1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
/* Copyright (C) 2024 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "RingCommandContext.h"
#include "lib/bits.h"
#include "renderer/backend/vulkan/Buffer.h"
#include "renderer/backend/vulkan/Device.h"
#include "renderer/backend/vulkan/Utilities.h"
#include <algorithm>
#include <cstddef>
#include <limits>
namespace Renderer
{
namespace Backend
{
namespace Vulkan
{
namespace
{
constexpr uint32_t INITIAL_STAGING_BUFFER_CAPACITY = 1024 * 1024;
constexpr VkDeviceSize SMALL_HOST_TOTAL_MEMORY_THRESHOLD = 1024 * 1024 * 1024;
constexpr uint32_t MAX_SMALL_STAGING_BUFFER_CAPACITY = 64 * 1024 * 1024;
constexpr uint32_t MAX_STAGING_BUFFER_CAPACITY = 256 * 1024 * 1024;
constexpr uint32_t INVALID_OFFSET = std::numeric_limits<uint32_t>::max();
} // anonymous namespace
std::unique_ptr<CRingCommandContext> CRingCommandContext::Create(
CDevice* device, const size_t size, const uint32_t queueFamilyIndex,
CSubmitScheduler& submitScheduler)
{
ENSURE(device);
std::unique_ptr<CRingCommandContext> ringCommandContext{
new CRingCommandContext{device, submitScheduler}};
ringCommandContext->m_OptimalBufferCopyOffsetAlignment = std::max(
1u, static_cast<uint32_t>(device->GetChoosenPhysicalDevice().properties.limits.optimalBufferCopyOffsetAlignment));
// In case of small amount of host memory it's better to make uploading
// slower rather than crashing due to OOM, because memory for a
// staging buffer is allocated in the host memory.
ringCommandContext->m_MaxStagingBufferCapacity =
device->GetChoosenPhysicalDevice().hostTotalMemory <= SMALL_HOST_TOTAL_MEMORY_THRESHOLD
? MAX_SMALL_STAGING_BUFFER_CAPACITY
: MAX_STAGING_BUFFER_CAPACITY;
ringCommandContext->m_Ring.resize(size);
for (RingItem& item : ringCommandContext->m_Ring)
{
VkCommandPoolCreateInfo commandPoolCreateInfoInfo{};
commandPoolCreateInfoInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
commandPoolCreateInfoInfo.queueFamilyIndex = queueFamilyIndex;
RETURN_NULLPTR_IF_NOT_VK_SUCCESS(vkCreateCommandPool(
device->GetVkDevice(), &commandPoolCreateInfoInfo,
nullptr, &item.commandPool));
VkCommandBufferAllocateInfo allocateInfo{};
allocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocateInfo.commandPool = item.commandPool;
allocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocateInfo.commandBufferCount = 1;
RETURN_NULLPTR_IF_NOT_VK_SUCCESS(vkAllocateCommandBuffers(
device->GetVkDevice(), &allocateInfo, &item.commandBuffer));
device->SetObjectName(
VK_OBJECT_TYPE_COMMAND_BUFFER, item.commandBuffer, "RingCommandBuffer");
}
return ringCommandContext;
}
CRingCommandContext::CRingCommandContext(
CDevice* device, CSubmitScheduler& submitScheduler)
: m_Device(device), m_SubmitScheduler(submitScheduler)
{
}
CRingCommandContext::~CRingCommandContext()
{
VkDevice device = m_Device->GetVkDevice();
for (RingItem& item : m_Ring)
{
if (item.commandBuffer != VK_NULL_HANDLE)
vkFreeCommandBuffers(device, item.commandPool, 1, &item.commandBuffer);
if (item.commandPool != VK_NULL_HANDLE)
vkDestroyCommandPool(device, item.commandPool, nullptr);
}
}
VkCommandBuffer CRingCommandContext::GetCommandBuffer()
{
RingItem& item = m_Ring[m_RingIndex];
if (!item.isBegan)
Begin();
return item.commandBuffer;
}
void CRingCommandContext::Flush()
{
RingItem& item = m_Ring[m_RingIndex];
if (!item.isBegan)
return;
End();
item.handle = m_SubmitScheduler.Submit(item.commandBuffer);
m_RingIndex = (m_RingIndex + 1) % m_Ring.size();
}
void CRingCommandContext::FlushAndWait()
{
RingItem& item = m_Ring[m_RingIndex];
ENSURE(item.isBegan);
End();
item.handle = m_SubmitScheduler.Submit(item.commandBuffer);
WaitUntilFree(item);
}
void CRingCommandContext::ScheduleUpload(
CTexture* texture, const Format dataFormat,
const void* data, const size_t dataSize,
const uint32_t level, const uint32_t layer)
{
const uint32_t mininumSize = 1u;
const uint32_t width = std::max(mininumSize, texture->GetWidth() >> level);
const uint32_t height = std::max(mininumSize, texture->GetHeight() >> level);
ScheduleUpload(
texture, dataFormat, data, dataSize,
0, 0, width, height, level, layer);
}
void CRingCommandContext::ScheduleUpload(
CTexture* texture, const Format UNUSED(dataFormat),
const void* data, const size_t dataSize,
const uint32_t xOffset, const uint32_t yOffset,
const uint32_t width, const uint32_t height,
const uint32_t level, const uint32_t layer)
{
ENSURE(texture->GetType() != ITexture::Type::TEXTURE_2D_MULTISAMPLE);
const Format format = texture->GetFormat();
if (texture->GetType() != ITexture::Type::TEXTURE_CUBE)
ENSURE(layer == 0);
ENSURE(format != Format::R8G8B8_UNORM);
const bool isCompressedFormat =
format == Format::BC1_RGB_UNORM ||
format == Format::BC1_RGBA_UNORM ||
format == Format::BC2_UNORM ||
format == Format::BC3_UNORM;
ENSURE(
format == Format::R8_UNORM ||
format == Format::R8G8_UNORM ||
format == Format::R8G8B8A8_UNORM ||
format == Format::A8_UNORM ||
format == Format::L8_UNORM ||
isCompressedFormat);
// TODO: use a more precise format alignment.
constexpr uint32_t formatAlignment = 16;
const uint32_t offset = AcquireFreeSpace(dataSize, std::max(formatAlignment, m_OptimalBufferCopyOffsetAlignment));
std::memcpy(static_cast<std::byte*>(m_StagingBuffer->GetMappedData()) + offset, data, dataSize);
VkCommandBuffer commandBuffer = GetCommandBuffer();
VkImage image = texture->GetImage();
Utilities::SubmitImageMemoryBarrier(
commandBuffer, image, level, layer,
VK_ACCESS_SHADER_READ_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
VkBufferImageCopy region{};
region.bufferOffset = offset;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = level;
region.imageSubresource.baseArrayLayer = layer;
region.imageSubresource.layerCount = 1;
region.imageOffset = {static_cast<int32_t>(xOffset), static_cast<int32_t>(yOffset), 0};
region.imageExtent = {width, height, 1};
vkCmdCopyBufferToImage(
commandBuffer, m_StagingBuffer->GetVkBuffer(), image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion);
VkAccessFlags dstAccessFlags = VK_ACCESS_SHADER_READ_BIT;
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
Utilities::SubmitImageMemoryBarrier(
commandBuffer, image, level, layer,
VK_ACCESS_TRANSFER_WRITE_BIT, dstAccessFlags,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT, dstStageMask);
texture->SetInitialized();
}
void CRingCommandContext::ScheduleUpload(
CBuffer* buffer, const void* data, const uint32_t dataOffset,
const uint32_t dataSize)
{
constexpr uint32_t alignment = 16;
const uint32_t offset = AcquireFreeSpace(dataSize, alignment);
std::memcpy(static_cast<std::byte*>(m_StagingBuffer->GetMappedData()) + offset, data, dataSize);
ScheduleUpload(buffer, dataOffset, dataSize, offset);
}
void CRingCommandContext::ScheduleUpload(
CBuffer* buffer, const uint32_t dataOffset, const uint32_t dataSize,
const UploadBufferFunction& uploadFunction)
{
constexpr uint32_t alignment = 16;
const uint32_t offset = AcquireFreeSpace(dataSize, alignment);
CBuffer* stagingBuffer = m_StagingBuffer->As<CBuffer>();
uploadFunction(static_cast<uint8_t*>(stagingBuffer->GetMappedData()) + offset - dataOffset);
ScheduleUpload(buffer, dataOffset, dataSize, offset);
}
void CRingCommandContext::ScheduleUpload(
CBuffer* buffer, const uint32_t dataOffset, const uint32_t dataSize,
const uint32_t acquiredOffset)
{
CBuffer* stagingBuffer = m_StagingBuffer->As<CBuffer>();
VkCommandBuffer commandBuffer = GetCommandBuffer();
VkBufferCopy region{};
region.srcOffset = acquiredOffset;
region.dstOffset = dataOffset;
region.size = dataSize;
// TODO: remove transfer mask from pipeline barrier, as we need to batch copies.
VkPipelineStageFlags srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
if (buffer->GetType() == IBuffer::Type::VERTEX || buffer->GetType() == IBuffer::Type::INDEX)
srcStageMask = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT;
else if (buffer->GetType() == IBuffer::Type::UNIFORM)
srcStageMask = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
Utilities::SubmitPipelineBarrier(
commandBuffer, srcStageMask, dstStageMask);
// TODO: currently we might overwrite data which triggers validation
// assertion about Write-After-Write hazard.
if (buffer->IsDynamic())
{
Utilities::SubmitBufferMemoryBarrier(
commandBuffer, buffer, dataOffset, dataSize,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
}
vkCmdCopyBuffer(
commandBuffer, stagingBuffer->GetVkBuffer(), buffer->GetVkBuffer(), 1, ®ion);
VkAccessFlags srcAccessFlags = VK_ACCESS_TRANSFER_WRITE_BIT;
VkAccessFlags dstAccessFlags = 0;
srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
dstStageMask = 0;
if (buffer->GetType() == IBuffer::Type::VERTEX)
{
dstAccessFlags = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT;
dstStageMask = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT;
}
else if (buffer->GetType() == IBuffer::Type::INDEX)
{
dstAccessFlags = VK_ACCESS_INDEX_READ_BIT;
dstStageMask = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT;
}
else if (buffer->GetType() == IBuffer::Type::UNIFORM)
{
dstAccessFlags = VK_ACCESS_UNIFORM_READ_BIT;
dstStageMask = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
}
Utilities::SubmitBufferMemoryBarrier(
commandBuffer, buffer, dataOffset, dataSize,
srcAccessFlags, dstAccessFlags, srcStageMask, dstStageMask);
}
void CRingCommandContext::Begin()
{
RingItem& item = m_Ring[m_RingIndex];
item.isBegan = true;
WaitUntilFree(item);
m_StagingBufferCurrentFirst = m_StagingBufferLast;
ENSURE_VK_SUCCESS(vkResetCommandPool(m_Device->GetVkDevice(), item.commandPool, 0));
VkCommandBufferBeginInfo beginInfo{};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
beginInfo.pInheritanceInfo = nullptr;
ENSURE_VK_SUCCESS(vkBeginCommandBuffer(item.commandBuffer, &beginInfo));
}
void CRingCommandContext::End()
{
RingItem& item = m_Ring[m_RingIndex];
item.isBegan = false;
item.stagingBufferFirst = m_StagingBufferCurrentFirst;
item.stagingBufferLast = m_StagingBufferLast;
ENSURE_VK_SUCCESS(vkEndCommandBuffer(item.commandBuffer));
}
void CRingCommandContext::WaitUntilFree(RingItem& item)
{
m_SubmitScheduler.WaitUntilFree(item.handle);
if (item.stagingBufferFirst != item.stagingBufferLast)
{
m_StagingBufferFirst = item.stagingBufferLast;
item.stagingBufferFirst = 0;
item.stagingBufferLast = 0;
}
}
uint32_t CRingCommandContext::AcquireFreeSpace(
const uint32_t requiredSize, const uint32_t requiredAlignment)
{
ENSURE(requiredSize <= m_MaxStagingBufferCapacity);
const uint32_t offsetCandidate =
GetFreeSpaceOffset(requiredSize, requiredAlignment);
const bool needsResize =
!m_StagingBuffer || offsetCandidate == INVALID_OFFSET;
const bool canResize =
!m_StagingBuffer || m_StagingBuffer->GetSize() < m_MaxStagingBufferCapacity;
if (needsResize && canResize)
{
const uint32_t minimumRequiredCapacity = round_up_to_pow2(requiredSize);
const uint32_t newCapacity = std::min(
std::max(m_StagingBuffer ? m_StagingBuffer->GetSize() * 2 : INITIAL_STAGING_BUFFER_CAPACITY, minimumRequiredCapacity),
m_MaxStagingBufferCapacity);
m_StagingBuffer = m_Device->CreateCBuffer(
"UploadRingBuffer", IBuffer::Type::UPLOAD, newCapacity, IBuffer::Usage::TRANSFER_SRC);
ENSURE(m_StagingBuffer);
m_StagingBufferFirst = 0;
m_StagingBufferCurrentFirst = 0;
m_StagingBufferLast = requiredSize;
for (RingItem& item : m_Ring)
{
item.stagingBufferFirst = 0;
item.stagingBufferLast = 0;
}
return 0;
}
else if (needsResize)
{
// In case we can't resize we need to wait until all scheduled uploads are
// completed.
for (size_t ringIndexOffset = 1; ringIndexOffset < m_Ring.size() && GetFreeSpaceOffset(requiredSize, requiredAlignment) == INVALID_OFFSET; ++ringIndexOffset)
{
const size_t ringIndex = (m_RingIndex + ringIndexOffset) % m_Ring.size();
RingItem& item = m_Ring[ringIndex];
WaitUntilFree(item);
}
// If we still don't have a free space it means we need to flush the
// current command buffer.
const uint32_t offset = GetFreeSpaceOffset(requiredSize, requiredAlignment);
if (offset == INVALID_OFFSET)
{
RingItem& item = m_Ring[m_RingIndex];
if (item.isBegan)
Flush();
WaitUntilFree(item);
m_StagingBufferFirst = 0;
m_StagingBufferCurrentFirst = 0;
m_StagingBufferLast = requiredSize;
return 0;
}
else
{
m_StagingBufferLast = offset + requiredSize;
return offset;
}
}
else
{
m_StagingBufferLast = offsetCandidate + requiredSize;
return offsetCandidate;
}
}
uint32_t CRingCommandContext::GetFreeSpaceOffset(
const uint32_t requiredSize, const uint32_t requiredAlignment) const
{
if (!m_StagingBuffer)
return INVALID_OFFSET;
const uint32_t candidateOffset =
round_up(m_StagingBufferLast, requiredAlignment);
const uint32_t candidateLast = candidateOffset + requiredSize;
if (m_StagingBufferFirst <= m_StagingBufferLast)
{
if (candidateLast <= m_StagingBuffer->GetSize())
return candidateOffset;
// We intentionally use exclusive comparison to avoid distinguishing
// completely full and completely empty staging buffers.
else if (requiredSize < m_StagingBufferFirst)
return 0; // We assume the first byte is always perfectly aligned.
else
return INVALID_OFFSET;
}
else
{
if (candidateLast < m_StagingBufferFirst)
return candidateOffset;
else
return INVALID_OFFSET;
}
}
} // namespace Vulkan
} // namespace Backend
} // namespace Renderer
|