1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
/* Copyright (C) 2020 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "Geometry.h"
namespace Geometry
{
// TODO: all of these things could be optimised quite easily
CFixedVector2D GetHalfBoundingBox(const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
return CFixedVector2D(
u.X.Multiply(halfSize.X).Absolute() + v.X.Multiply(halfSize.Y).Absolute(),
u.Y.Multiply(halfSize.X).Absolute() + v.Y.Multiply(halfSize.Y).Absolute()
);
}
fixed DistanceToSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
/*
* Relative to its own coordinate system, we have a square like:
*
* A : B : C
* : :
* - - ########### - -
* # #
* # I #
* D # 0 # E v
* # # ^
* # # |
* - - ########### - - -->u
* : :
* F : G : H
*
* where 0 is the center, u and v are unit axes,
* and the square is hw*2 by hh*2 units in size.
*
* Points in the BIG regions should check distance to horizontal edges.
* Points in the DIE regions should check distance to vertical edges.
* Points in the ACFH regions should check distance to the corresponding corner.
*
* So we just need to check all of the regions to work out which calculations to apply.
*
*/
// By symmetry (taking absolute values), we work only in the 0-B-C-E quadrant
// du, dv are the location of the point in the square's coordinate system
fixed du = point.Dot(u).Absolute();
fixed dv = point.Dot(v).Absolute();
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (du < hw) // regions B, I, G
{
if (dv < hh) // region I
return countInsideAsZero ? fixed::Zero() : std::min(hw - du, hh - dv);
else
return dv - hh;
}
else if (dv < hh) // regions D, E
{
return du - hw; // vertical edges
}
else // regions A, C, F, H
{
CFixedVector2D distance(du - hw, dv - hh);
return distance.Length();
}
}
// Same as above except it does not use Length
// For explanations refer to DistanceToSquare
fixed DistanceToSquareSquared(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
fixed du = point.Dot(u).Absolute();
fixed dv = point.Dot(v).Absolute();
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (du < hw) // regions B, I, G
{
if (dv < hh) // region I
return countInsideAsZero ? fixed::Zero() : std::min((hw - du).Square(), (hh - dv).Square());
else
return (dv - hh).Square(); // horizontal edges
}
else if (dv < hh) // regions D, E
{
return (du - hw).Square(); // vertical edges
}
else // regions A, C, F, H
{
return (du - hw).Square() + (dv - hh).Square();
}
}
CFixedVector2D NearestPointOnSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
/*
* Relative to its own coordinate system, we have a square like:
*
* A : : C
* : :
* - - #### B #### - -
* #\ /#
* # \ / #
* D --0-- E v
* # / \ # ^
* #/ \# |
* - - #### G #### - - -->u
* : :
* F : : H
*
* where 0 is the center, u and v are unit axes,
* and the square is hw*2 by hh*2 units in size.
*
* Points in the BDEG regions are nearest to the corresponding edge.
* Points in the ACFH regions are nearest to the corresponding corner.
*
* So we just need to check all of the regions to work out which calculations to apply.
*
*/
// du, dv are the location of the point in the square's coordinate system
fixed du = point.Dot(u);
fixed dv = point.Dot(v);
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (-hw < du && du < hw) // regions B, G; or regions D, E inside the square
{
if (-hh < dv && dv < hh && (du.Absolute() - hw).Absolute() < (dv.Absolute() - hh).Absolute()) // regions D, E
{
if (du >= fixed::Zero()) // E
return u.Multiply(hw) + v.Multiply(dv);
else // D
return -u.Multiply(hw) + v.Multiply(dv);
}
else // B, G
{
if (dv >= fixed::Zero()) // B
return v.Multiply(hh) + u.Multiply(du);
else // G
return -v.Multiply(hh) + u.Multiply(du);
}
}
else if (-hh < dv && dv < hh) // regions D, E outside the square
{
if (du >= fixed::Zero()) // E
return u.Multiply(hw) + v.Multiply(dv);
else // D
return -u.Multiply(hw) + v.Multiply(dv);
}
else // regions A, C, F, H
{
CFixedVector2D corner;
if (du < fixed::Zero()) // A, F
corner -= u.Multiply(hw);
else // C, H
corner += u.Multiply(hw);
if (dv < fixed::Zero()) // F, H
corner -= v.Multiply(hh);
else // A, C
corner += v.Multiply(hh);
return corner;
}
}
fixed DistanceSquareToSquare(const CFixedVector2D& relativePos, const CFixedVector2D& u1, const CFixedVector2D& v1, const CFixedVector2D& halfSize1, const CFixedVector2D& u2, const CFixedVector2D& v2, const CFixedVector2D& halfSize2)
{
/*
* The shortest distance between two non colliding squares equals the distance between a corner
* and other square. Thus calculating all 8 those distances and taking the smallest.
* For colliding squares we simply return 0. When one of the points is inside the other square
* we depend on DistanceToSquare's countInsideAsZero. When no point is inside the other square,
* it is enough to check that two adjacent edges of one square does not collide with the other square.
*/
fixed hw1 = halfSize1.X;
fixed hh1 = halfSize1.Y;
fixed hw2 = halfSize2.X;
fixed hh2 = halfSize2.Y;
if (TestRaySquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), relativePos - u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2) ||
TestRaySquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), relativePos + u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2))
return fixed::Zero();
return std::min(std::min(std::min(
DistanceToSquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
DistanceToSquare(relativePos + u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true)),
std::min(
DistanceToSquare(relativePos - u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
DistanceToSquare(relativePos - u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true))),
std::min(std::min(
DistanceToSquare(relativePos + u2.Multiply(hw2) + v2.Multiply(hh2), u1, v1, halfSize1, true),
DistanceToSquare(relativePos + u2.Multiply(hw2) - v2.Multiply(hh2), u1, v1, halfSize1, true)),
std::min(
DistanceToSquare(relativePos - u2.Multiply(hw2) + v2.Multiply(hh2), u1, v1, halfSize1, true),
DistanceToSquare(relativePos - u2.Multiply(hw2) - v2.Multiply(hh2), u1, v1, halfSize1, true))));
}
fixed MaxDistanceToSquare(const CFixedVector2D& point, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize, bool countInsideAsZero)
{
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (point.Dot(u).Absolute() < hw && point.Dot(v).Absolute() < hh && countInsideAsZero)
return fixed::Zero();
/*
* The maximum distance from a point to an edge of a square equals the greatest distance
* from the point to the a corner. Thus calculating all and taking the greatest.
*/
return std::max(std::max(
(point + u.Multiply(hw) + v.Multiply(hh)).Length(),
(point + u.Multiply(hw) - v.Multiply(hh)).Length()),
std::max(
(point - u.Multiply(hw) + v.Multiply(hh)).Length(),
(point - u.Multiply(hw) - v.Multiply(hh)).Length()));
}
fixed MaxDistanceSquareToSquare(const CFixedVector2D& relativePos, const CFixedVector2D& u1, const CFixedVector2D& v1, const CFixedVector2D& halfSize1, const CFixedVector2D& u2, const CFixedVector2D& v2, const CFixedVector2D& halfSize2)
{
/*
* The maximum distance from an edge of a square to the edge of another square
* equals the greatest distance from the any of the 16 corner corner distances.
*/
fixed hw1 = halfSize1.X;
fixed hh1 = halfSize1.Y;
return std::max(std::max(
MaxDistanceToSquare(relativePos + u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
MaxDistanceToSquare(relativePos + u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true)),
std::max(MaxDistanceToSquare(relativePos - u1.Multiply(hw1) + v1.Multiply(hh1), u2, v2, halfSize2, true),
MaxDistanceToSquare(relativePos - u1.Multiply(hw1) - v1.Multiply(hh1), u2, v2, halfSize2, true)));
}
bool TestRaySquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
/*
* We only consider collisions to be when the ray goes from outside to inside the shape (and possibly out again).
* Various cases to consider:
* 'a' inside, 'b' inside -> no collision
* 'a' inside, 'b' outside -> no collision
* 'a' outside, 'b' inside -> collision
* 'a' outside, 'b' outside -> depends; use separating axis theorem:
* if the ray's bounding box is outside the square -> no collision
* if the whole square is on the same side of the ray -> no collision
* otherwise -> collision
* (Points on the edge are considered 'inside'.)
*/
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
fixed au = a.Dot(u);
fixed av = a.Dot(v);
if (-hw <= au && au <= hw && -hh <= av && av <= hh)
return false; // a is inside
fixed bu = b.Dot(u);
fixed bv = b.Dot(v);
if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks?
return true; // a is outside, b is inside
if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh))
return false; // ab is entirely above/below/side the square
CFixedVector2D abp = (b - a).Perpendicular();
fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a);
fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a);
fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a);
if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
return true; // ray intersects the corner
bool sign = (s0 < fixed::Zero());
if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
return true; // ray cuts through the square
return false;
}
// Exactly like TestRaySquare with u=(1,0), v=(0,1)
bool TestRayAASquare(const CFixedVector2D& a, const CFixedVector2D& b, const CFixedVector2D& halfSize)
{
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
if (-hw <= a.X && a.X <= hw && -hh <= a.Y && a.Y <= hh)
return false; // a is inside
if (-hw <= b.X && b.X <= hw && -hh <= b.Y && b.Y <= hh) // TODO: isn't this subsumed by the next checks?
return true; // a is outside, b is inside
if ((a.X < -hw && b.X < -hw) || (a.X > hw && b.X > hw) || (a.Y < -hh && b.Y < -hh) || (a.Y > hh && b.Y > hh))
return false; // ab is entirely above/below/side the square
CFixedVector2D abp = (b - a).Perpendicular();
fixed s0 = abp.Dot(CFixedVector2D(hw, hh) - a);
fixed s1 = abp.Dot(CFixedVector2D(hw, -hh) - a);
fixed s2 = abp.Dot(CFixedVector2D(-hw, -hh) - a);
fixed s3 = abp.Dot(CFixedVector2D(-hw, hh) - a);
if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero())
return true; // ray intersects the corner
bool sign = (s0 < fixed::Zero());
if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign)
return true; // ray cuts through the square
return false;
}
/**
* Separating axis test; returns true if the square defined by u/v/halfSize at the origin
* is not entirely on the clockwise side of a line in direction 'axis' passing through 'a'
*/
static bool SquareSAT(const CFixedVector2D& a, const CFixedVector2D& axis, const CFixedVector2D& u, const CFixedVector2D& v, const CFixedVector2D& halfSize)
{
fixed hw = halfSize.X;
fixed hh = halfSize.Y;
CFixedVector2D p = axis.Perpendicular();
if (p.RelativeOrientation(u.Multiply(hw) + v.Multiply(hh) - a) <= 0)
return true;
if (p.RelativeOrientation(u.Multiply(hw) - v.Multiply(hh) - a) <= 0)
return true;
if (p.RelativeOrientation(-u.Multiply(hw) - v.Multiply(hh) - a) <= 0)
return true;
if (p.RelativeOrientation(-u.Multiply(hw) + v.Multiply(hh) - a) <= 0)
return true;
return false;
}
bool TestSquareSquare(
const CFixedVector2D& c0, const CFixedVector2D& u0, const CFixedVector2D& v0, const CFixedVector2D& halfSize0,
const CFixedVector2D& c1, const CFixedVector2D& u1, const CFixedVector2D& v1, const CFixedVector2D& halfSize1)
{
// TODO: need to test this carefully
CFixedVector2D corner0a = c0 + u0.Multiply(halfSize0.X) + v0.Multiply(halfSize0.Y);
CFixedVector2D corner0b = c0 - u0.Multiply(halfSize0.X) - v0.Multiply(halfSize0.Y);
CFixedVector2D corner1a = c1 + u1.Multiply(halfSize1.X) + v1.Multiply(halfSize1.Y);
CFixedVector2D corner1b = c1 - u1.Multiply(halfSize1.X) - v1.Multiply(halfSize1.Y);
// Do a SAT test for each square vs each edge of the other square
if (!SquareSAT(corner0a - c1, -u0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0a - c1, v0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0b - c1, u0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner0b - c1, -v0, u1, v1, halfSize1))
return false;
if (!SquareSAT(corner1a - c0, -u1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1a - c0, v1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1b - c0, u1, u0, v0, halfSize0))
return false;
if (!SquareSAT(corner1b - c0, -v1, u0, v0, halfSize0))
return false;
return true;
}
int GetPerimeterDistance(int x_max, int y_max, int x, int y)
{
if (x_max <= 0 || y_max <= 0)
return 0;
int quarter = x_max + y_max;
if (x == x_max && y >= 0)
return y;
if (y == y_max)
return quarter - x;
if (x == -x_max)
return 2 * quarter - y;
if (y == -y_max)
return 3 * quarter + x;
if (x == x_max)
return 4 * quarter + y;
return 0;
}
std::pair<int, int> GetPerimeterCoordinates(int x_max, int y_max, int k)
{
if (x_max <= 0 || y_max <= 0)
return std::pair<int, int>(0, 0);
int quarter = x_max + y_max;
k %= 4 * quarter;
if (k < 0)
k += 4 * quarter;
if (k < y_max)
return std::pair<int, int>(x_max, k);
if (k < quarter + x_max)
return std::pair<int, int>(quarter - k, y_max);
if (k < 2 * quarter + y_max)
return std::pair<int, int>(-x_max, 2 * quarter - k);
if (k < 3 * quarter + x_max)
return std::pair<int, int>(k - 3 * quarter, -y_max);
return std::pair<int, int>(x_max, k - 4 * quarter);
}
fixed DistanceToSegment(
const CFixedVector2D& point, const CFixedVector2D& a, const CFixedVector2D& b)
{
// First we need to figure out from which part of the segment we should
// calculate distance.
// We split 2D space in three spaces:
// | |
// 1 | 2 | 3
// A--------------------------------B
// Here we need | Between A and B we need to | Here we need
// distance to A | calculate distance to the line | distance to B
//
const CFixedVector2D dir = b - a;
// We project the point, point A, and point B upon the direction of the
// segment to figure out in which space the point is.
const fixed pointDot = dir.Dot(point);
const fixed aDot = dir.Dot(a);
// The point is lying in space #1.
if (pointDot <= aDot)
return (point - a).Length();
const fixed bDot = dir.Dot(b);
// The point is lying in space #3.
if (pointDot >= bDot)
return (point - b).Length();
// The point is lying in space #2.
CFixedVector2D normal = dir.Perpendicular();
normal.Normalize();
return (normal.Dot(a) - normal.Dot(point)).Absolute();
}
} // namespace Geometry
|