1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
|
/* Copyright (C) 2023 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_CCMPUNITMOTION
#define INCLUDED_CCMPUNITMOTION
#include "simulation2/system/Component.h"
#include "ICmpUnitMotion.h"
#include "simulation2/components/CCmpUnitMotionManager.h"
#include "simulation2/components/ICmpObstruction.h"
#include "simulation2/components/ICmpObstructionManager.h"
#include "simulation2/components/ICmpOwnership.h"
#include "simulation2/components/ICmpPosition.h"
#include "simulation2/components/ICmpPathfinder.h"
#include "simulation2/components/ICmpRangeManager.h"
#include "simulation2/components/ICmpValueModificationManager.h"
#include "simulation2/components/ICmpVisual.h"
#include "simulation2/helpers/Geometry.h"
#include "simulation2/helpers/Render.h"
#include "simulation2/MessageTypes.h"
#include "simulation2/serialization/SerializedPathfinder.h"
#include "simulation2/serialization/SerializedTypes.h"
#include "graphics/Overlay.h"
#include "maths/FixedVector2D.h"
#include "ps/CLogger.h"
#include "ps/Profile.h"
#include "renderer/Scene.h"
#include <algorithm>
// NB: this implementation of ICmpUnitMotion is very tightly coupled with UnitMotionManager.
// As such, both are compiled in the same TU.
// For debugging; units will start going straight to the target
// instead of calling the pathfinder
#define DISABLE_PATHFINDER 0
namespace
{
/**
* Min/Max range to restrict short path queries to. (Larger ranges are (much) slower,
* smaller ranges might miss some legitimate routes around large obstacles.)
* NB: keep the max-range in sync with the vertex pathfinder "move the search space" heuristic.
*/
constexpr entity_pos_t SHORT_PATH_MIN_SEARCH_RANGE = entity_pos_t::FromInt(12 * Pathfinding::NAVCELL_SIZE_INT);
constexpr entity_pos_t SHORT_PATH_MAX_SEARCH_RANGE = entity_pos_t::FromInt(56 * Pathfinding::NAVCELL_SIZE_INT);
constexpr entity_pos_t SHORT_PATH_SEARCH_RANGE_INCREMENT = entity_pos_t::FromInt(4 * Pathfinding::NAVCELL_SIZE_INT);
constexpr u8 SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY = 1;
/**
* When using the short-pathfinder to rejoin a long-path waypoint, aim for a circle of this radius around the waypoint.
*/
constexpr entity_pos_t SHORT_PATH_LONG_WAYPOINT_RANGE = entity_pos_t::FromInt(4 * Pathfinding::NAVCELL_SIZE_INT);
/**
* Minimum distance to goal for a long path request
*/
constexpr entity_pos_t LONG_PATH_MIN_DIST = entity_pos_t::FromInt(16 * Pathfinding::NAVCELL_SIZE_INT);
/**
* If we are this close to our target entity/point, then think about heading
* for it in a straight line instead of pathfinding.
*/
constexpr entity_pos_t DIRECT_PATH_RANGE = entity_pos_t::FromInt(24 * Pathfinding::NAVCELL_SIZE_INT);
/**
* To avoid recomputing paths too often, have some leeway for target range checks
* based on our distance to the target. Increase that incertainty by one navcell
* for every this many tiles of distance.
*/
constexpr entity_pos_t TARGET_UNCERTAINTY_MULTIPLIER = entity_pos_t::FromInt(8 * Pathfinding::NAVCELL_SIZE_INT);
/**
* When following a known imperfect path (i.e. a path that won't take us in range of our goal
* we still recompute a new path every N turn to adapt to moving targets (for example, ships that must pickup
* units may easily end up in this state, they still need to adjust to moving units).
* This is rather arbitrary and mostly for simplicity & optimisation (a better recomputing algorithm
* would not need this).
*/
constexpr u8 KNOWN_IMPERFECT_PATH_RESET_COUNTDOWN = 12;
/**
* When we fail to move this many turns in a row, inform other components that the move will fail.
* Experimentally, this number needs to be somewhat high or moving groups of units will lead to stuck units.
* However, too high means units will look idle for a long time when they are failing to move.
* TODO: if UnitMotion could send differentiated "unreachable" and "currently stuck" failing messages,
* this could probably be lowered.
*/
constexpr u8 MAX_FAILED_MOVEMENTS = 35;
/**
* When computing paths but failing to move, we want to occasionally alternate pathfinder systems
* to avoid getting stuck (the short pathfinder can unstuck the long-range one and vice-versa, depending).
*/
constexpr u8 ALTERNATE_PATH_TYPE_DELAY = 3;
constexpr u8 ALTERNATE_PATH_TYPE_EVERY = 6;
/**
* Units can occasionally get stuck near corners. The cause is a mismatch between CheckMovement and the short pathfinder.
* The problem is the short pathfinder finds an impassable path when units are right on an obstruction edge.
* Fixing this math mismatch is perhaps possible, but fixing it in UM is rather easy: just try backing up a bit
* and that will probably un-stuck the unit. This is the 'failed movement' turn on which to try that.
*/
constexpr u8 BACKUP_HACK_DELAY = 10;
/**
* After this many failed computations, start sending "VERY_OBSTRUCTED" messages instead.
* Should probably be larger than ALTERNATE_PATH_TYPE_DELAY.
*/
constexpr u8 VERY_OBSTRUCTED_THRESHOLD = 10;
const CColor OVERLAY_COLOR_LONG_PATH(1, 1, 1, 1);
const CColor OVERLAY_COLOR_SHORT_PATH(1, 0, 0, 1);
} // anonymous namespace
class CCmpUnitMotion final : public ICmpUnitMotion
{
friend class CCmpUnitMotionManager;
public:
static void ClassInit(CComponentManager& componentManager)
{
componentManager.SubscribeToMessageType(MT_Create);
componentManager.SubscribeToMessageType(MT_Destroy);
componentManager.SubscribeToMessageType(MT_PathResult);
componentManager.SubscribeToMessageType(MT_OwnershipChanged);
componentManager.SubscribeToMessageType(MT_ValueModification);
componentManager.SubscribeToMessageType(MT_MovementObstructionChanged);
componentManager.SubscribeToMessageType(MT_Deserialized);
}
DEFAULT_COMPONENT_ALLOCATOR(UnitMotion)
bool m_DebugOverlayEnabled;
std::vector<SOverlayLine> m_DebugOverlayLongPathLines;
std::vector<SOverlayLine> m_DebugOverlayShortPathLines;
// Template state:
bool m_IsFormationController;
fixed m_TemplateWalkSpeed, m_TemplateRunMultiplier, m_TemplateAcceleration, m_TemplateWeight;
pass_class_t m_PassClass;
std::string m_PassClassName;
// Dynamic state:
entity_pos_t m_Clearance;
// cached for efficiency
fixed m_WalkSpeed, m_RunMultiplier;
bool m_FacePointAfterMove;
// Whether the unit participates in pushing.
bool m_Pushing = false;
// Whether the unit blocks movement (& is blocked by movement blockers)
// Cached from ICmpObstruction.
bool m_BlockMovement = false;
// Internal counter used when recovering from obstructed movement.
// Most notably, increases the search range of the vertex pathfinder.
// See HandleObstructedMove() for more details.
u8 m_FailedMovements = 0;
// If > 0, PathingUpdateNeeded returns false always.
// This exists because the goal may be unreachable to the short/long pathfinder.
// In such cases, we would compute inacceptable paths and PathingUpdateNeeded would trigger every turn,
// which would be quite bad for performance.
// To avoid that, when we know the new path is imperfect, treat it as OK and follow it anyways.
// When reaching the end, we'll go through HandleObstructedMove and reset regardless.
// To still recompute now and then (the target may be moving), this is a countdown decremented on each frame.
u8 m_FollowKnownImperfectPathCountdown = 0;
struct Ticket {
u32 m_Ticket = 0; // asynchronous request ID we're waiting for, or 0 if none
enum Type {
SHORT_PATH,
LONG_PATH
} m_Type = SHORT_PATH; // Pick some default value to avoid UB.
void clear() { m_Ticket = 0; }
} m_ExpectedPathTicket;
struct MoveRequest {
enum Type {
NONE,
POINT,
ENTITY,
OFFSET
} m_Type = NONE;
entity_id_t m_Entity = INVALID_ENTITY;
CFixedVector2D m_Position;
entity_pos_t m_MinRange, m_MaxRange;
// For readability
CFixedVector2D GetOffset() const { return m_Position; };
MoveRequest() = default;
MoveRequest(CFixedVector2D pos, entity_pos_t minRange, entity_pos_t maxRange) : m_Type(POINT), m_Position(pos), m_MinRange(minRange), m_MaxRange(maxRange) {};
MoveRequest(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) : m_Type(ENTITY), m_Entity(target), m_MinRange(minRange), m_MaxRange(maxRange) {};
MoveRequest(entity_id_t target, CFixedVector2D offset) : m_Type(OFFSET), m_Entity(target), m_Position(offset) {};
} m_MoveRequest;
// If this is not INVALID_ENTITY, the unit is a formation member.
entity_id_t m_FormationController = INVALID_ENTITY;
// If the entity moves, it will do so at m_WalkSpeed * m_SpeedMultiplier.
fixed m_SpeedMultiplier;
// This caches the resulting speed from m_WalkSpeed * m_SpeedMultiplier for convenience.
fixed m_Speed;
// Mean speed over the last turn.
fixed m_LastTurnSpeed;
// The speed achieved at the end of the current turn.
fixed m_CurrentSpeed;
fixed m_InstantTurnAngle;
fixed m_Acceleration;
// Currently active paths (storing waypoints in reverse order).
// The last item in each path is the point we're currently heading towards.
WaypointPath m_LongPath;
WaypointPath m_ShortPath;
static std::string GetSchema()
{
return
"<a:help>Provides the unit with the ability to move around the world by itself.</a:help>"
"<a:example>"
"<WalkSpeed>7.0</WalkSpeed>"
"<PassabilityClass>default</PassabilityClass>"
"</a:example>"
"<element name='FormationController'>"
"<data type='boolean'/>"
"</element>"
"<element name='WalkSpeed' a:help='Basic movement speed (in metres per second).'>"
"<ref name='positiveDecimal'/>"
"</element>"
"<optional>"
"<element name='RunMultiplier' a:help='How much faster the unit goes when running (as a multiple of walk speed).'>"
"<ref name='positiveDecimal'/>"
"</element>"
"</optional>"
"<element name='InstantTurnAngle' a:help='Angle we can turn instantly. Any value greater than pi will disable turning times. Avoid zero since it stops the entity every turn.'>"
"<ref name='positiveDecimal'/>"
"</element>"
"<element name='Acceleration' a:help='Acceleration (in metres per second^2).'>"
"<ref name='positiveDecimal'/>"
"</element>"
"<element name='PassabilityClass' a:help='Identifies the terrain passability class (values are defined in special/pathfinder.xml).'>"
"<text/>"
"</element>"
"<element name='Weight' a:help='Makes this unit both push harder and harder to push. 10 is considered the base value.'>"
"<ref name='positiveDecimal'/>"
"</element>"
"<optional>"
"<element name='DisablePushing'>"
"<data type='boolean'/>"
"</element>"
"</optional>";
}
void Init(const CParamNode& paramNode) override
{
m_IsFormationController = paramNode.GetChild("FormationController").ToBool();
m_FacePointAfterMove = true;
m_WalkSpeed = m_TemplateWalkSpeed = m_Speed = paramNode.GetChild("WalkSpeed").ToFixed();
m_SpeedMultiplier = fixed::FromInt(1);
m_LastTurnSpeed = m_CurrentSpeed = fixed::Zero();
m_RunMultiplier = m_TemplateRunMultiplier = fixed::FromInt(1);
if (paramNode.GetChild("RunMultiplier").IsOk())
m_RunMultiplier = m_TemplateRunMultiplier = paramNode.GetChild("RunMultiplier").ToFixed();
m_InstantTurnAngle = paramNode.GetChild("InstantTurnAngle").ToFixed();
m_Acceleration = m_TemplateAcceleration = paramNode.GetChild("Acceleration").ToFixed();
m_TemplateWeight = paramNode.GetChild("Weight").ToFixed();
m_PassClassName = paramNode.GetChild("PassabilityClass").ToString();
SetPassabilityData(m_PassClassName);
CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
if (cmpObstruction)
m_BlockMovement = cmpObstruction->GetBlockMovementFlag(true);
SetParticipateInPushing(!paramNode.GetChild("DisablePushing").IsOk() || !paramNode.GetChild("DisablePushing").ToBool());
m_DebugOverlayEnabled = false;
}
void Deinit() override
{
}
template<typename S>
void SerializeCommon(S& serialize)
{
// m_Clearance and m_PassClass are constructed from this.
serialize.StringASCII("pass class", m_PassClassName, 0, 64);
serialize.NumberU32_Unbounded("ticket", m_ExpectedPathTicket.m_Ticket);
Serializer(serialize, "ticket type", m_ExpectedPathTicket.m_Type, Ticket::Type::LONG_PATH);
serialize.NumberU8_Unbounded("failed movements", m_FailedMovements);
serialize.NumberU8_Unbounded("followknownimperfectpath", m_FollowKnownImperfectPathCountdown);
Serializer(serialize, "target type", m_MoveRequest.m_Type, MoveRequest::Type::OFFSET);
serialize.NumberU32_Unbounded("target entity", m_MoveRequest.m_Entity);
serialize.NumberFixed_Unbounded("target pos x", m_MoveRequest.m_Position.X);
serialize.NumberFixed_Unbounded("target pos y", m_MoveRequest.m_Position.Y);
serialize.NumberFixed_Unbounded("target min range", m_MoveRequest.m_MinRange);
serialize.NumberFixed_Unbounded("target max range", m_MoveRequest.m_MaxRange);
serialize.NumberU32_Unbounded("formation controller", m_FormationController);
serialize.NumberFixed_Unbounded("speed multiplier", m_SpeedMultiplier);
serialize.NumberFixed_Unbounded("last turn speed", m_LastTurnSpeed);
serialize.NumberFixed_Unbounded("current speed", m_CurrentSpeed);
serialize.NumberFixed_Unbounded("instant turn angle", m_InstantTurnAngle);
serialize.NumberFixed_Unbounded("acceleration", m_Acceleration);
serialize.Bool("facePointAfterMove", m_FacePointAfterMove);
serialize.Bool("pushing", m_Pushing);
Serializer(serialize, "long path", m_LongPath.m_Waypoints);
Serializer(serialize, "short path", m_ShortPath.m_Waypoints);
}
void Serialize(ISerializer& serialize) override
{
SerializeCommon(serialize);
}
void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize) override
{
Init(paramNode);
SerializeCommon(deserialize);
SetPassabilityData(m_PassClassName);
CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
if (cmpObstruction)
m_BlockMovement = cmpObstruction->GetBlockMovementFlag(false);
}
void HandleMessage(const CMessage& msg, bool UNUSED(global)) override
{
switch (msg.GetType())
{
case MT_RenderSubmit:
{
PROFILE("UnitMotion::RenderSubmit");
const CMessageRenderSubmit& msgData = static_cast<const CMessageRenderSubmit&> (msg);
RenderSubmit(msgData.collector);
break;
}
case MT_PathResult:
{
const CMessagePathResult& msgData = static_cast<const CMessagePathResult&> (msg);
PathResult(msgData.ticket, msgData.path);
break;
}
case MT_Create:
{
if (!ENTITY_IS_LOCAL(GetEntityId()))
CmpPtr<ICmpUnitMotionManager>(GetSystemEntity())->Register(this, GetEntityId(), m_IsFormationController);
break;
}
case MT_Destroy:
{
if (!ENTITY_IS_LOCAL(GetEntityId()))
CmpPtr<ICmpUnitMotionManager>(GetSystemEntity())->Unregister(GetEntityId());
break;
}
case MT_MovementObstructionChanged:
{
CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
if (cmpObstruction)
m_BlockMovement = cmpObstruction->GetBlockMovementFlag(false);
break;
}
case MT_ValueModification:
{
const CMessageValueModification& msgData = static_cast<const CMessageValueModification&> (msg);
if (msgData.component != L"UnitMotion")
break;
FALLTHROUGH;
}
case MT_OwnershipChanged:
{
OnValueModification();
break;
}
case MT_Deserialized:
{
OnValueModification();
break;
}
}
}
void UpdateMessageSubscriptions()
{
bool needRender = m_DebugOverlayEnabled;
GetSimContext().GetComponentManager().DynamicSubscriptionNonsync(MT_RenderSubmit, this, needRender);
}
bool IsMoveRequested() const override
{
return m_MoveRequest.m_Type != MoveRequest::NONE;
}
fixed GetSpeedMultiplier() const override
{
return m_SpeedMultiplier;
}
void SetSpeedMultiplier(fixed multiplier) override
{
m_SpeedMultiplier = std::min(multiplier, m_RunMultiplier);
m_Speed = m_SpeedMultiplier.Multiply(GetWalkSpeed());
}
fixed GetSpeed() const override
{
return m_Speed;
}
fixed GetWalkSpeed() const override
{
return m_WalkSpeed;
}
fixed GetRunMultiplier() const override
{
return m_RunMultiplier;
}
CFixedVector2D EstimateFuturePosition(const fixed dt) const override
{
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return CFixedVector2D();
// TODO: formation members should perhaps try to use the controller's position.
CFixedVector2D pos = cmpPosition->GetPosition2D();
entity_angle_t angle = cmpPosition->GetRotation().Y;
fixed speed = m_CurrentSpeed;
// Copy the path so we don't change it.
WaypointPath shortPath = m_ShortPath;
WaypointPath longPath = m_LongPath;
PerformMove(dt, cmpPosition->GetTurnRate(), shortPath, longPath, pos, speed, angle, 0);
return pos;
}
fixed GetAcceleration() const override
{
return m_Acceleration;
}
void SetAcceleration(fixed acceleration) override
{
m_Acceleration = acceleration;
}
virtual entity_pos_t GetWeight() const
{
return m_TemplateWeight;
}
pass_class_t GetPassabilityClass() const override
{
return m_PassClass;
}
std::string GetPassabilityClassName() const override
{
return m_PassClassName;
}
void SetPassabilityClassName(const std::string& passClassName) override
{
if (!m_IsFormationController)
{
LOGWARNING("Only formation controllers can change their passability class");
return;
}
SetPassabilityData(passClassName);
}
fixed GetCurrentSpeed() const override
{
return m_CurrentSpeed;
}
void SetFacePointAfterMove(bool facePointAfterMove) override
{
m_FacePointAfterMove = facePointAfterMove;
}
bool GetFacePointAfterMove() const override
{
return m_FacePointAfterMove;
}
void SetDebugOverlay(bool enabled) override
{
m_DebugOverlayEnabled = enabled;
UpdateMessageSubscriptions();
}
bool MoveToPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange) override
{
return MoveTo(MoveRequest(CFixedVector2D(x, z), minRange, maxRange));
}
bool MoveToTargetRange(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) override
{
return MoveTo(MoveRequest(target, minRange, maxRange));
}
void MoveToFormationOffset(entity_id_t controller, entity_pos_t x, entity_pos_t z) override
{
// Pass the controller to the move request anyways.
MoveTo(MoveRequest(controller, CFixedVector2D(x, z)));
}
void SetMemberOfFormation(entity_id_t controller) override
{
m_FormationController = controller;
}
bool IsTargetRangeReachable(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) override;
void FaceTowardsPoint(entity_pos_t x, entity_pos_t z) override;
/**
* Clears the current MoveRequest - the unit will stop and no longer try and move.
* This should never be called from UnitMotion, since MoveToX orders are given
* by other components - these components should also decide when to stop.
*/
void StopMoving() override
{
if (m_FacePointAfterMove)
{
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (cmpPosition && cmpPosition->IsInWorld())
{
CFixedVector2D targetPos;
if (ComputeTargetPosition(targetPos))
FaceTowardsPointFromPos(cmpPosition->GetPosition2D(), targetPos.X, targetPos.Y);
}
}
m_MoveRequest = MoveRequest();
m_ExpectedPathTicket.clear();
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
}
entity_pos_t GetUnitClearance() const override
{
return m_Clearance;
}
private:
bool IsFormationMember() const
{
return m_FormationController != INVALID_ENTITY;
}
bool IsMovingAsFormation() const
{
return IsFormationMember() && m_MoveRequest.m_Type == MoveRequest::OFFSET;
}
bool IsFormationControllerMoving() const
{
CmpPtr<ICmpUnitMotion> cmpControllerMotion(GetSimContext(), m_FormationController);
return cmpControllerMotion && cmpControllerMotion->IsMoveRequested();
}
entity_id_t GetGroup() const
{
return IsFormationMember() ? m_FormationController : GetEntityId();
}
void SetParticipateInPushing(bool pushing)
{
CmpPtr<ICmpUnitMotionManager> cmpUnitMotionManager(GetSystemEntity());
m_Pushing = pushing && cmpUnitMotionManager->IsPushingActivated();
}
void SetPassabilityData(const std::string& passClassName)
{
m_PassClassName = passClassName;
CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
if (cmpPathfinder)
{
m_PassClass = cmpPathfinder->GetPassabilityClass(passClassName);
m_Clearance = cmpPathfinder->GetClearance(m_PassClass);
CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->SetUnitClearance(m_Clearance);
}
}
/**
* Warns other components that our current movement will likely fail (e.g. we won't be able to reach our target)
* This should only be called before the actual movement in a given turn, or units might both move and try to do things
* on the same turn, leading to gliding units.
*/
void MoveFailed()
{
// Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time
// if our current offset is unreachable, but we don't want to end up stuck.
// (If the formation controller has stopped moving however, we can safely message).
if (IsFormationMember() && IsFormationControllerMoving())
return;
CMessageMotionUpdate msg(CMessageMotionUpdate::LIKELY_FAILURE);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
/**
* Warns other components that our current movement is likely over (i.e. we probably reached our destination)
* This should only be called before the actual movement in a given turn, or units might both move and try to do things
* on the same turn, leading to gliding units.
*/
void MoveSucceeded()
{
// Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time
// if our current offset is unreachable, but we don't want to end up stuck.
// (If the formation controller has stopped moving however, we can safely message).
if (IsFormationMember() && IsFormationControllerMoving())
return;
CMessageMotionUpdate msg(CMessageMotionUpdate::LIKELY_SUCCESS);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
/**
* Warns other components that our current movement was obstructed (i.e. we failed to move this turn).
* This should only be called before the actual movement in a given turn, or units might both move and try to do things
* on the same turn, leading to gliding units.
*/
void MoveObstructed()
{
// Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time
// if our current offset is unreachable, but we don't want to end up stuck.
// (If the formation controller has stopped moving however, we can safely message).
if (IsFormationMember() && IsFormationControllerMoving())
return;
CMessageMotionUpdate msg(m_FailedMovements >= VERY_OBSTRUCTED_THRESHOLD ?
CMessageMotionUpdate::VERY_OBSTRUCTED : CMessageMotionUpdate::OBSTRUCTED);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
/**
* Increment the number of failed movements and notify other components if required.
* @returns true if the failure was notified, false otherwise.
*/
bool IncrementFailedMovementsAndMaybeNotify()
{
m_FailedMovements++;
if (m_FailedMovements >= MAX_FAILED_MOVEMENTS)
{
MoveFailed();
m_FailedMovements = 0;
return true;
}
return false;
}
/**
* If path would take us farther away from the goal than pos currently is, return false, else return true.
*/
bool RejectFartherPaths(const PathGoal& goal, const WaypointPath& path, const CFixedVector2D& pos) const;
bool ShouldAlternatePathfinder() const
{
return (m_FailedMovements == ALTERNATE_PATH_TYPE_DELAY) || ((MAX_FAILED_MOVEMENTS - ALTERNATE_PATH_TYPE_DELAY) % ALTERNATE_PATH_TYPE_EVERY == 0);
}
bool InShortPathRange(const PathGoal& goal, const CFixedVector2D& pos) const
{
return goal.DistanceToPoint(pos) < LONG_PATH_MIN_DIST;
}
entity_pos_t ShortPathSearchRange() const
{
u8 multiple = m_FailedMovements < SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY ? 0 : m_FailedMovements - SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY;
fixed searchRange = SHORT_PATH_MIN_SEARCH_RANGE + SHORT_PATH_SEARCH_RANGE_INCREMENT * multiple;
if (searchRange > SHORT_PATH_MAX_SEARCH_RANGE)
searchRange = SHORT_PATH_MAX_SEARCH_RANGE;
return searchRange;
}
/**
* Handle the result of an asynchronous path query.
*/
void PathResult(u32 ticket, const WaypointPath& path);
void OnValueModification()
{
CmpPtr<ICmpValueModificationManager> cmpValueModificationManager(GetSystemEntity());
if (!cmpValueModificationManager)
return;
m_WalkSpeed = cmpValueModificationManager->ApplyModifications(L"UnitMotion/WalkSpeed", m_TemplateWalkSpeed, GetEntityId());
m_RunMultiplier = cmpValueModificationManager->ApplyModifications(L"UnitMotion/RunMultiplier", m_TemplateRunMultiplier, GetEntityId());
// For MT_Deserialize compute m_Speed from the serialized m_SpeedMultiplier.
// For MT_ValueModification and MT_OwnershipChanged, adjust m_SpeedMultiplier if needed
// (in case then new m_RunMultiplier value is lower than the old).
SetSpeedMultiplier(m_SpeedMultiplier);
}
/**
* Check if we are at destination early in the turn, this both lets units react faster
* and ensure that distance comparisons are done while units are not being moved
* (otherwise they won't be commutative).
*/
void OnTurnStart();
void PreMove(CCmpUnitMotionManager::MotionState& state);
void Move(CCmpUnitMotionManager::MotionState& state, fixed dt);
void PostMove(CCmpUnitMotionManager::MotionState& state, fixed dt);
bool PossiblyAtDestination() const override;
/**
* Process the move the unit will do this turn.
* This does not send actually change the position.
* @returns true if the move was obstructed.
*/
bool PerformMove(fixed dt, const fixed& turnRate, WaypointPath& shortPath, WaypointPath& longPath, CFixedVector2D& pos, fixed& speed, entity_angle_t& angle, uint8_t pushingPressure) const;
/**
* Update other components on our speed.
* (For performance, this should try to avoid sending messages).
*/
void UpdateMovementState(entity_pos_t speed, entity_pos_t meanSpeed);
/**
* React if our move was obstructed.
* @param moved - true if the unit still managed to move.
* @returns true if the obstruction required handling, false otherwise.
*/
bool HandleObstructedMove(bool moved);
/**
* Returns true if the target position is valid. False otherwise.
* (this may indicate that the target is e.g. out of the world/dead).
* NB: for code-writing convenience, if we have no target, this returns true.
*/
bool TargetHasValidPosition(const MoveRequest& moveRequest) const;
bool TargetHasValidPosition() const
{
return TargetHasValidPosition(m_MoveRequest);
}
/**
* Computes the current location of our target entity (plus offset).
* Returns false if no target entity or no valid position.
*/
bool ComputeTargetPosition(CFixedVector2D& out, const MoveRequest& moveRequest) const;
bool ComputeTargetPosition(CFixedVector2D& out) const
{
return ComputeTargetPosition(out, m_MoveRequest);
}
/**
* Attempts to replace the current path with a straight line to the target,
* if it's close enough and the route is not obstructed.
*/
bool TryGoingStraightToTarget(const CFixedVector2D& from, bool updatePaths);
/**
* Returns whether our we need to recompute a path to reach our target.
*/
bool PathingUpdateNeeded(const CFixedVector2D& from) const;
/**
* Rotate to face towards the target point, given the current pos
*/
void FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z);
/**
* Units in 'pushing' mode are marked as 'moving' in the obstruction manager.
* Units in 'pushing' mode should skip them in checkMovement (to enable pushing).
* However, units for which pushing is deactivated should collide against everyone.
* Units that don't block movement never participate in pushing, but they also
* shouldn't collide with pushing units.
*/
bool ShouldCollideWithMovingUnits() const
{
return !m_Pushing && m_BlockMovement;
}
/**
* Returns an appropriate obstruction filter for use with path requests.
*/
ControlGroupMovementObstructionFilter GetObstructionFilter() const
{
return ControlGroupMovementObstructionFilter(ShouldCollideWithMovingUnits(), GetGroup());
}
/**
* Filter a specific tag on top of the existing control groups.
*/
SkipTagAndControlGroupObstructionFilter GetObstructionFilter(const ICmpObstructionManager::tag_t& tag) const
{
return SkipTagAndControlGroupObstructionFilter(tag, ShouldCollideWithMovingUnits(), GetGroup());
}
/**
* Decide whether to approximate the given range from a square target as a circle,
* rather than as a square.
*/
bool ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t circleRadius) const;
/**
* Create a PathGoal from a move request.
* @returns true if the goal was successfully created.
*/
bool ComputeGoal(PathGoal& out, const MoveRequest& moveRequest) const;
/**
* Compute a path to the given goal from the given position.
* Might go in a straight line immediately, or might start an asynchronous path request.
*/
void ComputePathToGoal(const CFixedVector2D& from, const PathGoal& goal);
/**
* Start an asynchronous long path query.
*/
void RequestLongPath(const CFixedVector2D& from, const PathGoal& goal);
/**
* Start an asynchronous short path query.
* @param extendRange - if true, extend the search range to at least the distance to the goal.
*/
void RequestShortPath(const CFixedVector2D& from, const PathGoal& goal, bool extendRange);
/**
* General handler for MoveTo interface functions.
*/
bool MoveTo(MoveRequest request);
/**
* Convert a path into a renderable list of lines
*/
void RenderPath(const WaypointPath& path, std::vector<SOverlayLine>& lines, CColor color);
void RenderSubmit(SceneCollector& collector);
};
REGISTER_COMPONENT_TYPE(UnitMotion)
bool CCmpUnitMotion::RejectFartherPaths(const PathGoal& goal, const WaypointPath& path, const CFixedVector2D& pos) const
{
if (path.m_Waypoints.empty())
return false;
// Reject the new path if it does not lead us closer to the target's position.
if (goal.DistanceToPoint(pos) <= goal.DistanceToPoint(CFixedVector2D(path.m_Waypoints.front().x, path.m_Waypoints.front().z)))
return true;
return false;
}
void CCmpUnitMotion::PathResult(u32 ticket, const WaypointPath& path)
{
// Ignore obsolete path requests
if (ticket != m_ExpectedPathTicket.m_Ticket || m_MoveRequest.m_Type == MoveRequest::NONE)
return;
Ticket::Type ticketType = m_ExpectedPathTicket.m_Type;
m_ExpectedPathTicket.clear();
// If we not longer have a position, we won't be able to do much.
// Fail in the next Move() call.
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return;
CFixedVector2D pos = cmpPosition->GetPosition2D();
// Assume all long paths were towards the goal, and assume short paths were if there are no long waypoints.
bool pathedTowardsGoal = ticketType == Ticket::LONG_PATH || m_LongPath.m_Waypoints.empty();
// Check if we need to run the short-path hack (warning: tricky control flow).
bool shortPathHack = false;
if (path.m_Waypoints.empty())
{
// No waypoints means pathing failed. If this was a long-path, try the short-path hack.
if (!pathedTowardsGoal)
return;
shortPathHack = ticketType == Ticket::LONG_PATH;
}
else if (PathGoal goal; pathedTowardsGoal && ComputeGoal(goal, m_MoveRequest) && RejectFartherPaths(goal, path, pos))
{
// Reject paths that would take the unit further away from the goal.
// This assumes that we prefer being closer 'as the crow flies' to unreachable goals.
// This is a hack of sorts around units 'dancing' between two positions (see e.g. #3144),
// but never actually failing to move, ergo never actually informing unitAI that it succeeds/fails.
// (for short paths, only do so if aiming directly for the goal
// as sub-goals may be farther than we are).
// If this was a long-path and we no longer have waypoints, try the short-path hack.
if (!m_LongPath.m_Waypoints.empty())
return;
shortPathHack = ticketType == Ticket::LONG_PATH;
}
// Short-path hack: if the long-range pathfinder doesn't find an acceptable path, push a fake waypoint at the goal.
// This means HandleObstructedMove will use the short-pathfinder to try and reach it,
// and that may find a path as the vertex pathfinder is more precise.
if (shortPathHack)
{
// If we're resorting to the short-path hack, the situation is dire. Most likely, the goal is unreachable.
// We want to find a path or fail fast. Bump failed movements so the short pathfinder will run at max-range
// right away. This is safe from a performance PoV because it can only happen if the target is unreachable to
// the long-range pathfinder, which is rare, and since the entity will fail to move if the goal is actually unreachable,
// the failed movements will be increased to MAX anyways, so just shortcut.
m_FailedMovements = MAX_FAILED_MOVEMENTS - 2;
CFixedVector2D targetPos;
if (ComputeTargetPosition(targetPos))
m_LongPath.m_Waypoints.emplace_back(Waypoint{ targetPos.X, targetPos.Y });
return;
}
if (ticketType == Ticket::LONG_PATH)
{
m_LongPath = path;
// Long paths don't properly follow diagonals because of JPS/the grid. Since units now take time turning,
// they can actually slow down substantially if they have to do a one navcell diagonal movement,
// which is somewhat common at the beginning of a new path.
// For that reason, if the first waypoint is really close, check if we can't go directly to the second.
if (m_LongPath.m_Waypoints.size() >= 2)
{
const Waypoint& firstWpt = m_LongPath.m_Waypoints.back();
if (CFixedVector2D(firstWpt.x - pos.X, firstWpt.z - pos.Y).CompareLength(Pathfinding::NAVCELL_SIZE * 4) <= 0)
{
CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
ENSURE(cmpPathfinder);
const Waypoint& secondWpt = m_LongPath.m_Waypoints[m_LongPath.m_Waypoints.size() - 2];
if (cmpPathfinder->CheckMovement(GetObstructionFilter(), pos.X, pos.Y, secondWpt.x, secondWpt.z, m_Clearance, m_PassClass))
m_LongPath.m_Waypoints.pop_back();
}
}
}
else
m_ShortPath = path;
m_FollowKnownImperfectPathCountdown = 0;
if (!pathedTowardsGoal)
return;
// Performance hack: If we were pathing towards the goal and this new path won't put us in range,
// it's highly likely that we are going somewhere unreachable.
// However, Move() will try to recompute the path every turn, which can be quite slow.
// To avoid this, act as if our current path leads us to the correct destination.
// NB: for short-paths, the problem might be that the search space is too small
// but we'll still follow this path until the en and try again then.
// Because we reject farther paths, it works out.
if (PathingUpdateNeeded(pos))
{
// Inform other components early, as they might have better behaviour than waiting for the path to carry out.
// Send OBSTRUCTED at first - moveFailed is likely to trigger path recomputation and we might end up
// recomputing too often for nothing.
if (!IncrementFailedMovementsAndMaybeNotify())
MoveObstructed();
// We'll automatically recompute a path when this reaches 0, as a way to improve behaviour.
// (See D665 - this is needed because the target may be moving, and we should adjust to that).
m_FollowKnownImperfectPathCountdown = KNOWN_IMPERFECT_PATH_RESET_COUNTDOWN;
}
}
void CCmpUnitMotion::OnTurnStart()
{
if (PossiblyAtDestination())
MoveSucceeded();
else if (!TargetHasValidPosition())
{
// Scrap waypoints - we don't know where to go.
// If the move request remains unchanged and the target again has a valid position later on,
// moving will be resumed.
// Units may want to move to move to the target's last known position,
// but that should be decided by UnitAI (handling MoveFailed), not UnitMotion.
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
MoveFailed();
}
}
void CCmpUnitMotion::PreMove(CCmpUnitMotionManager::MotionState& state)
{
state.ignore = !m_Pushing || !m_BlockMovement;
state.wasObstructed = false;
state.wentStraight = false;
// If we were idle and will still be, no need for an update.
state.needUpdate = state.cmpPosition->IsInWorld() &&
(m_CurrentSpeed != fixed::Zero() || m_LastTurnSpeed != fixed::Zero() || m_MoveRequest.m_Type != MoveRequest::NONE);
if (!m_BlockMovement)
return;
state.controlGroup = IsFormationMember() ? m_FormationController : INVALID_ENTITY;
// Update moving flag, this is an internal construct used for pushing,
// so it does not really reflect whether the unit is actually moving or not.
state.isMoving = m_Pushing && m_MoveRequest.m_Type != MoveRequest::NONE;
CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->SetMovingFlag(state.isMoving);
}
void CCmpUnitMotion::Move(CCmpUnitMotionManager::MotionState& state, fixed dt)
{
PROFILE("Move");
// If we're chasing a potentially-moving unit and are currently close
// enough to its current position, and we can head in a straight line
// to it, then throw away our current path and go straight to it.
state.wentStraight = TryGoingStraightToTarget(state.initialPos, true);
state.wasObstructed = PerformMove(dt, state.cmpPosition->GetTurnRate(), m_ShortPath, m_LongPath, state.pos, state.speed, state.angle, state.pushingPressure);
}
void CCmpUnitMotion::PostMove(CCmpUnitMotionManager::MotionState& state, fixed dt)
{
// Update our speed over this turn so that the visual actor shows the correct animation.
if (state.pos == state.initialPos)
{
if (state.angle != state.initialAngle)
state.cmpPosition->TurnTo(state.angle);
UpdateMovementState(fixed::Zero(), fixed::Zero());
}
else
{
// Update the Position component after our movement (if we actually moved anywhere)
CFixedVector2D offset = state.pos - state.initialPos;
state.cmpPosition->MoveAndTurnTo(state.pos.X, state.pos.Y, state.angle);
// Calculate the mean speed over this past turn.
UpdateMovementState(state.speed, offset.Length() / dt);
}
if (state.wasObstructed && HandleObstructedMove(state.pos != state.initialPos))
return;
else if (!state.wasObstructed && state.pos != state.initialPos)
m_FailedMovements = 0;
const bool needPathUpdate{PathingUpdateNeeded(state.pos)};
// If we're following a long-path, check if we might run into units in advance, to smoothe motion.
if (!needPathUpdate && !state.wasObstructed && m_LongPath.m_Waypoints.size() >= 1)
{
ICmpObstructionManager::tag_t specificIgnore;
if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
{
CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
if (cmpTargetObstruction)
specificIgnore = cmpTargetObstruction->GetObstruction();
}
CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
if (cmpObstructionManager && cmpObstructionManager->TestUnitLine(GetObstructionFilter(specificIgnore),
state.pos.X, state.pos.Y, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z, m_Clearance, true))
{
// We will run into something: request a new short path.
// If we have several waypoints left, aim for the one after next directly.
// (This is mostly because the obstruction might be at the waypoint, and the end is kind of treated specially).
// Else just path to the goal.
if (m_LongPath.m_Waypoints.size() > 1) {
fixed radius = Pathfinding::NAVCELL_SIZE * 2;
m_LongPath.m_Waypoints.pop_back();
PathGoal subgoal = { PathGoal::CIRCLE, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z, radius };
RequestShortPath(state.pos, subgoal, false);
} else {
// If we only have one waypoint left, request a short path to the waypoint itself.
PathGoal goal;
if (ComputeGoal(goal, m_MoveRequest))
RequestShortPath(state.pos, goal, false);
}
}
}
// If we moved straight, and didn't quite finish the path, reset - we'll update it next turn if still OK.
if (state.wentStraight && !state.wasObstructed)
m_ShortPath.m_Waypoints.clear();
// We may need to recompute our path sometimes (e.g. if our target moves).
// Since we request paths asynchronously anyways, this does not need to be done before moving.
if (!state.wentStraight && needPathUpdate)
{
PathGoal goal;
if (ComputeGoal(goal, m_MoveRequest))
ComputePathToGoal(state.pos, goal);
}
else if (m_FollowKnownImperfectPathCountdown > 0)
--m_FollowKnownImperfectPathCountdown;
}
bool CCmpUnitMotion::PossiblyAtDestination() const
{
if (m_MoveRequest.m_Type == MoveRequest::NONE)
return false;
CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
ENSURE(cmpObstructionManager);
if (m_MoveRequest.m_Type == MoveRequest::POINT)
return cmpObstructionManager->IsInPointRange(GetEntityId(), m_MoveRequest.m_Position.X, m_MoveRequest.m_Position.Y, m_MoveRequest.m_MinRange, m_MoveRequest.m_MaxRange, false);
if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
return cmpObstructionManager->IsInTargetRange(GetEntityId(), m_MoveRequest.m_Entity, m_MoveRequest.m_MinRange, m_MoveRequest.m_MaxRange, false);
if (m_MoveRequest.m_Type == MoveRequest::OFFSET)
{
CmpPtr<ICmpUnitMotion> cmpControllerMotion(GetSimContext(), m_MoveRequest.m_Entity);
if (cmpControllerMotion && cmpControllerMotion->IsMoveRequested())
return false;
// In formation, return a match only if we are exactly at the target position.
// Otherwise, units can go in an infinite "walzting" loop when the Idle formation timer
// reforms them.
CFixedVector2D targetPos;
ComputeTargetPosition(targetPos);
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
return (targetPos-cmpPosition->GetPosition2D()).CompareLength(fixed::Zero()) <= 0;
}
return false;
}
bool CCmpUnitMotion::PerformMove(fixed dt, const fixed& turnRate, WaypointPath& shortPath, WaypointPath& longPath, CFixedVector2D& pos, fixed& speed, entity_angle_t& angle, uint8_t pushingPressure) const
{
// If there are no waypoint, behave as though we were obstructed and let HandleObstructedMove handle it.
if (shortPath.m_Waypoints.empty() && longPath.m_Waypoints.empty())
return true;
// Wrap the angle to (-Pi, Pi].
while (angle > entity_angle_t::Pi())
angle -= entity_angle_t::Pi() * 2;
while (angle < -entity_angle_t::Pi())
angle += entity_angle_t::Pi() * 2;
CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
ENSURE(cmpPathfinder);
fixed basicSpeed = m_Speed;
// If in formation, run to keep up; otherwise just walk.
if (IsMovingAsFormation())
basicSpeed = m_Speed.Multiply(m_RunMultiplier);
// If pushing pressure is applied, slow the unit down.
if (pushingPressure)
{
// Values below this pressure don't slow the unit down (avoids slowing groups down).
constexpr int pressureMinThreshold = 10;
// Lower speed up to a floor to prevent units from getting stopped.
// This helped pushing particularly for fast units, since they'll end up slowing down.
constexpr int maxPressure = CCmpUnitMotionManager::MAX_PRESSURE - pressureMinThreshold - 80;
constexpr entity_pos_t floorSpeed = entity_pos_t::FromFraction(3, 2);
static_assert(maxPressure > 0);
uint8_t slowdown = maxPressure - std::min(maxPressure, std::max(0, pushingPressure - pressureMinThreshold));
basicSpeed = basicSpeed.Multiply(fixed::FromInt(slowdown) / maxPressure);
// NB: lowering this too much will make the units behave a lot like viscous fluid
// when the density becomes extreme. While perhaps realistic (and kind of neat),
// it's not very helpful for gameplay. Empirically, a value of 1.5 avoids most of the effect
// while still slowing down movement significantly, and seems like a good balance.
// Min with the template speed to allow units that are explicitly absurdly slow.
basicSpeed = std::max(std::min(m_TemplateWalkSpeed, floorSpeed), basicSpeed);
}
// TODO: would be nice to support terrain-dependent speed again.
fixed maxSpeed = basicSpeed;
fixed timeLeft = dt;
fixed zero = fixed::Zero();
ICmpObstructionManager::tag_t specificIgnore;
if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
{
CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
if (cmpTargetObstruction)
specificIgnore = cmpTargetObstruction->GetObstruction();
}
while (timeLeft > zero)
{
// If we ran out of path, we have to stop.
if (shortPath.m_Waypoints.empty() && longPath.m_Waypoints.empty())
break;
CFixedVector2D target;
if (shortPath.m_Waypoints.empty())
target = CFixedVector2D(longPath.m_Waypoints.back().x, longPath.m_Waypoints.back().z);
else
target = CFixedVector2D(shortPath.m_Waypoints.back().x, shortPath.m_Waypoints.back().z);
CFixedVector2D offset = target - pos;
if (turnRate > zero && !offset.IsZero())
{
fixed angleDiff = angle - atan2_approx(offset.X, offset.Y);
fixed absoluteAngleDiff = angleDiff.Absolute();
if (absoluteAngleDiff > entity_angle_t::Pi())
absoluteAngleDiff = entity_angle_t::Pi() * 2 - absoluteAngleDiff;
// We only rotate to the instantTurnAngle angle. The rest we rotate during movement.
if (absoluteAngleDiff > m_InstantTurnAngle)
{
// Stop moving when rotating this far.
speed = zero;
fixed maxRotation = turnRate.Multiply(timeLeft);
// Figure out whether rotating will increase or decrease the angle, and how far we need to rotate in that direction.
int direction = (entity_angle_t::Zero() < angleDiff && angleDiff <= entity_angle_t::Pi()) || angleDiff < -entity_angle_t::Pi() ? -1 : 1;
// Can't rotate far enough, just rotate in the correct direction.
if (absoluteAngleDiff - m_InstantTurnAngle > maxRotation)
{
angle += maxRotation * direction;
if (angle * direction > entity_angle_t::Pi())
angle -= entity_angle_t::Pi() * 2 * direction;
break;
}
// Rotate towards the next waypoint and continue moving.
angle = atan2_approx(offset.X, offset.Y);
timeLeft = std::min(maxRotation, maxRotation - absoluteAngleDiff + m_InstantTurnAngle) / turnRate;
}
else
{
// Modify the speed depending on the angle difference.
fixed sin, cos;
sincos_approx(angleDiff, sin, cos);
speed = speed.Multiply(cos);
angle = atan2_approx(offset.X, offset.Y);
}
}
// Work out how far we can travel in timeLeft.
fixed accelTime = std::min(timeLeft, (maxSpeed - speed) / m_Acceleration);
fixed accelDist = speed.Multiply(accelTime) + accelTime.Square().Multiply(m_Acceleration) / 2;
fixed maxdist = accelDist + maxSpeed.Multiply(timeLeft - accelTime);
// If the target is close, we can move there directly.
fixed offsetLength = offset.Length();
if (offsetLength <= maxdist)
{
if (cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), pos.X, pos.Y, target.X, target.Y, m_Clearance, m_PassClass))
{
pos = target;
// Spend the rest of the time heading towards the next waypoint.
// Either we still need to accelerate after, or we have reached maxSpeed.
// The former is much less likely than the latter: usually we can reach
// maxSpeed within one waypoint. So the Sqrt is not too bad.
if (offsetLength <= accelDist)
{
fixed requiredTime = (-speed + (speed.Square() + offsetLength.Multiply(m_Acceleration).Multiply(fixed::FromInt(2))).Sqrt()) / m_Acceleration;
timeLeft -= requiredTime;
speed += m_Acceleration.Multiply(requiredTime);
}
else
{
timeLeft -= accelTime + (offsetLength - accelDist) / maxSpeed;
speed = maxSpeed;
}
if (shortPath.m_Waypoints.empty())
longPath.m_Waypoints.pop_back();
else
shortPath.m_Waypoints.pop_back();
continue;
}
else
{
// Error - path was obstructed.
return true;
}
}
else
{
// Not close enough, so just move in the right direction.
offset.Normalize(maxdist);
target = pos + offset;
speed = std::min(maxSpeed, speed + m_Acceleration.Multiply(timeLeft));
if (cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), pos.X, pos.Y, target.X, target.Y, m_Clearance, m_PassClass))
pos = target;
else
return true;
break;
}
}
return false;
}
void CCmpUnitMotion::UpdateMovementState(entity_pos_t speed, entity_pos_t meanSpeed)
{
CmpPtr<ICmpVisual> cmpVisual(GetEntityHandle());
if (cmpVisual)
{
if (meanSpeed == fixed::Zero())
cmpVisual->SelectMovementAnimation("idle", fixed::FromInt(1));
else
cmpVisual->SelectMovementAnimation(meanSpeed > (m_WalkSpeed / 2).Multiply(m_RunMultiplier + fixed::FromInt(1)) ? "run" : "walk", meanSpeed);
}
m_LastTurnSpeed = meanSpeed;
m_CurrentSpeed = speed;
}
bool CCmpUnitMotion::HandleObstructedMove(bool moved)
{
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
// We failed to move, inform other components as they might handle it.
// (don't send messages on the first failure, as that would be too noisy).
// Also don't increment above the initial MoveObstructed message if we actually manage to move a little.
if (!moved || m_FailedMovements < 2)
{
if (!IncrementFailedMovementsAndMaybeNotify() && m_FailedMovements >= 2)
MoveObstructed();
}
PathGoal goal;
if (!ComputeGoal(goal, m_MoveRequest))
return false;
// At this point we have a position in the world since ComputeGoal checked for that.
CFixedVector2D pos = cmpPosition->GetPosition2D();
// Assume that we are merely obstructed and the long path is salvageable, so try going around the obstruction.
// This could be a separate function, but it doesn't really make sense to call it outside of here, and I can't find a name.
// I use an IIFE to have nice 'return' semantics still.
if ([&]() -> bool {
// If the goal is close enough, we should ignore any remaining long waypoint and just
// short path there directly, as that improves behaviour in general - see D2095).
if (InShortPathRange(goal, pos))
return false;
// On rare occasions, when following a short path, we can end up in a position where
// the short pathfinder thinks we are inside an obstruction (and can leave)
// but the CheckMovement logic doesn't. I believe the cause is a small numerical difference
// in their calculation, but haven't been able to pinpoint it precisely.
// In those cases, the solution is to back away to prevent the short-pathfinder from being confused.
// TODO: this should only be done if we're obstructed by a static entity.
if (!m_ShortPath.m_Waypoints.empty() && m_FailedMovements == BACKUP_HACK_DELAY)
{
Waypoint next = m_ShortPath.m_Waypoints.back();
CFixedVector2D backUp(pos.X - next.x, pos.Y - next.z);
backUp.Normalize();
next.x = pos.X + backUp.X;
next.z = pos.Y + backUp.Y;
m_ShortPath.m_Waypoints.push_back(next);
return true;
}
// Delete the next waypoint if it's reasonably close,
// because it might be blocked by units and thus unreachable.
// NB: this number is tricky. Make it too high, and units start going down dead ends, which looks odd (#5795)
// Make it too low, and they might get stuck behind other obstructed entities.
// It also has performance implications because it calls the short-pathfinder.
fixed skipbeyond = std::max(ShortPathSearchRange() / 3, Pathfinding::NAVCELL_SIZE * 8);
if (m_LongPath.m_Waypoints.size() > 1 &&
(pos - CFixedVector2D(m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z)).CompareLength(skipbeyond) < 0)
{
m_LongPath.m_Waypoints.pop_back();
}
else if (ShouldAlternatePathfinder())
{
// Recompute the whole thing occasionally, in case we got stuck in a dead end from removing long waypoints.
RequestLongPath(pos, goal);
return true;
}
if (m_LongPath.m_Waypoints.empty())
return false;
// Compute a short path in the general vicinity of the next waypoint, to help pathfinding in crowds.
// The goal here is to manage to move in the general direction of our target, not to be super accurate.
fixed radius = Clamp(skipbeyond/3, Pathfinding::NAVCELL_SIZE * 4, Pathfinding::NAVCELL_SIZE * 12);
PathGoal subgoal = { PathGoal::CIRCLE, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z, radius };
RequestShortPath(pos, subgoal, false);
return true;
}()) return true;
// If we couldn't use a workaround, try recomputing the entire path.
ComputePathToGoal(pos, goal);
return true;
}
bool CCmpUnitMotion::TargetHasValidPosition(const MoveRequest& moveRequest) const
{
if (moveRequest.m_Type != MoveRequest::ENTITY)
return true;
CmpPtr<ICmpPosition> cmpPosition(GetSimContext(), moveRequest.m_Entity);
return cmpPosition && cmpPosition->IsInWorld();
}
bool CCmpUnitMotion::ComputeTargetPosition(CFixedVector2D& out, const MoveRequest& moveRequest) const
{
if (moveRequest.m_Type == MoveRequest::POINT)
{
out = moveRequest.m_Position;
return true;
}
CmpPtr<ICmpPosition> cmpTargetPosition(GetSimContext(), moveRequest.m_Entity);
if (!cmpTargetPosition || !cmpTargetPosition->IsInWorld())
return false;
if (moveRequest.m_Type == MoveRequest::OFFSET)
{
// There is an offset, so compute it relative to orientation
entity_angle_t angle = cmpTargetPosition->GetRotation().Y;
CFixedVector2D offset = moveRequest.GetOffset().Rotate(angle);
out = cmpTargetPosition->GetPosition2D() + offset;
}
else
{
out = cmpTargetPosition->GetPosition2D();
// Position is only updated after all units have moved & pushed.
// Therefore, we may need to interpolate the target position, depending on when this call takes place during the turn:
// - On "Turn Start", we'll check positions directly without interpolation.
// - During movement, we'll call this for direct-pathing & we need to interpolate
// (this way, we move where the unit will end up at the end of _this_ turn, making it match on next turn start).
// - After movement, we'll call this to request paths & we need to interpolate
// (this way, we'll move where the unit ends up in the end of _next_ turn, making it a match in 2 turns).
// TODO: This does not really aim many turns in advance, with orthogonal trajectories it probably should.
CmpPtr<ICmpUnitMotion> cmpUnitMotion(GetSimContext(), moveRequest.m_Entity);
CmpPtr<ICmpUnitMotionManager> cmpUnitMotionManager(GetSystemEntity());
bool needInterpolation = cmpUnitMotion && cmpUnitMotion->IsMoveRequested() && cmpUnitMotionManager->ComputingMotion();
if (needInterpolation)
{
// Add predicted movement.
CFixedVector2D tempPos = out + (out - cmpTargetPosition->GetPreviousPosition2D());
out = tempPos;
}
}
return true;
}
bool CCmpUnitMotion::TryGoingStraightToTarget(const CFixedVector2D& from, bool updatePaths)
{
// Assume if we have short paths we want to follow them.
// Exception: offset movement (formations) generally have very short deltas
// and to look good we need them to walk-straight most of the time.
if (!IsFormationMember() && !m_ShortPath.m_Waypoints.empty())
return false;
CFixedVector2D targetPos;
if (!ComputeTargetPosition(targetPos))
return false;
CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return false;
// Move the goal to match the target entity's new position
PathGoal goal;
if (!ComputeGoal(goal, m_MoveRequest))
return false;
goal.x = targetPos.X;
goal.z = targetPos.Y;
// (we ignore changes to the target's rotation, since only buildings are
// square and buildings don't move)
// Find the point on the goal shape that we should head towards
CFixedVector2D goalPos = goal.NearestPointOnGoal(from);
// Fail if the target is too far away
if ((goalPos - from).CompareLength(DIRECT_PATH_RANGE) > 0)
return false;
// Check if there's any collisions on that route.
// For entity goals, skip only the specific obstruction tag or with e.g. walls we might ignore too many entities.
ICmpObstructionManager::tag_t specificIgnore;
if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
{
CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
if (cmpTargetObstruction)
specificIgnore = cmpTargetObstruction->GetObstruction();
}
// Check movement against units - we want to use the short pathfinder to walk around those if needed.
if (specificIgnore.valid())
{
if (!cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass))
return false;
}
else if (!cmpPathfinder->CheckMovement(GetObstructionFilter(), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass))
return false;
if (!updatePaths)
return true;
// That route is okay, so update our path
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y });
return true;
}
bool CCmpUnitMotion::PathingUpdateNeeded(const CFixedVector2D& from) const
{
if (m_MoveRequest.m_Type == MoveRequest::NONE)
return false;
CFixedVector2D targetPos;
if (!ComputeTargetPosition(targetPos))
return false;
if (m_FollowKnownImperfectPathCountdown > 0 && (!m_LongPath.m_Waypoints.empty() || !m_ShortPath.m_Waypoints.empty()))
return false;
if (PossiblyAtDestination())
return false;
// Get the obstruction shape and translate it where we estimate the target to be.
ICmpObstructionManager::ObstructionSquare estimatedTargetShape;
if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
{
CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
if (cmpTargetObstruction)
cmpTargetObstruction->GetObstructionSquare(estimatedTargetShape);
}
estimatedTargetShape.x = targetPos.X;
estimatedTargetShape.z = targetPos.Y;
CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
ICmpObstructionManager::ObstructionSquare shape;
if (cmpObstruction)
cmpObstruction->GetObstructionSquare(shape);
// Translate our own obstruction shape to our last waypoint or our current position, lacking that.
if (m_LongPath.m_Waypoints.empty() && m_ShortPath.m_Waypoints.empty())
{
shape.x = from.X;
shape.z = from.Y;
}
else
{
const Waypoint& lastWaypoint = m_LongPath.m_Waypoints.empty() ? m_ShortPath.m_Waypoints.front() : m_LongPath.m_Waypoints.front();
shape.x = lastWaypoint.x;
shape.z = lastWaypoint.z;
}
CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
ENSURE(cmpObstructionManager);
// Increase the ranges with distance, to avoid recomputing every turn against units that are moving and far-away for example.
entity_pos_t distance = (from - CFixedVector2D(estimatedTargetShape.x, estimatedTargetShape.z)).Length();
// TODO: it could be worth computing this based on time to collision instead of linear distance.
entity_pos_t minRange = std::max(m_MoveRequest.m_MinRange - distance / TARGET_UNCERTAINTY_MULTIPLIER, entity_pos_t::Zero());
entity_pos_t maxRange = m_MoveRequest.m_MaxRange < entity_pos_t::Zero() ? m_MoveRequest.m_MaxRange :
m_MoveRequest.m_MaxRange + distance / TARGET_UNCERTAINTY_MULTIPLIER;
if (cmpObstructionManager->AreShapesInRange(shape, estimatedTargetShape, minRange, maxRange, false))
return false;
return true;
}
void CCmpUnitMotion::FaceTowardsPoint(entity_pos_t x, entity_pos_t z)
{
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return;
CFixedVector2D pos = cmpPosition->GetPosition2D();
FaceTowardsPointFromPos(pos, x, z);
}
void CCmpUnitMotion::FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z)
{
CFixedVector2D target(x, z);
CFixedVector2D offset = target - pos;
if (!offset.IsZero())
{
entity_angle_t angle = atan2_approx(offset.X, offset.Y);
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition)
return;
cmpPosition->TurnTo(angle);
}
}
// The pathfinder cannot go to "rounded rectangles" goals, which are what happens with square targets and a non-null range.
// Depending on what the best approximation is, we either pretend the target is a circle or a square.
// One needs to be careful that the approximated geometry will be in the range.
bool CCmpUnitMotion::ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t circleRadius) const
{
// Given a square, plus a target range we should reach, the shape at that distance
// is a round-cornered square which we can approximate as either a circle or as a square.
// Previously, we used the shape that minimized the worst-case error.
// However that is unsage in some situations. So let's be less clever and
// just check if our range is at least three times bigger than the circleradius
return (range > circleRadius*3);
}
bool CCmpUnitMotion::ComputeGoal(PathGoal& out, const MoveRequest& moveRequest) const
{
if (moveRequest.m_Type == MoveRequest::NONE)
return false;
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
CFixedVector2D pos = cmpPosition->GetPosition2D();
CFixedVector2D targetPosition;
if (!ComputeTargetPosition(targetPosition, moveRequest))
return false;
ICmpObstructionManager::ObstructionSquare targetObstruction;
if (moveRequest.m_Type == MoveRequest::ENTITY)
{
CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), moveRequest.m_Entity);
if (cmpTargetObstruction)
cmpTargetObstruction->GetObstructionSquare(targetObstruction);
}
targetObstruction.x = targetPosition.X;
targetObstruction.z = targetPosition.Y;
ICmpObstructionManager::ObstructionSquare obstruction;
CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->GetObstructionSquare(obstruction);
else
{
obstruction.x = pos.X;
obstruction.z = pos.Y;
}
CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
ENSURE(cmpObstructionManager);
out.x = targetObstruction.x;
out.z = targetObstruction.z;
out.hw = targetObstruction.hw;
out.hh = targetObstruction.hh;
out.u = targetObstruction.u;
out.v = targetObstruction.v;
if (moveRequest.m_MinRange > fixed::Zero() || moveRequest.m_MaxRange > fixed::Zero() ||
targetObstruction.hw > fixed::Zero())
out.type = PathGoal::SQUARE;
else
{
out.type = PathGoal::POINT;
return true;
}
entity_pos_t distance = cmpObstructionManager->DistanceBetweenShapes(obstruction, targetObstruction);
entity_pos_t circleRadius = CFixedVector2D(targetObstruction.hw, targetObstruction.hh).Length();
// TODO: because we cannot move to rounded rectangles, we have to make conservative approximations.
// This means we might end up in a situation where cons(max-range) < min range < max range < cons(min-range)
// When going outside of the min-range or inside the max-range, the unit will still go through the correct range
// but if it moves fast enough, this might not be picked up by PossiblyAtDestination().
// Fixing this involves moving to rounded rectangles, or checking more often in PerformMove().
// In the meantime, one should avoid that 'Speed over a turn' > MaxRange - MinRange, in case where
// min-range is not 0 and max-range is not infinity.
if (distance < moveRequest.m_MinRange)
{
// Distance checks are nearest edge to nearest edge, so we need to account for our clearance
// and we must make sure diagonals also fit so multiply by slightly more than sqrt(2)
entity_pos_t goalDistance = moveRequest.m_MinRange + m_Clearance * 3 / 2;
if (ShouldTreatTargetAsCircle(moveRequest.m_MinRange, circleRadius))
{
// We are safely away from the obstruction itself if we are away from the circumscribing circle
out.type = PathGoal::INVERTED_CIRCLE;
out.hw = circleRadius + goalDistance;
}
else
{
out.type = PathGoal::INVERTED_SQUARE;
out.hw = targetObstruction.hw + goalDistance;
out.hh = targetObstruction.hh + goalDistance;
}
}
else if (moveRequest.m_MaxRange >= fixed::Zero() && distance > moveRequest.m_MaxRange)
{
if (ShouldTreatTargetAsCircle(moveRequest.m_MaxRange, circleRadius))
{
entity_pos_t goalDistance = moveRequest.m_MaxRange;
// We must go in-range of the inscribed circle, not the circumscribing circle.
circleRadius = std::min(targetObstruction.hw, targetObstruction.hh);
out.type = PathGoal::CIRCLE;
out.hw = circleRadius + goalDistance;
}
else
{
// The target is large relative to our range, so treat it as a square and
// get close enough that the diagonals come within range
entity_pos_t goalDistance = moveRequest.m_MaxRange * 2 / 3; // multiply by slightly less than 1/sqrt(2)
out.type = PathGoal::SQUARE;
entity_pos_t delta = std::max(goalDistance, m_Clearance + entity_pos_t::FromInt(4)/16); // ensure it's far enough to not intersect the building itself
out.hw = targetObstruction.hw + delta;
out.hh = targetObstruction.hh + delta;
}
}
// Do nothing in particular in case we are already in range.
return true;
}
void CCmpUnitMotion::ComputePathToGoal(const CFixedVector2D& from, const PathGoal& goal)
{
#if DISABLE_PATHFINDER
{
CmpPtr<ICmpPathfinder> cmpPathfinder (GetSimContext(), SYSTEM_ENTITY);
CFixedVector2D goalPos = m_FinalGoal.NearestPointOnGoal(from);
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y });
return;
}
#endif
// If the target is close enough, hope that we'll be able to go straight next turn.
if (!ShouldAlternatePathfinder() && TryGoingStraightToTarget(from, false))
{
// NB: since we may fail to move straight next turn, we should edge our bets.
// Since the 'go straight' logic currently fires only if there's no short path,
// we'll compute a long path regardless to make sure _that_ stays up to date.
// (it's also extremely likely to be very fast to compute, so no big deal).
m_ShortPath.m_Waypoints.clear();
RequestLongPath(from, goal);
return;
}
// Otherwise we need to compute a path.
// If it's close then just do a short path, not a long path
// TODO: If it's close on the opposite side of a river then we really
// need a long path, so we shouldn't simply check linear distance
// the check is arbitrary but should be a reasonably small distance.
// We want to occasionally compute a long path if we're computing short-paths, because the short path domain
// is bounded and thus it can't around very large static obstacles.
// Likewise, we want to compile a short-path occasionally when the target is far because we might be stuck
// on a navcell surrounded by impassable navcells, but the short-pathfinder could move us out of there.
bool shortPath = InShortPathRange(goal, from);
if (ShouldAlternatePathfinder())
shortPath = !shortPath;
if (shortPath)
{
m_LongPath.m_Waypoints.clear();
// Extend the range so that our first path is probably valid.
RequestShortPath(from, goal, true);
}
else
{
m_ShortPath.m_Waypoints.clear();
RequestLongPath(from, goal);
}
}
void CCmpUnitMotion::RequestLongPath(const CFixedVector2D& from, const PathGoal& goal)
{
CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return;
// this is by how much our waypoints will be apart at most.
// this value here seems sensible enough.
PathGoal improvedGoal = goal;
improvedGoal.maxdist = SHORT_PATH_MIN_SEARCH_RANGE - entity_pos_t::FromInt(1);
cmpPathfinder->SetDebugPath(from.X, from.Y, improvedGoal, m_PassClass);
m_ExpectedPathTicket.m_Type = Ticket::LONG_PATH;
m_ExpectedPathTicket.m_Ticket = cmpPathfinder->ComputePathAsync(from.X, from.Y, improvedGoal, m_PassClass, GetEntityId());
}
void CCmpUnitMotion::RequestShortPath(const CFixedVector2D &from, const PathGoal& goal, bool extendRange)
{
CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return;
entity_pos_t searchRange = ShortPathSearchRange();
if (extendRange)
{
CFixedVector2D dist(from.X - goal.x, from.Y - goal.z);
if (dist.CompareLength(searchRange - entity_pos_t::FromInt(1)) >= 0)
{
searchRange = dist.Length() + fixed::FromInt(1);
if (searchRange > SHORT_PATH_MAX_SEARCH_RANGE)
searchRange = SHORT_PATH_MAX_SEARCH_RANGE;
}
}
m_ExpectedPathTicket.m_Type = Ticket::SHORT_PATH;
m_ExpectedPathTicket.m_Ticket = cmpPathfinder->ComputeShortPathAsync(from.X, from.Y, m_Clearance, searchRange, goal, m_PassClass, ShouldCollideWithMovingUnits(), GetGroup(), GetEntityId());
}
bool CCmpUnitMotion::MoveTo(MoveRequest request)
{
PROFILE("MoveTo");
if (request.m_MinRange == request.m_MaxRange && !request.m_MinRange.IsZero())
LOGWARNING("MaxRange must be larger than MinRange; See CCmpUnitMotion.cpp for more information");
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
PathGoal goal;
if (!ComputeGoal(goal, request))
return false;
m_MoveRequest = request;
m_FailedMovements = 0;
m_FollowKnownImperfectPathCountdown = 0;
ComputePathToGoal(cmpPosition->GetPosition2D(), goal);
return true;
}
bool CCmpUnitMotion::IsTargetRangeReachable(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange)
{
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
MoveRequest request(target, minRange, maxRange);
PathGoal goal;
if (!ComputeGoal(goal, request))
return false;
CmpPtr<ICmpPathfinder> cmpPathfinder(GetSimContext(), SYSTEM_ENTITY);
CFixedVector2D pos = cmpPosition->GetPosition2D();
return cmpPathfinder->IsGoalReachable(pos.X, pos.Y, goal, m_PassClass);
}
void CCmpUnitMotion::RenderPath(const WaypointPath& path, std::vector<SOverlayLine>& lines, CColor color)
{
bool floating = false;
CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
if (cmpPosition)
floating = cmpPosition->CanFloat();
lines.clear();
std::vector<float> waypointCoords;
for (size_t i = 0; i < path.m_Waypoints.size(); ++i)
{
float x = path.m_Waypoints[i].x.ToFloat();
float z = path.m_Waypoints[i].z.ToFloat();
waypointCoords.push_back(x);
waypointCoords.push_back(z);
lines.push_back(SOverlayLine());
lines.back().m_Color = color;
SimRender::ConstructSquareOnGround(GetSimContext(), x, z, 1.0f, 1.0f, 0.0f, lines.back(), floating);
}
float x = cmpPosition->GetPosition2D().X.ToFloat();
float z = cmpPosition->GetPosition2D().Y.ToFloat();
waypointCoords.push_back(x);
waypointCoords.push_back(z);
lines.push_back(SOverlayLine());
lines.back().m_Color = color;
SimRender::ConstructLineOnGround(GetSimContext(), waypointCoords, lines.back(), floating);
}
void CCmpUnitMotion::RenderSubmit(SceneCollector& collector)
{
if (!m_DebugOverlayEnabled)
return;
RenderPath(m_LongPath, m_DebugOverlayLongPathLines, OVERLAY_COLOR_LONG_PATH);
RenderPath(m_ShortPath, m_DebugOverlayShortPathLines, OVERLAY_COLOR_SHORT_PATH);
for (size_t i = 0; i < m_DebugOverlayLongPathLines.size(); ++i)
collector.Submit(&m_DebugOverlayLongPathLines[i]);
for (size_t i = 0; i < m_DebugOverlayShortPathLines.size(); ++i)
collector.Submit(&m_DebugOverlayShortPathLines[i]);
}
#endif // INCLUDED_CCMPUNITMOTION
|