1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/* Copyright (C) 2022 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_PATHFINDING
#define INCLUDED_PATHFINDING
#include "graphics/Terrain.h"
#include "maths/MathUtil.h"
#include "simulation2/system/Entity.h"
#include "PathGoal.h"
class CParamNode;
typedef u16 pass_class_t;
template<typename T>
class Grid;
struct LongPathRequest
{
u32 ticket;
entity_pos_t x0;
entity_pos_t z0;
PathGoal goal;
pass_class_t passClass;
entity_id_t notify;
};
struct ShortPathRequest
{
u32 ticket;
entity_pos_t x0;
entity_pos_t z0;
entity_pos_t clearance;
entity_pos_t range;
PathGoal goal;
pass_class_t passClass;
bool avoidMovingUnits;
entity_id_t group;
entity_id_t notify;
};
struct Waypoint
{
entity_pos_t x, z;
};
/**
* Returned path.
* Waypoints are in *reverse* order (the earliest is at the back of the list)
*/
struct WaypointPath
{
std::vector<Waypoint> m_Waypoints;
};
/**
* Represents the cost of a path consisting of horizontal/vertical and
* diagonal movements over a uniform-cost grid.
* Maximum path length before overflow is about 45K steps.
*/
struct PathCost
{
PathCost() : data(0) { }
/// Construct from a number of horizontal/vertical and diagonal steps
PathCost(u16 hv, u16 d)
: data(hv * 65536 + d * 92682) // 2^16 * sqrt(2) == 92681.9
{
}
/// Construct for horizontal/vertical movement of given number of steps
static PathCost horizvert(u16 n)
{
return PathCost(n, 0);
}
/// Construct for diagonal movement of given number of steps
static PathCost diag(u16 n)
{
return PathCost(0, n);
}
PathCost operator+(const PathCost& a) const
{
PathCost c;
c.data = data + a.data;
return c;
}
PathCost& operator+=(const PathCost& a)
{
data += a.data;
return *this;
}
bool operator<=(const PathCost& b) const { return data <= b.data; }
bool operator< (const PathCost& b) const { return data < b.data; }
bool operator>=(const PathCost& b) const { return data >= b.data; }
bool operator>(const PathCost& b) const { return data > b.data; }
u32 ToInt()
{
return data;
}
private:
u32 data;
};
inline constexpr int PASS_CLASS_BITS = 16;
typedef u16 NavcellData; // 1 bit per passability class (up to PASS_CLASS_BITS)
#define IS_PASSABLE(item, classmask) (((item) & (classmask)) == 0)
#define PASS_CLASS_MASK_FROM_INDEX(id) ((pass_class_t)(1u << id))
#define SPECIAL_PASS_CLASS PASS_CLASS_MASK_FROM_INDEX((PASS_CLASS_BITS-1)) // 16th bit, used for special in-place computations
namespace Pathfinding
{
/**
* The long-range pathfinder operates primarily over a navigation grid (a uniform-cost
* 2D passability grid, with horizontal/vertical (not diagonal) connectivity).
* This is based on the terrain tile passability, plus the rasterized shapes of
* obstructions, all expanded outwards by the radius of the units.
* Since units are much smaller than terrain tiles, the nav grid should be
* higher resolution than the tiles.
* We therefore split each the world into NxN "nav cells" (for some integer N,
* preferably a power of two).
*/
inline constexpr fixed NAVCELL_SIZE = fixed::FromInt(1);
inline constexpr int NAVCELL_SIZE_INT = 1;
inline constexpr int NAVCELL_SIZE_LOG2 = 0;
/**
* The terrain grid is coarser, and it is often convenient to convert from one to the other.
*/
inline constexpr int NAVCELLS_PER_TERRAIN_TILE = TERRAIN_TILE_SIZE / NAVCELL_SIZE_INT;
static_assert(TERRAIN_TILE_SIZE % NAVCELL_SIZE_INT == 0, "Terrain tile size is not a multiple of navcell size");
/**
* To make sure the long-range pathfinder is more strict than the short-range one,
* we need to slightly over-rasterize. So we extend the clearance radius by 1.
*/
inline constexpr entity_pos_t CLEARANCE_EXTENSION_RADIUS = fixed::FromInt(1);
/**
* Compute the navcell indexes on the grid nearest to a given point
* w, h are the grid dimensions, i.e. the number of navcells per side
*/
inline void NearestNavcell(entity_pos_t x, entity_pos_t z, u16& i, u16& j, u16 w, u16 h)
{
// Use NAVCELL_SIZE_INT to save the cost of dividing by a fixed
i = static_cast<u16>(Clamp((x / NAVCELL_SIZE_INT).ToInt_RoundToNegInfinity(), 0, w - 1));
j = static_cast<u16>(Clamp((z / NAVCELL_SIZE_INT).ToInt_RoundToNegInfinity(), 0, h - 1));
}
/**
* Returns the position of the center of the given terrain tile
*/
inline void TerrainTileCenter(u16 i, u16 j, entity_pos_t& x, entity_pos_t& z)
{
static_assert(TERRAIN_TILE_SIZE % 2 == 0);
x = entity_pos_t::FromInt(i*(int)TERRAIN_TILE_SIZE + (int)TERRAIN_TILE_SIZE / 2);
z = entity_pos_t::FromInt(j*(int)TERRAIN_TILE_SIZE + (int)TERRAIN_TILE_SIZE / 2);
}
inline void NavcellCenter(u16 i, u16 j, entity_pos_t& x, entity_pos_t& z)
{
x = entity_pos_t::FromInt(i * 2 + 1).Multiply(NAVCELL_SIZE / 2);
z = entity_pos_t::FromInt(j * 2 + 1).Multiply(NAVCELL_SIZE / 2);
}
/*
* Checks that the line (x0,z0)-(x1,z1) does not intersect any impassable navcells.
*/
bool CheckLineMovement(entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1,
pass_class_t passClass, const Grid<NavcellData>& grid);
}
/*
* For efficient pathfinding we want to try hard to minimise the per-tile search cost,
* so we precompute the tile passability flags for the various different types of unit.
* We also want to minimise memory usage (there can easily be 100K tiles so we don't want
* to store many bytes for each).
*
* To handle passability efficiently, we have a small number of passability classes
* (e.g. "infantry", "ship"). Each unit belongs to a single passability class, and
* uses that for all its pathfinding.
* Passability is determined by water depth, terrain slope, forestness, buildingness.
* We need at least one bit per class per tile to represent passability.
*
* Not all pass classes are used for actual pathfinding. The pathfinder calls
* CCmpObstructionManager's Rasterize() to add shapes onto the passability grid.
* Which shapes are rasterized depend on the value of the m_Obstructions of each passability
* class.
*
* Passabilities not used for unit pathfinding should not use the Clearance attribute, and
* will get a zero clearance value.
*/
class PathfinderPassability
{
public:
PathfinderPassability(pass_class_t mask, const CParamNode& node);
bool IsPassable(fixed waterdepth, fixed steepness, fixed shoredist) const
{
return ((m_MinDepth <= waterdepth && waterdepth <= m_MaxDepth) && (steepness < m_MaxSlope) && (m_MinShore <= shoredist && shoredist <= m_MaxShore));
}
pass_class_t m_Mask;
fixed m_Clearance; // min distance from static obstructions
enum ObstructionHandling
{
NONE,
PATHFINDING,
FOUNDATION
};
ObstructionHandling m_Obstructions;
private:
fixed m_MinDepth;
fixed m_MaxDepth;
fixed m_MaxSlope;
fixed m_MinShore;
fixed m_MaxShore;
};
#endif // INCLUDED_PATHFINDING
|