappedData)
			{
#ifndef NDEBUG
				// To help detect bugs where PrepareForRendering() was not called,
				// force all not-needed data to 0, so things won't get rendered
				// with undefined (but possibly still correct-looking) data.
				memset(mappedData, 0, m_MaxVertices * m_VertexSize);
#endif

				// Copy only the chunks we need. (This condition is helpful when
				// the backend buffer contains data for every unit in the world,
				// but only a handful are visible on screen and we don't need to
				// bother copying the rest.)
				for (VBChunk* const& chunk : m_AllocList)
					if (chunk->m_Needed)
						std::memcpy(mappedData + chunk->m_Index * m_VertexSize, chunk->m_BackingStore, chunk->m_Count * m_VertexSize);
			});

			// Anything we just uploaded is clean; anything else is dirty
			// since the rest of the backend buffer content is now undefined
			for (VBChunk* const& chunk : m_AllocList)
			{
				if (chunk->m_Needed)
				{
					chunk->m_Dirty = false;
					chunk->m_Needed = false;
				}
				else
					chunk->m_Dirty = true;
			}
		}
		else
		{
			// Reset the flags for the next phase.
			for (VBChunk* const& chunk : m_AllocList)
				chunk->m_Needed = false;
		}

		m_HasNeededChunks = false;
	}
}

size_t CVertexBuffer::GetBytesReserved() const
{
	return MAX_VB_SIZE_BYTES;
}

size_t CVertexBuffer::GetBytesAllocated() const
{
	return (m_MaxVertices - m_FreeVertices) * m_VertexSize;
}

void CVertexBuffer::DumpStatus() const
{
	debug_printf("freeverts = %d\n", static_cast<int>(m_FreeVertices));

	size_t maxSize = 0;
	for (VBChunk* const& chunk : m_FreeList)
	{
		debug_printf("free chunk %p: size=%d\n", static_cast<void *>(chunk), static_cast<int>(chunk->m_Count));
		maxSize = std::max(chunk->m_Count, maxSize);
	}
	debug_printf("max size = %d\n", static_cast<int>(maxSize));
}

bool CVertexBuffer::UseStreaming(const bool dynamic)
{
	return dynamic;
}

void CVertexBuffer::PrepareForRendering(VBChunk* chunk)
{
	chunk->m_Needed = true;
	m_HasNeededChunks = true;
}