File: CCmpUnitMotion.h

package info (click to toggle)
0ad 0.27.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 173,296 kB
  • sloc: cpp: 194,003; javascript: 19,098; ansic: 15,066; python: 6,328; sh: 1,699; perl: 1,575; java: 533; xml: 482; php: 192; makefile: 99
file content (1937 lines) | stat: -rw-r--r-- 72,092 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
/* Copyright (C) 2023 Wildfire Games.
 * This file is part of 0 A.D.
 *
 * 0 A.D. is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * 0 A.D. is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with 0 A.D.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef INCLUDED_CCMPUNITMOTION
#define INCLUDED_CCMPUNITMOTION

#include "simulation2/system/Component.h"
#include "ICmpUnitMotion.h"

#include "simulation2/components/CCmpUnitMotionManager.h"
#include "simulation2/components/ICmpObstruction.h"
#include "simulation2/components/ICmpObstructionManager.h"
#include "simulation2/components/ICmpOwnership.h"
#include "simulation2/components/ICmpPosition.h"
#include "simulation2/components/ICmpPathfinder.h"
#include "simulation2/components/ICmpRangeManager.h"
#include "simulation2/components/ICmpValueModificationManager.h"
#include "simulation2/components/ICmpVisual.h"
#include "simulation2/helpers/Geometry.h"
#include "simulation2/helpers/Render.h"
#include "simulation2/MessageTypes.h"
#include "simulation2/serialization/SerializedPathfinder.h"
#include "simulation2/serialization/SerializedTypes.h"

#include "graphics/Overlay.h"
#include "maths/FixedVector2D.h"
#include "ps/CLogger.h"
#include "ps/Profile.h"
#include "renderer/Scene.h"

#include <algorithm>

// NB: this implementation of ICmpUnitMotion is very tightly coupled with UnitMotionManager.
// As such, both are compiled in the same TU.

// For debugging; units will start going straight to the target
// instead of calling the pathfinder
#define DISABLE_PATHFINDER 0

namespace
{
/**
 * Min/Max range to restrict short path queries to. (Larger ranges are (much) slower,
 * smaller ranges might miss some legitimate routes around large obstacles.)
 * NB: keep the max-range in sync with the vertex pathfinder "move the search space" heuristic.
 */
constexpr entity_pos_t SHORT_PATH_MIN_SEARCH_RANGE = entity_pos_t::FromInt(12 * Pathfinding::NAVCELL_SIZE_INT);
constexpr entity_pos_t SHORT_PATH_MAX_SEARCH_RANGE = entity_pos_t::FromInt(56 * Pathfinding::NAVCELL_SIZE_INT);
constexpr entity_pos_t SHORT_PATH_SEARCH_RANGE_INCREMENT = entity_pos_t::FromInt(4 * Pathfinding::NAVCELL_SIZE_INT);
constexpr u8 SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY = 1;

/**
 * When using the short-pathfinder to rejoin a long-path waypoint, aim for a circle of this radius around the waypoint.
 */
constexpr entity_pos_t SHORT_PATH_LONG_WAYPOINT_RANGE = entity_pos_t::FromInt(4 * Pathfinding::NAVCELL_SIZE_INT);

/**
 * Minimum distance to goal for a long path request
 */
constexpr entity_pos_t LONG_PATH_MIN_DIST = entity_pos_t::FromInt(16 * Pathfinding::NAVCELL_SIZE_INT);

/**
 * If we are this close to our target entity/point, then think about heading
 * for it in a straight line instead of pathfinding.
 */
constexpr entity_pos_t DIRECT_PATH_RANGE = entity_pos_t::FromInt(24 * Pathfinding::NAVCELL_SIZE_INT);

/**
 * To avoid recomputing paths too often, have some leeway for target range checks
 * based on our distance to the target. Increase that incertainty by one navcell
 * for every this many tiles of distance.
 */
constexpr entity_pos_t TARGET_UNCERTAINTY_MULTIPLIER = entity_pos_t::FromInt(8 * Pathfinding::NAVCELL_SIZE_INT);

/**
 * When following a known imperfect path (i.e. a path that won't take us in range of our goal
 * we still recompute a new path every N turn to adapt to moving targets (for example, ships that must pickup
 * units may easily end up in this state, they still need to adjust to moving units).
 * This is rather arbitrary and mostly for simplicity & optimisation (a better recomputing algorithm
 * would not need this).
 */
constexpr u8 KNOWN_IMPERFECT_PATH_RESET_COUNTDOWN = 12;

/**
 * When we fail to move this many turns in a row, inform other components that the move will fail.
 * Experimentally, this number needs to be somewhat high or moving groups of units will lead to stuck units.
 * However, too high means units will look idle for a long time when they are failing to move.
 * TODO: if UnitMotion could send differentiated "unreachable" and "currently stuck" failing messages,
 * this could probably be lowered.
 */
constexpr u8 MAX_FAILED_MOVEMENTS = 35;

/**
 * When computing paths but failing to move, we want to occasionally alternate pathfinder systems
 * to avoid getting stuck (the short pathfinder can unstuck the long-range one and vice-versa, depending).
 */
constexpr u8 ALTERNATE_PATH_TYPE_DELAY = 3;
constexpr u8 ALTERNATE_PATH_TYPE_EVERY = 6;

/**
 * Units can occasionally get stuck near corners. The cause is a mismatch between CheckMovement and the short pathfinder.
 * The problem is the short pathfinder finds an impassable path when units are right on an obstruction edge.
 * Fixing this math mismatch is perhaps possible, but fixing it in UM is rather easy: just try backing up a bit
 * and that will probably un-stuck the unit. This is the 'failed movement' turn on which to try that.
 */
constexpr u8 BACKUP_HACK_DELAY = 10;

/**
 * After this many failed computations, start sending "VERY_OBSTRUCTED" messages instead.
 * Should probably be larger than ALTERNATE_PATH_TYPE_DELAY.
 */
constexpr u8 VERY_OBSTRUCTED_THRESHOLD = 10;

const CColor OVERLAY_COLOR_LONG_PATH(1, 1, 1, 1);
const CColor OVERLAY_COLOR_SHORT_PATH(1, 0, 0, 1);
} // anonymous namespace

class CCmpUnitMotion final : public ICmpUnitMotion
{
	friend class CCmpUnitMotionManager;
public:
	static void ClassInit(CComponentManager& componentManager)
	{
		componentManager.SubscribeToMessageType(MT_Create);
		componentManager.SubscribeToMessageType(MT_Destroy);
		componentManager.SubscribeToMessageType(MT_PathResult);
		componentManager.SubscribeToMessageType(MT_OwnershipChanged);
		componentManager.SubscribeToMessageType(MT_ValueModification);
		componentManager.SubscribeToMessageType(MT_MovementObstructionChanged);
		componentManager.SubscribeToMessageType(MT_Deserialized);
	}

	DEFAULT_COMPONENT_ALLOCATOR(UnitMotion)

	bool m_DebugOverlayEnabled;
	std::vector<SOverlayLine> m_DebugOverlayLongPathLines;
	std::vector<SOverlayLine> m_DebugOverlayShortPathLines;

	// Template state:

	bool m_IsFormationController;

	fixed m_TemplateWalkSpeed, m_TemplateRunMultiplier, m_TemplateAcceleration, m_TemplateWeight;
	pass_class_t m_PassClass;
	std::string m_PassClassName;

	// Dynamic state:

	entity_pos_t m_Clearance;

	// cached for efficiency
	fixed m_WalkSpeed, m_RunMultiplier;

	bool m_FacePointAfterMove;

	// Whether the unit participates in pushing.
	bool m_Pushing = false;

	// Whether the unit blocks movement (& is blocked by movement blockers)
	// Cached from ICmpObstruction.
	bool m_BlockMovement = false;

	// Internal counter used when recovering from obstructed movement.
	// Most notably, increases the search range of the vertex pathfinder.
	// See HandleObstructedMove() for more details.
	u8 m_FailedMovements = 0;

	// If > 0, PathingUpdateNeeded returns false always.
	// This exists because the goal may be unreachable to the short/long pathfinder.
	// In such cases, we would compute inacceptable paths and PathingUpdateNeeded would trigger every turn,
	// which would be quite bad for performance.
	// To avoid that, when we know the new path is imperfect, treat it as OK and follow it anyways.
	// When reaching the end, we'll go through HandleObstructedMove and reset regardless.
	// To still recompute now and then (the target may be moving), this is a countdown decremented on each frame.
	u8 m_FollowKnownImperfectPathCountdown = 0;

	struct Ticket {
		u32 m_Ticket = 0; // asynchronous request ID we're waiting for, or 0 if none
		enum Type {
			SHORT_PATH,
			LONG_PATH
		} m_Type = SHORT_PATH; // Pick some default value to avoid UB.

		void clear() { m_Ticket = 0; }
	} m_ExpectedPathTicket;

	struct MoveRequest {
		enum Type {
			NONE,
			POINT,
			ENTITY,
			OFFSET
		} m_Type = NONE;
		entity_id_t m_Entity = INVALID_ENTITY;
		CFixedVector2D m_Position;
		entity_pos_t m_MinRange, m_MaxRange;

		// For readability
		CFixedVector2D GetOffset() const { return m_Position; };

		MoveRequest() = default;
		MoveRequest(CFixedVector2D pos, entity_pos_t minRange, entity_pos_t maxRange) : m_Type(POINT), m_Position(pos), m_MinRange(minRange), m_MaxRange(maxRange) {};
		MoveRequest(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) : m_Type(ENTITY), m_Entity(target), m_MinRange(minRange), m_MaxRange(maxRange) {};
		MoveRequest(entity_id_t target, CFixedVector2D offset) : m_Type(OFFSET), m_Entity(target), m_Position(offset) {};
	} m_MoveRequest;

	// If this is not INVALID_ENTITY, the unit is a formation member.
	entity_id_t m_FormationController = INVALID_ENTITY;

	// If the entity moves, it will do so at m_WalkSpeed * m_SpeedMultiplier.
	fixed m_SpeedMultiplier;
	// This caches the resulting speed from m_WalkSpeed * m_SpeedMultiplier for convenience.
	fixed m_Speed;

	// Mean speed over the last turn.
	fixed m_LastTurnSpeed;

	// The speed achieved at the end of the current turn.
	fixed m_CurrentSpeed;

	fixed m_InstantTurnAngle;

	fixed m_Acceleration;

	// Currently active paths (storing waypoints in reverse order).
	// The last item in each path is the point we're currently heading towards.
	WaypointPath m_LongPath;
	WaypointPath m_ShortPath;

	static std::string GetSchema()
	{
		return
			"<a:help>Provides the unit with the ability to move around the world by itself.</a:help>"
			"<a:example>"
				"<WalkSpeed>7.0</WalkSpeed>"
				"<PassabilityClass>default</PassabilityClass>"
			"</a:example>"
			"<element name='FormationController'>"
				"<data type='boolean'/>"
			"</element>"
			"<element name='WalkSpeed' a:help='Basic movement speed (in metres per second).'>"
				"<ref name='positiveDecimal'/>"
			"</element>"
			"<optional>"
				"<element name='RunMultiplier' a:help='How much faster the unit goes when running (as a multiple of walk speed).'>"
					"<ref name='positiveDecimal'/>"
				"</element>"
			"</optional>"
			"<element name='InstantTurnAngle' a:help='Angle we can turn instantly. Any value greater than pi will disable turning times. Avoid zero since it stops the entity every turn.'>"
				"<ref name='positiveDecimal'/>"
			"</element>"
			"<element name='Acceleration' a:help='Acceleration (in metres per second^2).'>"
				"<ref name='positiveDecimal'/>"
			"</element>"
			"<element name='PassabilityClass' a:help='Identifies the terrain passability class (values are defined in special/pathfinder.xml).'>"
				"<text/>"
			"</element>"
			"<element name='Weight' a:help='Makes this unit both push harder and harder to push. 10 is considered the base value.'>"
				"<ref name='positiveDecimal'/>"
			"</element>"
			"<optional>"
				"<element name='DisablePushing'>"
					"<data type='boolean'/>"
				"</element>"
			"</optional>";
	}

	void Init(const CParamNode& paramNode) override
	{
		m_IsFormationController = paramNode.GetChild("FormationController").ToBool();

		m_FacePointAfterMove = true;

		m_WalkSpeed = m_TemplateWalkSpeed = m_Speed = paramNode.GetChild("WalkSpeed").ToFixed();
		m_SpeedMultiplier = fixed::FromInt(1);
		m_LastTurnSpeed = m_CurrentSpeed = fixed::Zero();

		m_RunMultiplier = m_TemplateRunMultiplier = fixed::FromInt(1);
		if (paramNode.GetChild("RunMultiplier").IsOk())
			m_RunMultiplier = m_TemplateRunMultiplier = paramNode.GetChild("RunMultiplier").ToFixed();

		m_InstantTurnAngle = paramNode.GetChild("InstantTurnAngle").ToFixed();

		m_Acceleration = m_TemplateAcceleration = paramNode.GetChild("Acceleration").ToFixed();

		m_TemplateWeight = paramNode.GetChild("Weight").ToFixed();

		m_PassClassName = paramNode.GetChild("PassabilityClass").ToString();
		SetPassabilityData(m_PassClassName);

		CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
		if (cmpObstruction)
			m_BlockMovement = cmpObstruction->GetBlockMovementFlag(true);

		SetParticipateInPushing(!paramNode.GetChild("DisablePushing").IsOk() || !paramNode.GetChild("DisablePushing").ToBool());

		m_DebugOverlayEnabled = false;
	}

	void Deinit() override
	{
	}

	template<typename S>
	void SerializeCommon(S& serialize)
	{
		// m_Clearance and m_PassClass are constructed from this.
		serialize.StringASCII("pass class", m_PassClassName, 0, 64);

		serialize.NumberU32_Unbounded("ticket", m_ExpectedPathTicket.m_Ticket);
		Serializer(serialize, "ticket type", m_ExpectedPathTicket.m_Type, Ticket::Type::LONG_PATH);

		serialize.NumberU8_Unbounded("failed movements", m_FailedMovements);
		serialize.NumberU8_Unbounded("followknownimperfectpath", m_FollowKnownImperfectPathCountdown);

		Serializer(serialize, "target type", m_MoveRequest.m_Type, MoveRequest::Type::OFFSET);
		serialize.NumberU32_Unbounded("target entity", m_MoveRequest.m_Entity);
		serialize.NumberFixed_Unbounded("target pos x", m_MoveRequest.m_Position.X);
		serialize.NumberFixed_Unbounded("target pos y", m_MoveRequest.m_Position.Y);
		serialize.NumberFixed_Unbounded("target min range", m_MoveRequest.m_MinRange);
		serialize.NumberFixed_Unbounded("target max range", m_MoveRequest.m_MaxRange);

		serialize.NumberU32_Unbounded("formation controller", m_FormationController);

		serialize.NumberFixed_Unbounded("speed multiplier", m_SpeedMultiplier);

		serialize.NumberFixed_Unbounded("last turn speed", m_LastTurnSpeed);
		serialize.NumberFixed_Unbounded("current speed", m_CurrentSpeed);

		serialize.NumberFixed_Unbounded("instant turn angle", m_InstantTurnAngle);

		serialize.NumberFixed_Unbounded("acceleration", m_Acceleration);

		serialize.Bool("facePointAfterMove", m_FacePointAfterMove);
		serialize.Bool("pushing", m_Pushing);

		Serializer(serialize, "long path", m_LongPath.m_Waypoints);
		Serializer(serialize, "short path", m_ShortPath.m_Waypoints);
	}

	void Serialize(ISerializer& serialize) override
	{
		SerializeCommon(serialize);
	}

	void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize) override
	{
		Init(paramNode);

		SerializeCommon(deserialize);

		SetPassabilityData(m_PassClassName);

		CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
		if (cmpObstruction)
			m_BlockMovement = cmpObstruction->GetBlockMovementFlag(false);
	}

	void HandleMessage(const CMessage& msg, bool UNUSED(global)) override
	{
		switch (msg.GetType())
		{
		case MT_RenderSubmit:
		{
			PROFILE("UnitMotion::RenderSubmit");
			const CMessageRenderSubmit& msgData = static_cast<const CMessageRenderSubmit&> (msg);
			RenderSubmit(msgData.collector);
			break;
		}
		case MT_PathResult:
		{
			const CMessagePathResult& msgData = static_cast<const CMessagePathResult&> (msg);
			PathResult(msgData.ticket, msgData.path);
			break;
		}
		case MT_Create:
		{
			if (!ENTITY_IS_LOCAL(GetEntityId()))
				CmpPtr<ICmpUnitMotionManager>(GetSystemEntity())->Register(this, GetEntityId(), m_IsFormationController);
			break;
		}
		case MT_Destroy:
		{
			if (!ENTITY_IS_LOCAL(GetEntityId()))
				CmpPtr<ICmpUnitMotionManager>(GetSystemEntity())->Unregister(GetEntityId());
			break;
		}
		case MT_MovementObstructionChanged:
		{
			CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
			if (cmpObstruction)
				m_BlockMovement = cmpObstruction->GetBlockMovementFlag(false);
			break;
		}
		case MT_ValueModification:
		{
			const CMessageValueModification& msgData = static_cast<const CMessageValueModification&> (msg);
			if (msgData.component != L"UnitMotion")
				break;
			FALLTHROUGH;
		}
		case MT_OwnershipChanged:
		{
			OnValueModification();
			break;
		}
		case MT_Deserialized:
		{
			OnValueModification();
			break;
		}
		}
	}

	void UpdateMessageSubscriptions()
	{
		bool needRender = m_DebugOverlayEnabled;
		GetSimContext().GetComponentManager().DynamicSubscriptionNonsync(MT_RenderSubmit, this, needRender);
	}

	bool IsMoveRequested() const override
	{
		return m_MoveRequest.m_Type != MoveRequest::NONE;
	}

	fixed GetSpeedMultiplier() const override
	{
		return m_SpeedMultiplier;
	}

	void SetSpeedMultiplier(fixed multiplier) override
	{
		m_SpeedMultiplier = std::min(multiplier, m_RunMultiplier);
		m_Speed = m_SpeedMultiplier.Multiply(GetWalkSpeed());
	}

	fixed GetSpeed() const override
	{
		return m_Speed;
	}

	fixed GetWalkSpeed() const override
	{
		return m_WalkSpeed;
	}

	fixed GetRunMultiplier() const override
	{
		return m_RunMultiplier;
	}

	CFixedVector2D EstimateFuturePosition(const fixed dt) const override
	{
		CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
		if (!cmpPosition || !cmpPosition->IsInWorld())
			return CFixedVector2D();

		// TODO: formation members should perhaps try to use the controller's position.

		CFixedVector2D pos = cmpPosition->GetPosition2D();
		entity_angle_t angle = cmpPosition->GetRotation().Y;
		fixed speed = m_CurrentSpeed;
		// Copy the path so we don't change it.
		WaypointPath shortPath = m_ShortPath;
		WaypointPath longPath = m_LongPath;

		PerformMove(dt, cmpPosition->GetTurnRate(), shortPath, longPath, pos, speed, angle, 0);
		return pos;
	}

	fixed GetAcceleration() const override
	{
		return m_Acceleration;
	}

	void SetAcceleration(fixed acceleration) override
	{
		m_Acceleration = acceleration;
	}

	virtual entity_pos_t GetWeight() const
	{
		return m_TemplateWeight;
	}

	pass_class_t GetPassabilityClass() const override
	{
		return m_PassClass;
	}

	std::string GetPassabilityClassName() const override
	{
		return m_PassClassName;
	}

	void SetPassabilityClassName(const std::string& passClassName) override
	{
		if (!m_IsFormationController)
		{
			LOGWARNING("Only formation controllers can change their passability class");
			return;
		}
		SetPassabilityData(passClassName);
	}

	fixed GetCurrentSpeed() const override
	{
		return m_CurrentSpeed;
	}

	void SetFacePointAfterMove(bool facePointAfterMove) override
	{
		m_FacePointAfterMove = facePointAfterMove;
	}

	bool GetFacePointAfterMove() const override
	{
		return m_FacePointAfterMove;
	}

	void SetDebugOverlay(bool enabled) override
	{
		m_DebugOverlayEnabled = enabled;
		UpdateMessageSubscriptions();
	}

	bool MoveToPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange) override
	{
		return MoveTo(MoveRequest(CFixedVector2D(x, z), minRange, maxRange));
	}

	bool MoveToTargetRange(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) override
	{
		return MoveTo(MoveRequest(target, minRange, maxRange));
	}

	void MoveToFormationOffset(entity_id_t controller, entity_pos_t x, entity_pos_t z) override
	{
		// Pass the controller to the move request anyways.
		MoveTo(MoveRequest(controller, CFixedVector2D(x, z)));
	}

	void SetMemberOfFormation(entity_id_t controller) override
	{
		m_FormationController = controller;
	}

	bool IsTargetRangeReachable(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) override;

	void FaceTowardsPoint(entity_pos_t x, entity_pos_t z) override;

	/**
	 * Clears the current MoveRequest - the unit will stop and no longer try and move.
	 * This should never be called from UnitMotion, since MoveToX orders are given
	 * by other components - these components should also decide when to stop.
	 */
	void StopMoving() override
	{
		if (m_FacePointAfterMove)
		{
			CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
			if (cmpPosition && cmpPosition->IsInWorld())
			{
				CFixedVector2D targetPos;
				if (ComputeTargetPosition(targetPos))
					FaceTowardsPointFromPos(cmpPosition->GetPosition2D(), targetPos.X, targetPos.Y);
			}
		}

		m_MoveRequest = MoveRequest();
		m_ExpectedPathTicket.clear();
		m_LongPath.m_Waypoints.clear();
		m_ShortPath.m_Waypoints.clear();
	}

	entity_pos_t GetUnitClearance() const override
	{
		return m_Clearance;
	}

private:
	bool IsFormationMember() const
	{
		return m_FormationController != INVALID_ENTITY;
	}

	bool IsMovingAsFormation() const
	{
		return IsFormationMember() && m_MoveRequest.m_Type == MoveRequest::OFFSET;
	}

	bool IsFormationControllerMoving() const
	{
		CmpPtr<ICmpUnitMotion> cmpControllerMotion(GetSimContext(), m_FormationController);
		return cmpControllerMotion && cmpControllerMotion->IsMoveRequested();
	}

	entity_id_t GetGroup() const
	{
		return IsFormationMember() ? m_FormationController : GetEntityId();
	}

	void SetParticipateInPushing(bool pushing)
	{
		CmpPtr<ICmpUnitMotionManager> cmpUnitMotionManager(GetSystemEntity());
		m_Pushing = pushing && cmpUnitMotionManager->IsPushingActivated();
	}

	void SetPassabilityData(const std::string& passClassName)
	{
		m_PassClassName = passClassName;
		CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
		if (cmpPathfinder)
		{
			m_PassClass = cmpPathfinder->GetPassabilityClass(passClassName);
			m_Clearance = cmpPathfinder->GetClearance(m_PassClass);

			CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
			if (cmpObstruction)
				cmpObstruction->SetUnitClearance(m_Clearance);
		}
	}

	/**
	 * Warns other components that our current movement will likely fail (e.g. we won't be able to reach our target)
	 * This should only be called before the actual movement in a given turn, or units might both move and try to do things
	 * on the same turn, leading to gliding units.
	 */
	void MoveFailed()
	{
		// Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time
		// if our current offset is unreachable, but we don't want to end up stuck.
		// (If the formation controller has stopped moving however, we can safely message).
		if (IsFormationMember() && IsFormationControllerMoving())
			return;

		CMessageMotionUpdate msg(CMessageMotionUpdate::LIKELY_FAILURE);
		GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
	}

	/**
	 * Warns other components that our current movement is likely over (i.e. we probably reached our destination)
	 * This should only be called before the actual movement in a given turn, or units might both move and try to do things
	 * on the same turn, leading to gliding units.
	 */
	void MoveSucceeded()
	{
		// Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time
		// if our current offset is unreachable, but we don't want to end up stuck.
		// (If the formation controller has stopped moving however, we can safely message).
		if (IsFormationMember() && IsFormationControllerMoving())
			return;

		CMessageMotionUpdate msg(CMessageMotionUpdate::LIKELY_SUCCESS);
		GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
	}

	/**
	 * Warns other components that our current movement was obstructed (i.e. we failed to move this turn).
	 * This should only be called before the actual movement in a given turn, or units might both move and try to do things
	 * on the same turn, leading to gliding units.
	 */
	void MoveObstructed()
	{
		// Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time
		// if our current offset is unreachable, but we don't want to end up stuck.
		// (If the formation controller has stopped moving however, we can safely message).
		if (IsFormationMember() && IsFormationControllerMoving())
			return;

		CMessageMotionUpdate msg(m_FailedMovements >= VERY_OBSTRUCTED_THRESHOLD ?
			CMessageMotionUpdate::VERY_OBSTRUCTED : CMessageMotionUpdate::OBSTRUCTED);
		GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
	}

	/**
	 * Increment the number of failed movements and notify other components if required.
	 * @returns true if the failure was notified, false otherwise.
	 */
	bool IncrementFailedMovementsAndMaybeNotify()
	{
		m_FailedMovements++;
		if (m_FailedMovements >= MAX_FAILED_MOVEMENTS)
		{
			MoveFailed();
			m_FailedMovements = 0;
			return true;
		}
		return false;
	}

	/**
	 * If path would take us farther away from the goal than pos currently is, return false, else return true.
	 */
	bool RejectFartherPaths(const PathGoal& goal, const WaypointPath& path, const CFixedVector2D& pos) const;

	bool ShouldAlternatePathfinder() const
	{
		return (m_FailedMovements == ALTERNATE_PATH_TYPE_DELAY) || ((MAX_FAILED_MOVEMENTS - ALTERNATE_PATH_TYPE_DELAY) % ALTERNATE_PATH_TYPE_EVERY == 0);
	}

	bool InShortPathRange(const PathGoal& goal, const CFixedVector2D& pos) const
	{
		return goal.DistanceToPoint(pos) < LONG_PATH_MIN_DIST;
	}

	entity_pos_t ShortPathSearchRange() const
	{
		u8 multiple = m_FailedMovements < SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY ? 0 : m_FailedMovements - SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY;
		fixed searchRange = SHORT_PATH_MIN_SEARCH_RANGE + SHORT_PATH_SEARCH_RANGE_INCREMENT * multiple;
		if (searchRange > SHORT_PATH_MAX_SEARCH_RANGE)
			searchRange = SHORT_PATH_MAX_SEARCH_RANGE;
		return searchRange;
	}

	/**
	 * Handle the result of an asynchronous path query.
	 */
	void PathResult(u32 ticket, const WaypointPath& path);

	void OnValueModification()
	{
		CmpPtr<ICmpValueModificationManager> cmpValueModificationManager(GetSystemEntity());
		if (!cmpValueModificationManager)
			return;

		m_WalkSpeed = cmpValueModificationManager->ApplyModifications(L"UnitMotion/WalkSpeed", m_TemplateWalkSpeed, GetEntityId());
		m_RunMultiplier = cmpValueModificationManager->ApplyModifications(L"UnitMotion/RunMultiplier", m_TemplateRunMultiplier, GetEntityId());

		// For MT_Deserialize compute m_Speed from the serialized m_SpeedMultiplier.
		// For MT_ValueModification and MT_OwnershipChanged, adjust m_SpeedMultiplier if needed
		// (in case then new m_RunMultiplier value is lower than the old).
		SetSpeedMultiplier(m_SpeedMultiplier);
	}

	/**
	 * Check if we are at destination early in the turn, this both lets units react faster
	 * and ensure that distance comparisons are done while units are not being moved
	 * (otherwise they won't be commutative).
	 */
	void OnTurnStart();

	void PreMove(CCmpUnitMotionManager::MotionState& state);
	void Move(CCmpUnitMotionManager::MotionState& state, fixed dt);
	void PostMove(CCmpUnitMotionManager::MotionState& state, fixed dt);

	bool PossiblyAtDestination() const override;

	/**
	 * Process the move the unit will do this turn.
	 * This does not send actually change the position.
	 * @returns true if the move was obstructed.
	 */
	bool PerformMove(fixed dt, const fixed& turnRate, WaypointPath& shortPath, WaypointPath& longPath, CFixedVector2D& pos, fixed& speed, entity_angle_t& angle, uint8_t pushingPressure) const;

	/**
	 * Update other components on our speed.
	 * (For performance, this should try to avoid sending messages).
	 */
	void UpdateMovementState(entity_pos_t speed, entity_pos_t meanSpeed);

	/**
	 * React if our move was obstructed.
	 * @param moved - true if the unit still managed to move.
	 * @returns true if the obstruction required handling, false otherwise.
	 */
	bool HandleObstructedMove(bool moved);

	/**
	 * Returns true if the target position is valid. False otherwise.
	 * (this may indicate that the target is e.g. out of the world/dead).
	 * NB: for code-writing convenience, if we have no target, this returns true.
	 */
	bool TargetHasValidPosition(const MoveRequest& moveRequest) const;
	bool TargetHasValidPosition() const
	{
		return TargetHasValidPosition(m_MoveRequest);
	}

	/**
	 * Computes the current location of our target entity (plus offset).
	 * Returns false if no target entity or no valid position.
	 */
	bool ComputeTargetPosition(CFixedVector2D& out, const MoveRequest& moveRequest) const;
	bool ComputeTargetPosition(CFixedVector2D& out) const
	{
		return ComputeTargetPosition(out, m_MoveRequest);
	}

	/**
	 * Attempts to replace the current path with a straight line to the target,
	 * if it's close enough and the route is not obstructed.
	 */
	bool TryGoingStraightToTarget(const CFixedVector2D& from, bool updatePaths);

	/**
	 * Returns whether our we need to recompute a path to reach our target.
	 */
	bool PathingUpdateNeeded(const CFixedVector2D& from) const;

	/**
	 * Rotate to face towards the target point, given the current pos
	 */
	void FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z);

	/**
	 * Units in 'pushing' mode are marked as 'moving' in the obstruction manager.
	 * Units in 'pushing' mode should skip them in checkMovement (to enable pushing).
	 * However, units for which pushing is deactivated should collide against everyone.
	 * Units that don't block movement never participate in pushing, but they also
	 * shouldn't collide with pushing units.
	 */
	bool ShouldCollideWithMovingUnits() const
	{
		return !m_Pushing && m_BlockMovement;
	}

	/**
	 * Returns an appropriate obstruction filter for use with path requests.
	 */
	ControlGroupMovementObstructionFilter GetObstructionFilter() const
	{
		return ControlGroupMovementObstructionFilter(ShouldCollideWithMovingUnits(), GetGroup());
	}
	/**
	 * Filter a specific tag on top of the existing control groups.
	 */
	SkipTagAndControlGroupObstructionFilter GetObstructionFilter(const ICmpObstructionManager::tag_t& tag) const
	{
		return SkipTagAndControlGroupObstructionFilter(tag, ShouldCollideWithMovingUnits(), GetGroup());
	}

	/**
	 * Decide whether to approximate the given range from a square target as a circle,
	 * rather than as a square.
	 */
	bool ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t circleRadius) const;

	/**
	 * Create a PathGoal from a move request.
	 * @returns true if the goal was successfully created.
	 */
	bool ComputeGoal(PathGoal& out, const MoveRequest& moveRequest) const;

	/**
	 * Compute a path to the given goal from the given position.
	 * Might go in a straight line immediately, or might start an asynchronous path request.
	 */
	void ComputePathToGoal(const CFixedVector2D& from, const PathGoal& goal);

	/**
	 * Start an asynchronous long path query.
	 */
	void RequestLongPath(const CFixedVector2D& from, const PathGoal& goal);

	/**
	 * Start an asynchronous short path query.
	 * @param extendRange - if true, extend the search range to at least the distance to the goal.
	 */
	void RequestShortPath(const CFixedVector2D& from, const PathGoal& goal, bool extendRange);

	/**
	 * General handler for MoveTo interface functions.
	 */
	bool MoveTo(MoveRequest request);

	/**
	 * Convert a path into a renderable list of lines
	 */
	void RenderPath(const WaypointPath& path, std::vector<SOverlayLine>& lines, CColor color);

	void RenderSubmit(SceneCollector& collector);
};

REGISTER_COMPONENT_TYPE(UnitMotion)

bool CCmpUnitMotion::RejectFartherPaths(const PathGoal& goal, const WaypointPath& path, const CFixedVector2D& pos) const
{
	if (path.m_Waypoints.empty())
		return false;

	// Reject the new path if it does not lead us closer to the target's position.
	if (goal.DistanceToPoint(pos) <= goal.DistanceToPoint(CFixedVector2D(path.m_Waypoints.front().x, path.m_Waypoints.front().z)))
		return true;

	return false;
}

void CCmpUnitMotion::PathResult(u32 ticket, const WaypointPath& path)
{
	// Ignore obsolete path requests
	if (ticket != m_ExpectedPathTicket.m_Ticket || m_MoveRequest.m_Type == MoveRequest::NONE)
		return;

	Ticket::Type ticketType = m_ExpectedPathTicket.m_Type;
	m_ExpectedPathTicket.clear();

	// If we not longer have a position, we won't be able to do much.
	// Fail in the next Move() call.
	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return;
	CFixedVector2D pos = cmpPosition->GetPosition2D();

	// Assume all long paths were towards the goal, and assume short paths were if there are no long waypoints.
	bool pathedTowardsGoal = ticketType == Ticket::LONG_PATH || m_LongPath.m_Waypoints.empty();

	// Check if we need to run the short-path hack (warning: tricky control flow).
	bool shortPathHack = false;
	if (path.m_Waypoints.empty())
	{
		// No waypoints means pathing failed. If this was a long-path, try the short-path hack.
		if (!pathedTowardsGoal)
			return;
		shortPathHack = ticketType == Ticket::LONG_PATH;
	}
	else if (PathGoal goal; pathedTowardsGoal && ComputeGoal(goal, m_MoveRequest) && RejectFartherPaths(goal, path, pos))
	{
		// Reject paths that would take the unit further away from the goal.
		// This assumes that we prefer being closer 'as the crow flies' to unreachable goals.
		// This is a hack of sorts around units 'dancing' between two positions (see e.g. #3144),
		// but never actually failing to move, ergo never actually informing unitAI that it succeeds/fails.
		// (for short paths, only do so if aiming directly for the goal
		// as sub-goals may be farther than we are).

		// If this was a long-path and we no longer have waypoints, try the short-path hack.
		if (!m_LongPath.m_Waypoints.empty())
			return;
		shortPathHack = ticketType == Ticket::LONG_PATH;
	}

	// Short-path hack: if the long-range pathfinder doesn't find an acceptable path, push a fake waypoint at the goal.
	// This means HandleObstructedMove will use the short-pathfinder to try and reach it,
	// and that may find a path as the vertex pathfinder is more precise.
	if (shortPathHack)
	{
		// If we're resorting to the short-path hack, the situation is dire. Most likely, the goal is unreachable.
		// We want to find a path or fail fast. Bump failed movements so the short pathfinder will run at max-range
		// right away. This is safe from a performance PoV because it can only happen if the target is unreachable to
		// the long-range pathfinder, which is rare, and since the entity will fail to move if the goal is actually unreachable,
		// the failed movements will be increased to MAX anyways, so just shortcut.
		m_FailedMovements = MAX_FAILED_MOVEMENTS - 2;

		CFixedVector2D targetPos;
		if (ComputeTargetPosition(targetPos))
			m_LongPath.m_Waypoints.emplace_back(Waypoint{ targetPos.X, targetPos.Y });
		return;
	}

	if (ticketType == Ticket::LONG_PATH)
	{
		m_LongPath = path;
		// Long paths don't properly follow diagonals because of JPS/the grid. Since units now take time turning,
		// they can actually slow down substantially if they have to do a one navcell diagonal movement,
		// which is somewhat common at the beginning of a new path.
		// For that reason, if the first waypoint is really close, check if we can't go directly to the second.
		if (m_LongPath.m_Waypoints.size() >= 2)
		{
			const Waypoint& firstWpt = m_LongPath.m_Waypoints.back();
			if (CFixedVector2D(firstWpt.x - pos.X, firstWpt.z - pos.Y).CompareLength(Pathfinding::NAVCELL_SIZE * 4) <= 0)
			{
				CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
				ENSURE(cmpPathfinder);
				const Waypoint& secondWpt = m_LongPath.m_Waypoints[m_LongPath.m_Waypoints.size() - 2];
				if (cmpPathfinder->CheckMovement(GetObstructionFilter(), pos.X, pos.Y, secondWpt.x, secondWpt.z, m_Clearance, m_PassClass))
					m_LongPath.m_Waypoints.pop_back();
			}

		}
	}
	else
		m_ShortPath = path;

	m_FollowKnownImperfectPathCountdown = 0;

	if (!pathedTowardsGoal)
		return;

	// Performance hack: If we were pathing towards the goal and this new path won't put us in range,
	// it's highly likely that we are going somewhere unreachable.
	// However, Move() will try to recompute the path every turn, which can be quite slow.
	// To avoid this, act as if our current path leads us to the correct destination.
	// NB: for short-paths, the problem might be that the search space is too small
	// but we'll still follow this path until the en and try again then.
	// Because we reject farther paths, it works out.
	if (PathingUpdateNeeded(pos))
	{
		// Inform other components early, as they might have better behaviour than waiting for the path to carry out.
		// Send OBSTRUCTED at first - moveFailed is likely to trigger path recomputation and we might end up
		// recomputing too often for nothing.
		if (!IncrementFailedMovementsAndMaybeNotify())
			MoveObstructed();
		// We'll automatically recompute a path when this reaches 0, as a way to improve behaviour.
		// (See D665 - this is needed because the target may be moving, and we should adjust to that).
		m_FollowKnownImperfectPathCountdown = KNOWN_IMPERFECT_PATH_RESET_COUNTDOWN;
	}
}

void CCmpUnitMotion::OnTurnStart()
{
	if (PossiblyAtDestination())
		MoveSucceeded();
	else if (!TargetHasValidPosition())
	{
		// Scrap waypoints - we don't know where to go.
		// If the move request remains unchanged and the target again has a valid position later on,
		// moving will be resumed.
		// Units may want to move to move to the target's last known position,
		// but that should be decided by UnitAI (handling MoveFailed), not UnitMotion.
		m_LongPath.m_Waypoints.clear();
		m_ShortPath.m_Waypoints.clear();

		MoveFailed();
	}
}

void CCmpUnitMotion::PreMove(CCmpUnitMotionManager::MotionState& state)
{
	state.ignore = !m_Pushing || !m_BlockMovement;

	state.wasObstructed = false;
	state.wentStraight = false;

	// If we were idle and will still be, no need for an update.
	state.needUpdate = state.cmpPosition->IsInWorld() &&
		(m_CurrentSpeed != fixed::Zero() || m_LastTurnSpeed != fixed::Zero() || m_MoveRequest.m_Type != MoveRequest::NONE);

	if (!m_BlockMovement)
		return;

	state.controlGroup = IsFormationMember() ? m_FormationController : INVALID_ENTITY;

	// Update moving flag, this is an internal construct used for pushing,
	// so it does not really reflect whether the unit is actually moving or not.
	state.isMoving = m_Pushing && m_MoveRequest.m_Type != MoveRequest::NONE;
	CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
	if (cmpObstruction)
		cmpObstruction->SetMovingFlag(state.isMoving);
}

void CCmpUnitMotion::Move(CCmpUnitMotionManager::MotionState& state, fixed dt)
{
	PROFILE("Move");

	// If we're chasing a potentially-moving unit and are currently close
	// enough to its current position, and we can head in a straight line
	// to it, then throw away our current path and go straight to it.
	state.wentStraight = TryGoingStraightToTarget(state.initialPos, true);

	state.wasObstructed = PerformMove(dt, state.cmpPosition->GetTurnRate(), m_ShortPath, m_LongPath, state.pos, state.speed, state.angle, state.pushingPressure);
}

void CCmpUnitMotion::PostMove(CCmpUnitMotionManager::MotionState& state, fixed dt)
{
	// Update our speed over this turn so that the visual actor shows the correct animation.
	if (state.pos == state.initialPos)
	{
		if (state.angle != state.initialAngle)
			state.cmpPosition->TurnTo(state.angle);
		UpdateMovementState(fixed::Zero(), fixed::Zero());
	}
	else
	{
		// Update the Position component after our movement (if we actually moved anywhere)
		CFixedVector2D offset = state.pos - state.initialPos;
		state.cmpPosition->MoveAndTurnTo(state.pos.X, state.pos.Y, state.angle);

		// Calculate the mean speed over this past turn.
		UpdateMovementState(state.speed, offset.Length() / dt);
	}

	if (state.wasObstructed && HandleObstructedMove(state.pos != state.initialPos))
		return;
	else if (!state.wasObstructed && state.pos != state.initialPos)
		m_FailedMovements = 0;

	const bool needPathUpdate{PathingUpdateNeeded(state.pos)};

	// If we're following a long-path, check if we might run into units in advance, to smoothe motion.
	if (!needPathUpdate && !state.wasObstructed && m_LongPath.m_Waypoints.size() >= 1)
	{
		ICmpObstructionManager::tag_t specificIgnore;
		if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
		{
			CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
			if (cmpTargetObstruction)
				specificIgnore = cmpTargetObstruction->GetObstruction();
		}
		CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
		if (cmpObstructionManager && cmpObstructionManager->TestUnitLine(GetObstructionFilter(specificIgnore),
			state.pos.X, state.pos.Y, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z, m_Clearance, true))
		{
			// We will run into something: request a new short path.
			// If we have several waypoints left, aim for the one after next directly.
			// (This is mostly because the obstruction might be at the waypoint, and the end is kind of treated specially).
			// Else just path to the goal.
			if (m_LongPath.m_Waypoints.size() > 1) {
				fixed radius = Pathfinding::NAVCELL_SIZE * 2;
				m_LongPath.m_Waypoints.pop_back();
				PathGoal subgoal = { PathGoal::CIRCLE, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z, radius };
				RequestShortPath(state.pos, subgoal, false);
			} else {
				// If we only have one waypoint left, request a short path to the waypoint itself.
				PathGoal goal;
				if (ComputeGoal(goal, m_MoveRequest))
					RequestShortPath(state.pos, goal, false);
			}
		}
	}

	// If we moved straight, and didn't quite finish the path, reset - we'll update it next turn if still OK.
	if (state.wentStraight && !state.wasObstructed)
		m_ShortPath.m_Waypoints.clear();

	// We may need to recompute our path sometimes (e.g. if our target moves).
	// Since we request paths asynchronously anyways, this does not need to be done before moving.
	if (!state.wentStraight && needPathUpdate)
	{
		PathGoal goal;
		if (ComputeGoal(goal, m_MoveRequest))
			ComputePathToGoal(state.pos, goal);
	}
	else if (m_FollowKnownImperfectPathCountdown > 0)
		--m_FollowKnownImperfectPathCountdown;
}

bool CCmpUnitMotion::PossiblyAtDestination() const
{
	if (m_MoveRequest.m_Type == MoveRequest::NONE)
		return false;

	CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
	ENSURE(cmpObstructionManager);

	if (m_MoveRequest.m_Type == MoveRequest::POINT)
		return cmpObstructionManager->IsInPointRange(GetEntityId(), m_MoveRequest.m_Position.X, m_MoveRequest.m_Position.Y, m_MoveRequest.m_MinRange, m_MoveRequest.m_MaxRange, false);
	if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
		return cmpObstructionManager->IsInTargetRange(GetEntityId(), m_MoveRequest.m_Entity, m_MoveRequest.m_MinRange, m_MoveRequest.m_MaxRange, false);
	if (m_MoveRequest.m_Type == MoveRequest::OFFSET)
	{
		CmpPtr<ICmpUnitMotion> cmpControllerMotion(GetSimContext(), m_MoveRequest.m_Entity);
		if (cmpControllerMotion && cmpControllerMotion->IsMoveRequested())
			return false;

		// In formation, return a match only if we are exactly at the target position.
		// Otherwise, units can go in an infinite "walzting" loop when the Idle formation timer
		// reforms them.
		CFixedVector2D targetPos;
		ComputeTargetPosition(targetPos);
		CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
		return (targetPos-cmpPosition->GetPosition2D()).CompareLength(fixed::Zero()) <= 0;
	}
	return false;
}

bool CCmpUnitMotion::PerformMove(fixed dt, const fixed& turnRate, WaypointPath& shortPath, WaypointPath& longPath, CFixedVector2D& pos, fixed& speed, entity_angle_t& angle, uint8_t pushingPressure) const
{
	// If there are no waypoint, behave as though we were obstructed and let HandleObstructedMove handle it.
	if (shortPath.m_Waypoints.empty() && longPath.m_Waypoints.empty())
		return true;

	// Wrap the angle to (-Pi, Pi].
	while (angle > entity_angle_t::Pi())
		angle -= entity_angle_t::Pi() * 2;
	while (angle < -entity_angle_t::Pi())
		angle += entity_angle_t::Pi() * 2;

	CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
	ENSURE(cmpPathfinder);

	fixed basicSpeed = m_Speed;
	// If in formation, run to keep up; otherwise just walk.
	if (IsMovingAsFormation())
		basicSpeed = m_Speed.Multiply(m_RunMultiplier);

	// If pushing pressure is applied, slow the unit down.
	if (pushingPressure)
	{
		// Values below this pressure don't slow the unit down (avoids slowing groups down).
		constexpr int pressureMinThreshold = 10;

		// Lower speed up to a floor to prevent units from getting stopped.
		// This helped pushing particularly for fast units, since they'll end up slowing down.
		constexpr int maxPressure = CCmpUnitMotionManager::MAX_PRESSURE - pressureMinThreshold - 80;
		constexpr entity_pos_t floorSpeed = entity_pos_t::FromFraction(3, 2);
		static_assert(maxPressure > 0);

		uint8_t slowdown = maxPressure - std::min(maxPressure, std::max(0, pushingPressure - pressureMinThreshold));
		basicSpeed = basicSpeed.Multiply(fixed::FromInt(slowdown) / maxPressure);
		// NB: lowering this too much will make the units behave a lot like viscous fluid
		// when the density becomes extreme. While perhaps realistic (and kind of neat),
		// it's not very helpful for gameplay. Empirically, a value of 1.5 avoids most of the effect
		// while still slowing down movement significantly, and seems like a good balance.
		// Min with the template speed to allow units that are explicitly absurdly slow.
		basicSpeed = std::max(std::min(m_TemplateWalkSpeed, floorSpeed), basicSpeed);
	}

	// TODO: would be nice to support terrain-dependent speed again.
	fixed maxSpeed = basicSpeed;

	fixed timeLeft = dt;
	fixed zero = fixed::Zero();

	ICmpObstructionManager::tag_t specificIgnore;
	if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
	{
		CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
		if (cmpTargetObstruction)
			specificIgnore = cmpTargetObstruction->GetObstruction();
	}

	while (timeLeft > zero)
	{
		// If we ran out of path, we have to stop.
		if (shortPath.m_Waypoints.empty() && longPath.m_Waypoints.empty())
			break;

		CFixedVector2D target;
		if (shortPath.m_Waypoints.empty())
			target = CFixedVector2D(longPath.m_Waypoints.back().x, longPath.m_Waypoints.back().z);
		else
			target = CFixedVector2D(shortPath.m_Waypoints.back().x, shortPath.m_Waypoints.back().z);

		CFixedVector2D offset = target - pos;

		if (turnRate > zero && !offset.IsZero())
		{
			fixed angleDiff = angle - atan2_approx(offset.X, offset.Y);
			fixed absoluteAngleDiff = angleDiff.Absolute();
			if (absoluteAngleDiff > entity_angle_t::Pi())
				absoluteAngleDiff = entity_angle_t::Pi() * 2 - absoluteAngleDiff;

			// We only rotate to the instantTurnAngle angle. The rest we rotate during movement.
			if (absoluteAngleDiff > m_InstantTurnAngle)
			{
				// Stop moving when rotating this far.
				speed = zero;

				fixed maxRotation = turnRate.Multiply(timeLeft);

				// Figure out whether rotating will increase or decrease the angle, and how far we need to rotate in that direction.
				int direction = (entity_angle_t::Zero() < angleDiff && angleDiff <= entity_angle_t::Pi()) || angleDiff < -entity_angle_t::Pi() ? -1 : 1;

				// Can't rotate far enough, just rotate in the correct direction.
				if (absoluteAngleDiff - m_InstantTurnAngle > maxRotation)
				{
					angle += maxRotation * direction;
					if (angle * direction > entity_angle_t::Pi())
						angle -= entity_angle_t::Pi() * 2 * direction;
					break;
				}
				// Rotate towards the next waypoint and continue moving.
				angle = atan2_approx(offset.X, offset.Y);
				timeLeft = std::min(maxRotation, maxRotation - absoluteAngleDiff + m_InstantTurnAngle) / turnRate;
			}
			else
			{
				// Modify the speed depending on the angle difference.
				fixed sin, cos;
				sincos_approx(angleDiff, sin, cos);
				speed = speed.Multiply(cos);
				angle = atan2_approx(offset.X, offset.Y);
			}
		}

		// Work out how far we can travel in timeLeft.
		fixed accelTime = std::min(timeLeft, (maxSpeed - speed) / m_Acceleration);
		fixed accelDist = speed.Multiply(accelTime) + accelTime.Square().Multiply(m_Acceleration) / 2;
		fixed maxdist = accelDist + maxSpeed.Multiply(timeLeft - accelTime);

		// If the target is close, we can move there directly.
		fixed offsetLength = offset.Length();
		if (offsetLength <= maxdist)
		{
			if (cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), pos.X, pos.Y, target.X, target.Y, m_Clearance, m_PassClass))
			{
				pos = target;

				// Spend the rest of the time heading towards the next waypoint.
				// Either we still need to accelerate after, or we have reached maxSpeed.
 				// The former is much less likely than the latter: usually we can reach
				// maxSpeed within one waypoint. So the Sqrt is not too bad.
				if (offsetLength <= accelDist)
				{
					fixed requiredTime = (-speed + (speed.Square() + offsetLength.Multiply(m_Acceleration).Multiply(fixed::FromInt(2))).Sqrt()) / m_Acceleration;
					timeLeft -= requiredTime;
					speed += m_Acceleration.Multiply(requiredTime);
				}
				else
				{
					timeLeft -= accelTime + (offsetLength - accelDist) / maxSpeed;
					speed = maxSpeed;
				}

				if (shortPath.m_Waypoints.empty())
					longPath.m_Waypoints.pop_back();
				else
					shortPath.m_Waypoints.pop_back();

				continue;
			}
			else
			{
				// Error - path was obstructed.
				return true;
			}
		}
		else
		{
			// Not close enough, so just move in the right direction.
			offset.Normalize(maxdist);
			target = pos + offset;

			speed = std::min(maxSpeed, speed + m_Acceleration.Multiply(timeLeft));

			if (cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), pos.X, pos.Y, target.X, target.Y, m_Clearance, m_PassClass))
				pos = target;
			else
				return true;

			break;
		}
	}
	return false;
}

void CCmpUnitMotion::UpdateMovementState(entity_pos_t speed, entity_pos_t meanSpeed)
{
	CmpPtr<ICmpVisual> cmpVisual(GetEntityHandle());
	if (cmpVisual)
	{
		if (meanSpeed == fixed::Zero())
			cmpVisual->SelectMovementAnimation("idle", fixed::FromInt(1));
		else
			cmpVisual->SelectMovementAnimation(meanSpeed > (m_WalkSpeed / 2).Multiply(m_RunMultiplier + fixed::FromInt(1)) ? "run" : "walk", meanSpeed);
	}

	m_LastTurnSpeed = meanSpeed;
	m_CurrentSpeed = speed;
}

bool CCmpUnitMotion::HandleObstructedMove(bool moved)
{
	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return false;

	// We failed to move, inform other components as they might handle it.
	// (don't send messages on the first failure, as that would be too noisy).
	// Also don't increment above the initial MoveObstructed message if we actually manage to move a little.
	if (!moved || m_FailedMovements < 2)
	{
		if (!IncrementFailedMovementsAndMaybeNotify() && m_FailedMovements >= 2)
			MoveObstructed();
	}

	PathGoal goal;
	if (!ComputeGoal(goal, m_MoveRequest))
		return false;

	// At this point we have a position in the world since ComputeGoal checked for that.
	CFixedVector2D pos = cmpPosition->GetPosition2D();

	// Assume that we are merely obstructed and the long path is salvageable, so try going around the obstruction.
	// This could be a separate function, but it doesn't really make sense to call it outside of here, and I can't find a name.
	// I use an IIFE to have nice 'return' semantics still.
	if ([&]() -> bool {
		// If the goal is close enough, we should ignore any remaining long waypoint and just
		// short path there directly, as that improves behaviour in general - see D2095).
		if (InShortPathRange(goal, pos))
			return false;

		// On rare occasions, when following a short path, we can end up in a position where
		// the short pathfinder thinks we are inside an obstruction (and can leave)
		// but the CheckMovement logic doesn't. I believe the cause is a small numerical difference
		// in their calculation, but haven't been able to pinpoint it precisely.
		// In those cases, the solution is to back away to prevent the short-pathfinder from being confused.
		// TODO: this should only be done if we're obstructed by a static entity.
		if (!m_ShortPath.m_Waypoints.empty() && m_FailedMovements == BACKUP_HACK_DELAY)
		{
			Waypoint next = m_ShortPath.m_Waypoints.back();
			CFixedVector2D backUp(pos.X - next.x, pos.Y - next.z);
			backUp.Normalize();
			next.x = pos.X + backUp.X;
			next.z = pos.Y + backUp.Y;
			m_ShortPath.m_Waypoints.push_back(next);
			return true;
		}
		// Delete the next waypoint if it's reasonably close,
		// because it might be blocked by units and thus unreachable.
		// NB: this number is tricky. Make it too high, and units start going down dead ends, which looks odd (#5795)
		// Make it too low, and they might get stuck behind other obstructed entities.
		// It also has performance implications because it calls the short-pathfinder.
		fixed skipbeyond = std::max(ShortPathSearchRange() / 3, Pathfinding::NAVCELL_SIZE * 8);
		if (m_LongPath.m_Waypoints.size() > 1 &&
		    (pos - CFixedVector2D(m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z)).CompareLength(skipbeyond) < 0)
		{
			m_LongPath.m_Waypoints.pop_back();
		}
		else if (ShouldAlternatePathfinder())
		{
			// Recompute the whole thing occasionally, in case we got stuck in a dead end from removing long waypoints.
			RequestLongPath(pos, goal);
			return true;
		}

		if (m_LongPath.m_Waypoints.empty())
			return false;

		// Compute a short path in the general vicinity of the next waypoint, to help pathfinding in crowds.
		// The goal here is to manage to move in the general direction of our target, not to be super accurate.
		fixed radius = Clamp(skipbeyond/3, Pathfinding::NAVCELL_SIZE * 4, Pathfinding::NAVCELL_SIZE * 12);
		PathGoal subgoal = { PathGoal::CIRCLE, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z, radius };
		RequestShortPath(pos, subgoal, false);
		return true;
	}()) return true;

	// If we couldn't use a workaround, try recomputing the entire path.
	ComputePathToGoal(pos, goal);

	return true;
}

bool CCmpUnitMotion::TargetHasValidPosition(const MoveRequest& moveRequest) const
{
	if (moveRequest.m_Type != MoveRequest::ENTITY)
		return true;

	CmpPtr<ICmpPosition> cmpPosition(GetSimContext(), moveRequest.m_Entity);
	return cmpPosition && cmpPosition->IsInWorld();
}

bool CCmpUnitMotion::ComputeTargetPosition(CFixedVector2D& out, const MoveRequest& moveRequest) const
{
	if (moveRequest.m_Type == MoveRequest::POINT)
	{
		out = moveRequest.m_Position;
		return true;
	}

	CmpPtr<ICmpPosition> cmpTargetPosition(GetSimContext(), moveRequest.m_Entity);
	if (!cmpTargetPosition || !cmpTargetPosition->IsInWorld())
		return false;

	if (moveRequest.m_Type == MoveRequest::OFFSET)
	{
		// There is an offset, so compute it relative to orientation
		entity_angle_t angle = cmpTargetPosition->GetRotation().Y;
		CFixedVector2D offset = moveRequest.GetOffset().Rotate(angle);
		out = cmpTargetPosition->GetPosition2D() + offset;
	}
	else
	{
		out = cmpTargetPosition->GetPosition2D();
		// Position is only updated after all units have moved & pushed.
		// Therefore, we may need to interpolate the target position, depending on when this call takes place during the turn:
		//  - On "Turn Start", we'll check positions directly without interpolation.
		//  - During movement, we'll call this for direct-pathing & we need to interpolate
		//    (this way, we move where the unit will end up at the end of _this_ turn, making it match on next turn start).
		//  - After movement, we'll call this to request paths & we need to interpolate
		//    (this way, we'll move where the unit ends up in the end of _next_ turn, making it a match in 2 turns).
		// TODO: This does not really aim many turns in advance, with orthogonal trajectories it probably should.
		CmpPtr<ICmpUnitMotion> cmpUnitMotion(GetSimContext(), moveRequest.m_Entity);
		CmpPtr<ICmpUnitMotionManager> cmpUnitMotionManager(GetSystemEntity());
		bool needInterpolation = cmpUnitMotion && cmpUnitMotion->IsMoveRequested() && cmpUnitMotionManager->ComputingMotion();
		if (needInterpolation)
		{
			// Add predicted movement.
			CFixedVector2D tempPos = out + (out - cmpTargetPosition->GetPreviousPosition2D());
			out = tempPos;
		}
	}
	return true;
}

bool CCmpUnitMotion::TryGoingStraightToTarget(const CFixedVector2D& from, bool updatePaths)
{
	// Assume if we have short paths we want to follow them.
	// Exception: offset movement (formations) generally have very short deltas
	// and to look good we need them to walk-straight most of the time.
	if (!IsFormationMember() && !m_ShortPath.m_Waypoints.empty())
		return false;

	CFixedVector2D targetPos;
	if (!ComputeTargetPosition(targetPos))
		return false;

	CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
	if (!cmpPathfinder)
		return false;

	// Move the goal to match the target entity's new position
	PathGoal goal;
	if (!ComputeGoal(goal, m_MoveRequest))
		return false;
	goal.x = targetPos.X;
	goal.z = targetPos.Y;
	// (we ignore changes to the target's rotation, since only buildings are
	// square and buildings don't move)

	// Find the point on the goal shape that we should head towards
	CFixedVector2D goalPos = goal.NearestPointOnGoal(from);

	// Fail if the target is too far away
	if ((goalPos - from).CompareLength(DIRECT_PATH_RANGE) > 0)
		return false;

	// Check if there's any collisions on that route.
	// For entity goals, skip only the specific obstruction tag or with e.g. walls we might ignore too many entities.
	ICmpObstructionManager::tag_t specificIgnore;
	if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
	{
		CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
		if (cmpTargetObstruction)
			specificIgnore = cmpTargetObstruction->GetObstruction();
	}

	// Check movement against units - we want to use the short pathfinder to walk around those if needed.
	if (specificIgnore.valid())
	{
		if (!cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass))
			return false;
	}
	else if (!cmpPathfinder->CheckMovement(GetObstructionFilter(), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass))
		return false;

	if (!updatePaths)
		return true;

	// That route is okay, so update our path
	m_LongPath.m_Waypoints.clear();
	m_ShortPath.m_Waypoints.clear();
	m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y });
	return true;
}

bool CCmpUnitMotion::PathingUpdateNeeded(const CFixedVector2D& from) const
{
	if (m_MoveRequest.m_Type == MoveRequest::NONE)
		return false;

	CFixedVector2D targetPos;
	if (!ComputeTargetPosition(targetPos))
		return false;

	if (m_FollowKnownImperfectPathCountdown > 0 && (!m_LongPath.m_Waypoints.empty() || !m_ShortPath.m_Waypoints.empty()))
		return false;

	if (PossiblyAtDestination())
		return false;

	// Get the obstruction shape and translate it where we estimate the target to be.
	ICmpObstructionManager::ObstructionSquare estimatedTargetShape;
	if (m_MoveRequest.m_Type == MoveRequest::ENTITY)
	{
		CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity);
		if (cmpTargetObstruction)
			cmpTargetObstruction->GetObstructionSquare(estimatedTargetShape);
	}

	estimatedTargetShape.x = targetPos.X;
	estimatedTargetShape.z = targetPos.Y;

	CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
	ICmpObstructionManager::ObstructionSquare shape;
	if (cmpObstruction)
		cmpObstruction->GetObstructionSquare(shape);

	// Translate our own obstruction shape to our last waypoint or our current position, lacking that.
	if (m_LongPath.m_Waypoints.empty() && m_ShortPath.m_Waypoints.empty())
	{
		shape.x = from.X;
		shape.z = from.Y;
	}
	else
	{
		const Waypoint& lastWaypoint = m_LongPath.m_Waypoints.empty() ? m_ShortPath.m_Waypoints.front() : m_LongPath.m_Waypoints.front();
		shape.x = lastWaypoint.x;
		shape.z = lastWaypoint.z;
	}

	CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
	ENSURE(cmpObstructionManager);

	// Increase the ranges with distance, to avoid recomputing every turn against units that are moving and far-away for example.
	entity_pos_t distance = (from - CFixedVector2D(estimatedTargetShape.x, estimatedTargetShape.z)).Length();

	// TODO: it could be worth computing this based on time to collision instead of linear distance.
	entity_pos_t minRange = std::max(m_MoveRequest.m_MinRange - distance / TARGET_UNCERTAINTY_MULTIPLIER, entity_pos_t::Zero());
	entity_pos_t maxRange = m_MoveRequest.m_MaxRange < entity_pos_t::Zero() ? m_MoveRequest.m_MaxRange :
	    m_MoveRequest.m_MaxRange + distance / TARGET_UNCERTAINTY_MULTIPLIER;

	if (cmpObstructionManager->AreShapesInRange(shape, estimatedTargetShape, minRange, maxRange, false))
		return false;

	return true;
}

void CCmpUnitMotion::FaceTowardsPoint(entity_pos_t x, entity_pos_t z)
{
	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return;

	CFixedVector2D pos = cmpPosition->GetPosition2D();
	FaceTowardsPointFromPos(pos, x, z);
}

void CCmpUnitMotion::FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z)
{
	CFixedVector2D target(x, z);
	CFixedVector2D offset = target - pos;
	if (!offset.IsZero())
	{
		entity_angle_t angle = atan2_approx(offset.X, offset.Y);

		CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
		if (!cmpPosition)
			return;
		cmpPosition->TurnTo(angle);
	}
}

// The pathfinder cannot go to "rounded rectangles" goals, which are what happens with square targets and a non-null range.
// Depending on what the best approximation is, we either pretend the target is a circle or a square.
// One needs to be careful that the approximated geometry will be in the range.
bool CCmpUnitMotion::ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t circleRadius) const
{
	// Given a square, plus a target range we should reach, the shape at that distance
	// is a round-cornered square which we can approximate as either a circle or as a square.
	// Previously, we used the shape that minimized the worst-case error.
	// However that is unsage in some situations. So let's be less clever and
	// just check if our range is at least three times bigger than the circleradius
	return (range > circleRadius*3);
}

bool CCmpUnitMotion::ComputeGoal(PathGoal& out, const MoveRequest& moveRequest) const
{
	if (moveRequest.m_Type == MoveRequest::NONE)
		return false;

	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return false;

	CFixedVector2D pos = cmpPosition->GetPosition2D();

	CFixedVector2D targetPosition;
	if (!ComputeTargetPosition(targetPosition, moveRequest))
		return false;

	ICmpObstructionManager::ObstructionSquare targetObstruction;
	if (moveRequest.m_Type == MoveRequest::ENTITY)
	{
		CmpPtr<ICmpObstruction> cmpTargetObstruction(GetSimContext(), moveRequest.m_Entity);
		if (cmpTargetObstruction)
			cmpTargetObstruction->GetObstructionSquare(targetObstruction);
	}
	targetObstruction.x = targetPosition.X;
	targetObstruction.z = targetPosition.Y;

	ICmpObstructionManager::ObstructionSquare obstruction;
	CmpPtr<ICmpObstruction> cmpObstruction(GetEntityHandle());
	if (cmpObstruction)
		cmpObstruction->GetObstructionSquare(obstruction);
	else
	{
		obstruction.x = pos.X;
		obstruction.z = pos.Y;
	}

	CmpPtr<ICmpObstructionManager> cmpObstructionManager(GetSystemEntity());
	ENSURE(cmpObstructionManager);

	out.x = targetObstruction.x;
	out.z = targetObstruction.z;
	out.hw = targetObstruction.hw;
	out.hh = targetObstruction.hh;
	out.u = targetObstruction.u;
	out.v = targetObstruction.v;

	if (moveRequest.m_MinRange > fixed::Zero() || moveRequest.m_MaxRange > fixed::Zero() ||
	     targetObstruction.hw > fixed::Zero())
		out.type = PathGoal::SQUARE;
	else
	{
		out.type = PathGoal::POINT;
		return true;
	}

	entity_pos_t distance = cmpObstructionManager->DistanceBetweenShapes(obstruction, targetObstruction);

	entity_pos_t circleRadius = CFixedVector2D(targetObstruction.hw, targetObstruction.hh).Length();

	// TODO: because we cannot move to rounded rectangles, we have to make conservative approximations.
	// This means we might end up in a situation where cons(max-range) < min range < max range < cons(min-range)
	// When going outside of the min-range or inside the max-range, the unit will still go through the correct range
	// but if it moves fast enough, this might not be picked up by PossiblyAtDestination().
	// Fixing this involves moving to rounded rectangles, or checking more often in PerformMove().
	// In the meantime, one should avoid that 'Speed over a turn' > MaxRange - MinRange, in case where
	// min-range is not 0 and max-range is not infinity.
	if (distance < moveRequest.m_MinRange)
	{
		// Distance checks are nearest edge to nearest edge, so we need to account for our clearance
		// and we must make sure diagonals also fit so multiply by slightly more than sqrt(2)
		entity_pos_t goalDistance = moveRequest.m_MinRange + m_Clearance * 3 / 2;

		if (ShouldTreatTargetAsCircle(moveRequest.m_MinRange, circleRadius))
		{
			// We are safely away from the obstruction itself if we are away from the circumscribing circle
			out.type = PathGoal::INVERTED_CIRCLE;
			out.hw = circleRadius + goalDistance;
		}
		else
		{
			out.type = PathGoal::INVERTED_SQUARE;
			out.hw = targetObstruction.hw + goalDistance;
			out.hh = targetObstruction.hh + goalDistance;
		}
	}
	else if (moveRequest.m_MaxRange >= fixed::Zero() && distance > moveRequest.m_MaxRange)
	{
		if (ShouldTreatTargetAsCircle(moveRequest.m_MaxRange, circleRadius))
		{
			entity_pos_t goalDistance = moveRequest.m_MaxRange;
			// We must go in-range of the inscribed circle, not the circumscribing circle.
			circleRadius = std::min(targetObstruction.hw, targetObstruction.hh);

			out.type = PathGoal::CIRCLE;
			out.hw = circleRadius + goalDistance;
		}
		else
		{
			// The target is large relative to our range, so treat it as a square and
			// get close enough that the diagonals come within range

			entity_pos_t goalDistance = moveRequest.m_MaxRange * 2 / 3; // multiply by slightly less than 1/sqrt(2)

			out.type = PathGoal::SQUARE;
			entity_pos_t delta = std::max(goalDistance, m_Clearance + entity_pos_t::FromInt(4)/16); // ensure it's far enough to not intersect the building itself
			out.hw = targetObstruction.hw + delta;
			out.hh = targetObstruction.hh + delta;
		}
	}
	// Do nothing in particular in case we are already in range.
	return true;
}

void CCmpUnitMotion::ComputePathToGoal(const CFixedVector2D& from, const PathGoal& goal)
{
#if DISABLE_PATHFINDER
	{
		CmpPtr<ICmpPathfinder> cmpPathfinder (GetSimContext(), SYSTEM_ENTITY);
		CFixedVector2D goalPos = m_FinalGoal.NearestPointOnGoal(from);
		m_LongPath.m_Waypoints.clear();
		m_ShortPath.m_Waypoints.clear();
		m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y });
		return;
	}
#endif

	// If the target is close enough, hope that we'll be able to go straight next turn.
	if (!ShouldAlternatePathfinder() && TryGoingStraightToTarget(from, false))
	{
		// NB: since we may fail to move straight next turn, we should edge our bets.
		// Since the 'go straight' logic currently fires only if there's no short path,
		// we'll compute a long path regardless to make sure _that_ stays up to date.
		// (it's also extremely likely to be very fast to compute, so no big deal).
		m_ShortPath.m_Waypoints.clear();
		RequestLongPath(from, goal);
		return;
	}

	// Otherwise we need to compute a path.

	// If it's close then just do a short path, not a long path
	// TODO: If it's close on the opposite side of a river then we really
	// need a long path, so we shouldn't simply check linear distance
	// the check is arbitrary but should be a reasonably small distance.
	// We want to occasionally compute a long path if we're computing short-paths, because the short path domain
	// is bounded and thus it can't around very large static obstacles.
	// Likewise, we want to compile a short-path occasionally when the target is far because we might be stuck
	// on a navcell surrounded by impassable navcells, but the short-pathfinder could move us out of there.
	bool shortPath = InShortPathRange(goal, from);
	if (ShouldAlternatePathfinder())
		shortPath = !shortPath;
	if (shortPath)
	{
		m_LongPath.m_Waypoints.clear();
		// Extend the range so that our first path is probably valid.
		RequestShortPath(from, goal, true);
	}
	else
	{
		m_ShortPath.m_Waypoints.clear();
		RequestLongPath(from, goal);
	}
}

void CCmpUnitMotion::RequestLongPath(const CFixedVector2D& from, const PathGoal& goal)
{
	CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
	if (!cmpPathfinder)
		return;

	// this is by how much our waypoints will be apart at most.
	// this value here seems sensible enough.
	PathGoal improvedGoal = goal;
	improvedGoal.maxdist = SHORT_PATH_MIN_SEARCH_RANGE - entity_pos_t::FromInt(1);

	cmpPathfinder->SetDebugPath(from.X, from.Y, improvedGoal, m_PassClass);

	m_ExpectedPathTicket.m_Type = Ticket::LONG_PATH;
	m_ExpectedPathTicket.m_Ticket = cmpPathfinder->ComputePathAsync(from.X, from.Y, improvedGoal, m_PassClass, GetEntityId());
}

void CCmpUnitMotion::RequestShortPath(const CFixedVector2D &from, const PathGoal& goal, bool extendRange)
{
	CmpPtr<ICmpPathfinder> cmpPathfinder(GetSystemEntity());
	if (!cmpPathfinder)
		return;

	entity_pos_t searchRange = ShortPathSearchRange();
	if (extendRange)
	{
		CFixedVector2D dist(from.X - goal.x, from.Y - goal.z);
		if (dist.CompareLength(searchRange - entity_pos_t::FromInt(1)) >= 0)
		{
			searchRange = dist.Length() + fixed::FromInt(1);
			if (searchRange > SHORT_PATH_MAX_SEARCH_RANGE)
				searchRange = SHORT_PATH_MAX_SEARCH_RANGE;
		}
	}

	m_ExpectedPathTicket.m_Type = Ticket::SHORT_PATH;
	m_ExpectedPathTicket.m_Ticket = cmpPathfinder->ComputeShortPathAsync(from.X, from.Y, m_Clearance, searchRange, goal, m_PassClass, ShouldCollideWithMovingUnits(), GetGroup(), GetEntityId());
}

bool CCmpUnitMotion::MoveTo(MoveRequest request)
{
	PROFILE("MoveTo");

	if (request.m_MinRange == request.m_MaxRange && !request.m_MinRange.IsZero())
		LOGWARNING("MaxRange must be larger than MinRange; See CCmpUnitMotion.cpp for more information");

	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return false;

	PathGoal goal;
	if (!ComputeGoal(goal, request))
		return false;

	m_MoveRequest = request;
	m_FailedMovements = 0;
	m_FollowKnownImperfectPathCountdown = 0;

	ComputePathToGoal(cmpPosition->GetPosition2D(), goal);
	return true;
}

bool CCmpUnitMotion::IsTargetRangeReachable(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange)
{
	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (!cmpPosition || !cmpPosition->IsInWorld())
		return false;

	MoveRequest request(target, minRange, maxRange);
	PathGoal goal;
	if (!ComputeGoal(goal, request))
		return false;

	CmpPtr<ICmpPathfinder> cmpPathfinder(GetSimContext(), SYSTEM_ENTITY);
	CFixedVector2D pos = cmpPosition->GetPosition2D();
	return cmpPathfinder->IsGoalReachable(pos.X, pos.Y, goal, m_PassClass);
}


void CCmpUnitMotion::RenderPath(const WaypointPath& path, std::vector<SOverlayLine>& lines, CColor color)
{
	bool floating = false;
	CmpPtr<ICmpPosition> cmpPosition(GetEntityHandle());
	if (cmpPosition)
		floating = cmpPosition->CanFloat();

	lines.clear();
	std::vector<float> waypointCoords;
	for (size_t i = 0; i < path.m_Waypoints.size(); ++i)
	{
		float x = path.m_Waypoints[i].x.ToFloat();
		float z = path.m_Waypoints[i].z.ToFloat();
		waypointCoords.push_back(x);
		waypointCoords.push_back(z);
		lines.push_back(SOverlayLine());
		lines.back().m_Color = color;
		SimRender::ConstructSquareOnGround(GetSimContext(), x, z, 1.0f, 1.0f, 0.0f, lines.back(), floating);
	}
	float x = cmpPosition->GetPosition2D().X.ToFloat();
	float z = cmpPosition->GetPosition2D().Y.ToFloat();
	waypointCoords.push_back(x);
	waypointCoords.push_back(z);
	lines.push_back(SOverlayLine());
	lines.back().m_Color = color;
	SimRender::ConstructLineOnGround(GetSimContext(), waypointCoords, lines.back(), floating);

}

void CCmpUnitMotion::RenderSubmit(SceneCollector& collector)
{
	if (!m_DebugOverlayEnabled)
		return;

	RenderPath(m_LongPath, m_DebugOverlayLongPathLines, OVERLAY_COLOR_LONG_PATH);
	RenderPath(m_ShortPath, m_DebugOverlayShortPathLines, OVERLAY_COLOR_SHORT_PATH);

	for (size_t i = 0; i < m_DebugOverlayLongPathLines.size(); ++i)
		collector.Submit(&m_DebugOverlayLongPathLines[i]);

	for (size_t i = 0; i < m_DebugOverlayShortPathLines.size(); ++i)
		collector.Submit(&m_DebugOverlayShortPathLines[i]);
}

#endif // INCLUDED_CCMPUNITMOTION