1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
|
/* Copyright (C) 2012 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "OverlayRenderer.h"
#include <boost/unordered_map.hpp>
#include "graphics/LOSTexture.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "graphics/TextureManager.h"
#include "lib/ogl.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "ps/Game.h"
#include "ps/Profile.h"
#include "renderer/Renderer.h"
#include "renderer/VertexArray.h"
#include "renderer/VertexBuffer.h"
#include "renderer/VertexBufferManager.h"
#include "simulation2/Simulation2.h"
#include "simulation2/components/ICmpWaterManager.h"
#include "simulation2/system/SimContext.h"
/**
* As a general TODO, some of the code here still uses g_VBMan manually.
* For consistency with other parts of the engine, it'd be nice to switch
* over to the cleaner and more readable VertexArray API.
*/
/**
* Key used to group quads into batches for more efficient rendering. Currently groups by the combination
* of the main texture and the texture mask, to minimize texture swapping during rendering.
*/
struct QuadBatchKey
{
QuadBatchKey (const CTexturePtr& texture, const CTexturePtr& textureMask)
: m_Texture(texture), m_TextureMask(textureMask)
{ }
bool operator==(const QuadBatchKey& other) const
{
return (m_Texture == other.m_Texture && m_TextureMask == other.m_TextureMask);
}
CTexturePtr m_Texture;
CTexturePtr m_TextureMask;
};
/**
* Holds information about a single quad rendering batch.
*/
class QuadBatchData : public CRenderData
{
public:
QuadBatchData() : m_IndicesBase(0), m_NumRenderQuads(0) { }
/// Holds the quad overlay structures requested to be rendered in this batch. Must be cleared
/// after each frame.
std::vector<SOverlayQuad*> m_Quads;
/// Start index of this batch into the dedicated quad indices VertexArray (see OverlayInternals).
size_t m_IndicesBase;
/// Amount of quads to actually render in this batch. Potentially (although unlikely to be)
/// different from m_Quads.size() due to restrictions on the total amount of quads that can be
/// rendered. Must be reset after each frame.
size_t m_NumRenderQuads;
};
struct OverlayRendererInternals
{
typedef boost::unordered_map<QuadBatchKey, QuadBatchData> QuadBatchMap;
OverlayRendererInternals();
~OverlayRendererInternals(){ }
std::vector<SOverlayLine*> lines;
std::vector<SOverlayTexturedLine*> texlines;
std::vector<SOverlaySprite*> sprites;
std::vector<SOverlayQuad*> quads;
QuadBatchMap quadBatchMap;
// Dedicated vertex/index buffers for rendering all quads (to within the limits set by
// MAX_QUAD_OVERLAYS).
VertexArray quadVertices;
VertexArray::Attribute quadAttributePos;
VertexArray::Attribute quadAttributeColor;
VertexArray::Attribute quadAttributeUV;
VertexIndexArray quadIndices;
/// Maximum amount of quad overlays we support for rendering. This limit is set to be able to
/// render all quads from a single dedicated VB without having to reallocate it, which is much
/// faster in the typical case of rendering only a handful of quads. When modifying this value,
/// you must take care for the new amount of quads to fit in a single VBO (which is not likely
/// to be a problem).
static const size_t MAX_QUAD_OVERLAYS = 1024;
// Sets of commonly-(re)used shader defines.
CShaderDefines defsOverlayLineNormal;
CShaderDefines defsOverlayLineAlwaysVisible;
CShaderDefines defsQuadOverlay;
/// Small vertical offset of overlays from terrain to prevent visual glitches
static const float OVERLAY_VOFFSET;
/// Performs one-time setup. Called from CRenderer::Open, after graphics capabilities have
/// been detected. Note that no VBOs must be created before this is called, since the shader
/// path and graphics capabilities are not guaranteed to be stable before this point.
void Initialize();
};
const float OverlayRendererInternals::OVERLAY_VOFFSET = 0.2f;
OverlayRendererInternals::OverlayRendererInternals()
: quadVertices(GL_DYNAMIC_DRAW), quadIndices(GL_DYNAMIC_DRAW)
{
quadAttributePos.elems = 3;
quadAttributePos.type = GL_FLOAT;
quadVertices.AddAttribute(&quadAttributePos);
quadAttributeColor.elems = 4;
quadAttributeColor.type = GL_FLOAT;
quadVertices.AddAttribute(&quadAttributeColor);
quadAttributeUV.elems = 2;
quadAttributeUV.type = GL_SHORT; // don't use GL_UNSIGNED_SHORT here, TexCoordPointer won't accept it
quadVertices.AddAttribute(&quadAttributeUV);
// Note that we're reusing the textured overlay line shader for the quad overlay rendering. This
// is because their code is almost identical; the only difference is that for the quad overlays
// we want to use a vertex color stream as opposed to an objectColor uniform. To this end, the
// shader has been set up to switch between the two behaviours based on the USE_OBJECTCOLOR define.
defsOverlayLineNormal.Add("USE_OBJECTCOLOR", "1");
defsOverlayLineAlwaysVisible.Add("USE_OBJECTCOLOR", "1");
defsOverlayLineAlwaysVisible.Add("IGNORE_LOS", "1");
}
void OverlayRendererInternals::Initialize()
{
// Perform any initialization after graphics capabilities have been detected. Notably,
// only at this point can we safely allocate VBOs (in contrast to e.g. in the constructor),
// because their creation depends on the shader path, which is not reliably set before this point.
quadVertices.SetNumVertices(MAX_QUAD_OVERLAYS * 4);
quadVertices.Layout(); // allocate backing store
quadIndices.SetNumVertices(MAX_QUAD_OVERLAYS * 6);
quadIndices.Layout(); // allocate backing store
// Since the quads in the vertex array are independent and always consist of exactly 4 vertices per quad, the
// indices are always the same; we can therefore fill in all the indices once and pretty much forget about
// them. We then also no longer need its backing store, since we never change any indices afterwards.
VertexArrayIterator<u16> index = quadIndices.GetIterator();
for (size_t i = 0; i < MAX_QUAD_OVERLAYS; ++i)
{
*index++ = i*4 + 0;
*index++ = i*4 + 1;
*index++ = i*4 + 2;
*index++ = i*4 + 2;
*index++ = i*4 + 3;
*index++ = i*4 + 0;
}
quadIndices.Upload();
quadIndices.FreeBackingStore();
}
class CTexturedLineRData : public CRenderData
{
public:
CTexturedLineRData(SOverlayTexturedLine* line) : m_Line(line), m_VB(NULL), m_VBIndices(NULL)
{ }
~CTexturedLineRData()
{
if (m_VB)
g_VBMan.Release(m_VB);
if (m_VBIndices)
g_VBMan.Release(m_VBIndices);
}
struct SVertex
{
SVertex(CVector3D pos, float u, float v) : m_Position(pos) { m_UVs[0] = u; m_UVs[1] = v; }
CVector3D m_Position;
GLfloat m_UVs[2];
float _padding[3]; // get a pow2 struct size
};
cassert(sizeof(SVertex) == 32);
void Update();
/**
* Creates a line cap of the specified type @p endCapType at the end of the segment going in direction @p normal, and appends
* the vertices to @p verticesOut in GL_TRIANGLES order.
*
* @param corner1 One of the two butt-end corner points of the line to which the cap should be attached.
* @param corner2 One of the two butt-end corner points of the line to which the cap should be attached.
* @param normal Normal vector indicating the direction of the segment to which the cap should be attached.
* @param endCapType The type of end cap to produce.
* @param verticesOut Output vector of vertices for passing to the renderer.
* @param indicesOut Output vector of vertex indices for passing to the renderer.
*/
void CreateLineCap(const CVector3D& corner1, const CVector3D& corner2, const CVector3D& normal,
SOverlayTexturedLine::LineCapType endCapType, std::vector<SVertex>& verticesOut, std::vector<u16>& indicesOut);
/// Small utility function; grabs the centroid of the positions of two vertices
inline CVector3D Centroid(const SVertex& v1, const SVertex& v2)
{
return (v1.m_Position + v2.m_Position) * 0.5;
}
SOverlayTexturedLine* m_Line;
CVertexBuffer::VBChunk* m_VB;
CVertexBuffer::VBChunk* m_VBIndices;
};
static size_t hash_value(const QuadBatchKey& d)
{
size_t seed = 0;
boost::hash_combine(seed, d.m_Texture);
boost::hash_combine(seed, d.m_TextureMask);
return seed;
}
OverlayRenderer::OverlayRenderer()
{
m = new OverlayRendererInternals();
}
OverlayRenderer::~OverlayRenderer()
{
delete m;
}
void OverlayRenderer::Initialize()
{
m->Initialize();
}
void OverlayRenderer::Submit(SOverlayLine* line)
{
ENSURE(line->m_Coords.size() % 3 == 0);
m->lines.push_back(line);
}
void OverlayRenderer::Submit(SOverlayTexturedLine* line)
{
// Simplify the rest of the code by guaranteeing non-empty lines
if (line->m_Coords.empty())
return;
ENSURE(line->m_Coords.size() % 2 == 0);
m->texlines.push_back(line);
}
void OverlayRenderer::Submit(SOverlaySprite* overlay)
{
m->sprites.push_back(overlay);
}
void OverlayRenderer::Submit(SOverlayQuad* overlay)
{
m->quads.push_back(overlay);
}
void OverlayRenderer::EndFrame()
{
m->lines.clear();
m->texlines.clear();
m->sprites.clear();
m->quads.clear();
// this should leave the capacity unchanged, which is okay since it
// won't be very large or very variable
// Empty the batch rendering data structures, but keep their key mappings around for the next frames
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); it++)
{
QuadBatchData& quadBatchData = (it->second);
quadBatchData.m_Quads.clear();
quadBatchData.m_NumRenderQuads = 0;
quadBatchData.m_IndicesBase = 0;
}
}
void OverlayRenderer::PrepareForRendering()
{
PROFILE3("prepare overlays");
// This is where we should do something like sort the overlays by
// colour/sprite/etc for more efficient rendering
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
if (!line->m_RenderData)
{
line->m_RenderData = shared_ptr<CRenderData>(new CTexturedLineRData(line));
static_cast<CTexturedLineRData*>(line->m_RenderData.get())->Update();
// We assume the overlay line will get replaced by the caller
// if terrain changes, so we don't need to detect that here and
// call Update again. Also we assume the caller won't change
// any of the parameters after first submitting the line.
}
}
// Group quad overlays by their texture/mask combination for efficient rendering
// TODO: consider doing this directly in Submit()
for (size_t i = 0; i < m->quads.size(); ++i)
{
SOverlayQuad* const quad = m->quads[i];
QuadBatchKey textures(quad->m_Texture, quad->m_TextureMask);
QuadBatchData& batchRenderData = m->quadBatchMap[textures]; // will create entry if it doesn't already exist
// add overlay to list of quads
batchRenderData.m_Quads.push_back(quad);
}
const CVector3D vOffset(0, OverlayRendererInternals::OVERLAY_VOFFSET, 0);
// Write quad overlay vertices/indices to VA backing store
VertexArrayIterator<CVector3D> vertexPos = m->quadAttributePos.GetIterator<CVector3D>();
VertexArrayIterator<CVector4D> vertexColor = m->quadAttributeColor.GetIterator<CVector4D>();
VertexArrayIterator<short[2]> vertexUV = m->quadAttributeUV.GetIterator<short[2]>();
size_t indicesIdx = 0;
size_t totalNumQuads = 0;
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it)
{
QuadBatchData& batchRenderData = (it->second);
batchRenderData.m_NumRenderQuads = 0;
if (batchRenderData.m_Quads.empty())
continue;
// Remember the current index into the (entire) indices array as our base offset for this batch
batchRenderData.m_IndicesBase = indicesIdx;
// points to the index where each iteration's vertices will be appended
for (size_t i = 0; i < batchRenderData.m_Quads.size() && totalNumQuads < OverlayRendererInternals::MAX_QUAD_OVERLAYS; i++)
{
const SOverlayQuad* quad = batchRenderData.m_Quads[i];
// TODO: this is kind of ugly, the iterator should use a type that can have quad->m_Color assigned
// to it directly
const CVector4D quadColor(quad->m_Color.r, quad->m_Color.g, quad->m_Color.b, quad->m_Color.a);
*vertexPos++ = quad->m_Corners[0] + vOffset;
*vertexPos++ = quad->m_Corners[1] + vOffset;
*vertexPos++ = quad->m_Corners[2] + vOffset;
*vertexPos++ = quad->m_Corners[3] + vOffset;
(*vertexUV)[0] = 0;
(*vertexUV)[1] = 0;
++vertexUV;
(*vertexUV)[0] = 0;
(*vertexUV)[1] = 1;
++vertexUV;
(*vertexUV)[0] = 1;
(*vertexUV)[1] = 1;
++vertexUV;
(*vertexUV)[0] = 1;
(*vertexUV)[1] = 0;
++vertexUV;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
indicesIdx += 6;
totalNumQuads++;
batchRenderData.m_NumRenderQuads++;
}
}
m->quadVertices.Upload();
// don't free the backing store! we'll overwrite it on the next frame to save a reallocation.
}
void OverlayRenderer::RenderOverlaysBeforeWater()
{
PROFILE3_GPU("overlays (before)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderOverlaysBeforeWater for GLES
#else
pglActiveTextureARB(GL_TEXTURE0);
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
// Ignore z so that we draw behind terrain (but don't disable GL_DEPTH_TEST
// since we still want to write to the z buffer)
glDepthFunc(GL_ALWAYS);
for (size_t i = 0; i < m->lines.size(); ++i)
{
SOverlayLine* line = m->lines[i];
if (line->m_Coords.empty())
continue;
ENSURE(line->m_Coords.size() % 3 == 0);
glColor4fv(line->m_Color.FloatArray());
glLineWidth((float)line->m_Thickness);
glInterleavedArrays(GL_V3F, sizeof(float)*3, &line->m_Coords[0]);
glDrawArrays(GL_LINE_STRIP, 0, (GLsizei)line->m_Coords.size()/3);
}
glDisableClientState(GL_VERTEX_ARRAY);
glLineWidth(1.f);
glDepthFunc(GL_LEQUAL);
glDisable(GL_BLEND);
#endif
}
void OverlayRenderer::RenderOverlaysAfterWater()
{
PROFILE3_GPU("overlays (after)");
RenderTexturedOverlayLines();
RenderQuadOverlays();
}
void OverlayRenderer::RenderTexturedOverlayLines()
{
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderTexturedOverlayLines for GLES
return;
#endif
if (m->texlines.empty())
return;
ogl_WarnIfError();
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
const char* shaderName;
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shaderName = "arb/overlayline";
else
shaderName = "fixed:overlayline";
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
CShaderManager& shaderManager = g_Renderer.GetShaderManager();
CShaderProgramPtr shaderTexLineNormal(shaderManager.LoadProgram(shaderName, m->defsOverlayLineNormal));
CShaderProgramPtr shaderTexLineAlwaysVisible(shaderManager.LoadProgram(shaderName, m->defsOverlayLineAlwaysVisible));
// ----------------------------------------------------------------------------------------
if (shaderTexLineNormal)
{
shaderTexLineNormal->Bind();
shaderTexLineNormal->BindTexture("losTex", los.GetTexture());
shaderTexLineNormal->Uniform("losTransform", los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the non-always-visible overlay lines using the normal shader
RenderTexturedOverlayLines(shaderTexLineNormal, false);
shaderTexLineNormal->Unbind();
}
// ----------------------------------------------------------------------------------------
if (shaderTexLineAlwaysVisible)
{
shaderTexLineAlwaysVisible->Bind();
// TODO: losTex and losTransform are unused in the always visible shader; see if these can be safely omitted
shaderTexLineAlwaysVisible->BindTexture("losTex", los.GetTexture());
shaderTexLineAlwaysVisible->Uniform("losTransform", los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the always-visible overlay lines using the LoS-ignored shader
RenderTexturedOverlayLines(shaderTexLineAlwaysVisible, true);
shaderTexLineAlwaysVisible->Unbind();
}
// ----------------------------------------------------------------------------------------
// TODO: the shaders should probably be responsible for unbinding their textures
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(0, 0);
CVertexBuffer::Unbind();
glDepthMask(1);
glDisable(GL_BLEND);
}
void OverlayRenderer::RenderTexturedOverlayLines(CShaderProgramPtr shaderTexLine, bool alwaysVisible)
{
int streamflags = shaderTexLine->GetStreamFlags();
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
// render only those lines matching the requested alwaysVisible status
if (!line->m_RenderData || line->m_AlwaysVisible != alwaysVisible)
continue;
shaderTexLine->BindTexture("baseTex", line->m_TextureBase->GetHandle());
shaderTexLine->BindTexture("maskTex", line->m_TextureMask->GetHandle());
shaderTexLine->Uniform("objectColor", line->m_Color);
CTexturedLineRData* rdata = static_cast<CTexturedLineRData*>(line->m_RenderData.get());
if (!rdata->m_VB || !rdata->m_VBIndices)
continue; // might have failed to allocate
// -- render main line quad strip ----------------------
GLsizei stride = sizeof(CTexturedLineRData::SVertex);
CTexturedLineRData::SVertex* vertexBase = reinterpret_cast<CTexturedLineRData::SVertex*>(rdata->m_VB->m_Owner->Bind());
if (streamflags & STREAM_POS)
shaderTexLine->VertexPointer(3, GL_FLOAT, stride, &vertexBase->m_Position[0]);
if (streamflags & STREAM_UV0)
shaderTexLine->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, stride, &vertexBase->m_UVs[0]);
if (streamflags & STREAM_UV1)
shaderTexLine->TexCoordPointer(GL_TEXTURE1, 2, GL_FLOAT, stride, &vertexBase->m_UVs[0]);
u8* indexBase = rdata->m_VBIndices->m_Owner->Bind();
shaderTexLine->AssertPointersBound();
glDrawElements(GL_TRIANGLES, rdata->m_VBIndices->m_Count, GL_UNSIGNED_SHORT, indexBase + sizeof(u16)*rdata->m_VBIndices->m_Index);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += rdata->m_VBIndices->m_Count/3;
}
}
void OverlayRenderer::RenderQuadOverlays()
{
if (m->quadBatchMap.empty())
return;
ogl_WarnIfError();
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
const char* shaderName;
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shaderName = "arb/overlayline";
else
shaderName = "fixed:overlayline";
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
CShaderManager& shaderManager = g_Renderer.GetShaderManager();
CShaderProgramPtr shader(shaderManager.LoadProgram(shaderName, m->defsQuadOverlay));
// ----------------------------------------------------------------------------------------
if (shader)
{
shader->Bind();
shader->BindTexture("losTex", los.GetTexture());
shader->Uniform("losTransform", los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// Base offsets (in bytes) of the two backing stores relative to their owner VBO
u8* indexBase = m->quadIndices.Bind();
u8* vertexBase = m->quadVertices.Bind();
GLsizei indexStride = m->quadIndices.GetStride();
GLsizei vertexStride = m->quadVertices.GetStride();
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); it++)
{
QuadBatchData& batchRenderData = it->second;
const size_t batchNumQuads = batchRenderData.m_NumRenderQuads;
// Careful; some drivers don't like drawing calls with 0 stuff to draw.
if (batchNumQuads == 0)
continue;
const QuadBatchKey& maskPair = it->first;
shader->BindTexture("baseTex", maskPair.m_Texture->GetHandle());
shader->BindTexture("maskTex", maskPair.m_TextureMask->GetHandle());
int streamflags = shader->GetStreamFlags();
if (streamflags & STREAM_POS)
shader->VertexPointer(m->quadAttributePos.elems, m->quadAttributePos.type, vertexStride, vertexBase + m->quadAttributePos.offset);
if (streamflags & STREAM_UV0)
shader->TexCoordPointer(GL_TEXTURE0, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset);
if (streamflags & STREAM_UV1)
shader->TexCoordPointer(GL_TEXTURE1, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset);
if (streamflags & STREAM_COLOR)
shader->ColorPointer(m->quadAttributeColor.elems, m->quadAttributeColor.type, vertexStride, vertexBase + m->quadAttributeColor.offset);
shader->AssertPointersBound();
glDrawElements(GL_TRIANGLES, (GLsizei)(batchNumQuads * 6), GL_UNSIGNED_SHORT, indexBase + indexStride * batchRenderData.m_IndicesBase);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += batchNumQuads*2;
}
shader->Unbind();
}
// ----------------------------------------------------------------------------------------
// TODO: the shader should probably be responsible for unbinding its textures
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(0, 0);
CVertexBuffer::Unbind();
glDepthMask(1);
glDisable(GL_BLEND);
}
void OverlayRenderer::RenderForegroundOverlays(const CCamera& viewCamera)
{
PROFILE3_GPU("overlays (fg)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderForegroundOverlays for GLES
#else
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
CVector3D right = -viewCamera.m_Orientation.GetLeft();
CVector3D up = viewCamera.m_Orientation.GetUp();
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
float uvs[8] = { 0,0, 1,0, 1,1, 0,1 };
glTexCoordPointer(2, GL_FLOAT, sizeof(float)*2, &uvs);
for (size_t i = 0; i < m->sprites.size(); ++i)
{
SOverlaySprite* sprite = m->sprites[i];
sprite->m_Texture->Bind();
CVector3D pos[4] = {
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y1,
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y1
};
glVertexPointer(3, GL_FLOAT, sizeof(float)*3, &pos[0].X);
glDrawArrays(GL_QUADS, 0, (GLsizei)4);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += 2;
}
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
#endif
}
void CTexturedLineRData::Update()
{
if (m_VB)
{
g_VBMan.Release(m_VB);
m_VB = NULL;
}
if (m_VBIndices)
{
g_VBMan.Release(m_VBIndices);
m_VBIndices = NULL;
}
if (!m_Line->m_SimContext)
{
debug_warn(L"[OverlayRenderer] No SimContext set for textured overlay line, cannot render (no terrain data)");
return;
}
const CTerrain& terrain = m_Line->m_SimContext->GetTerrain();
CmpPtr<ICmpWaterManager> cmpWaterManager(*m_Line->m_SimContext, SYSTEM_ENTITY);
float v = 0.f;
std::vector<SVertex> vertices;
std::vector<u16> indices;
size_t n = m_Line->m_Coords.size() / 2; // number of line points
bool closed = m_Line->m_Closed;
ENSURE(n >= 2); // minimum needed to avoid errors (also minimum value to make sense, can't draw a line between 1 point)
// In each iteration, p1 is the position of vertex i, p0 is i-1, p2 is i+1.
// To avoid slightly expensive terrain computations we cycle these around and
// recompute p2 at the end of each iteration.
CVector3D p0;
CVector3D p1(m_Line->m_Coords[0], 0, m_Line->m_Coords[1]);
CVector3D p2(m_Line->m_Coords[(1 % n)*2], 0, m_Line->m_Coords[(1 % n)*2+1]);
if (closed)
// grab the ending point so as to close the loop
p0 = CVector3D(m_Line->m_Coords[(n-1)*2], 0, m_Line->m_Coords[(n-1)*2+1]);
else
// we don't want to loop around and use the direction towards the other end of the line, so create an artificial p0 that
// extends the p2 -> p1 direction, and use that point instead
p0 = p1 + (p1 - p2);
bool p1floating = false;
bool p2floating = false;
// Compute terrain heights, clamped to the water height (and remember whether
// each point was floating on water, for normal computation later)
// TODO: if we ever support more than one water level per map, recompute this per point
float w = cmpWaterManager->GetExactWaterLevel(p0.X, p0.Z);
p0.Y = terrain.GetExactGroundLevel(p0.X, p0.Z);
if (p0.Y < w)
p0.Y = w;
p1.Y = terrain.GetExactGroundLevel(p1.X, p1.Z);
if (p1.Y < w)
{
p1.Y = w;
p1floating = true;
}
p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
for (size_t i = 0; i < n; ++i)
{
// For vertex i, compute bisector of lines (i-1)..(i) and (i)..(i+1)
// perpendicular to terrain normal
// Normal is vertical if on water, else computed from terrain
CVector3D norm;
if (p1floating)
norm = CVector3D(0, 1, 0);
else
norm = terrain.CalcExactNormal(p1.X, p1.Z);
CVector3D b = ((p1 - p0).Normalized() + (p2 - p1).Normalized()).Cross(norm);
// Adjust bisector length to match the line thickness, along the line's width
float l = b.Dot((p2 - p1).Normalized().Cross(norm));
if (fabs(l) > 0.000001f) // avoid unlikely divide-by-zero
b *= m_Line->m_Thickness / l;
// Push vertices and indices in GL_TRIANGLES order
//
// NOTE: in order for OpenGL to successfully render these, the winding order needs to be correct. Basically, it means
// that every pair of triangles sharing a side must specify the vertices of that side in the opposite order from the
// other triangle.
// (see http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node16.html for an illustration)
//
// What the code below does is push the indices for a quad composed of two triangles in each iteration. The two triangles
// of each quad are indexed using the winding orders (BR, BL, TR) and (TR, BL, TR) (where BR is bottom-right of this
// iteration's quad, TR top-right etc).
SVertex vertex1(p1 + b + norm*OverlayRendererInternals::OVERLAY_VOFFSET, 0.f, v);
SVertex vertex2(p1 - b + norm*OverlayRendererInternals::OVERLAY_VOFFSET, 1.f, v);
vertices.push_back(vertex1);
vertices.push_back(vertex2);
u16 index1 = vertices.size() - 2; // index of vertex1 in this iteration (TR of this quad)
u16 index2 = vertices.size() - 1; // index of the vertex2 in this iteration (TL of this quad)
if (i == 0)
{
// initial two vertices to continue building triangles from (n must be >= 2 for this to work)
indices.push_back(index1);
indices.push_back(index2);
}
else
{
u16 index1Prev = vertices.size() - 4; // index of the vertex1 in the previous iteration (BR of this quad)
u16 index2Prev = vertices.size() - 3; // index of the vertex2 in the previous iteration (BL of this quad)
ENSURE(index1Prev < vertices.size());
ENSURE(index2Prev < vertices.size());
// Add two corner points from last iteration and join with one of our own corners to create triangle 1
// (don't need to do this if i == 1 because i == 0 are the first two ones, they don't need to be copied)
if (i > 1)
{
indices.push_back(index1Prev);
indices.push_back(index2Prev);
}
indices.push_back(index1); // complete triangle 1
// create triangle 2, specifying the adjacent side's vertices in the opposite order from triangle 1
indices.push_back(index1);
indices.push_back(index2Prev);
indices.push_back(index2);
}
// alternate V coordinate for debugging
v = 1 - v;
// cycle the p's and compute the new p2
p0 = p1;
p1 = p2;
p1floating = p2floating;
// if in closed mode, wrap around the coordinate array for p2 -- otherwise, extend linearly
if (!closed && i == n-2)
// next iteration is the last point of the line, so create an artificial p2 that extends the p0 -> p1 direction
p2 = p1 + (p1 - p0);
else
p2 = CVector3D(m_Line->m_Coords[((i+2) % n)*2], 0, m_Line->m_Coords[((i+2) % n)*2+1]);
p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
else
p2floating = false;
}
if (closed)
{
// close the path
indices.push_back(vertices.size()-2);
indices.push_back(vertices.size()-1);
indices.push_back(0);
indices.push_back(0);
indices.push_back(vertices.size()-1);
indices.push_back(1);
}
else
{
// Create start and end caps. On either end, this is done by taking the centroid between the last and second-to-last pair of
// vertices that was generated along the path (i.e. the vertex1's and vertex2's from above), taking a directional vector
// between them, and drawing the line cap in the plane given by the two butt-end corner points plus said vector.
std::vector<u16> capIndices;
std::vector<SVertex> capVertices;
// create end cap
CreateLineCap(
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[vertices.size()-2].m_Position, // top-right vertex of last quad
vertices[vertices.size()-1].m_Position, // top-left vertex of last quad
// directional vector between centroids of last vertex pair and second-to-last vertex pair
(Centroid(vertices[vertices.size()-2], vertices[vertices.size()-1]) - Centroid(vertices[vertices.size()-4], vertices[vertices.size()-3])).Normalized(),
m_Line->m_EndCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += vertices.size();
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
capIndices.clear();
capVertices.clear();
// create start cap
CreateLineCap(
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[1].m_Position,
vertices[0].m_Position,
// directional vector between centroids of first vertex pair and second vertex pair
(Centroid(vertices[1], vertices[0]) - Centroid(vertices[3], vertices[2])).Normalized(),
m_Line->m_StartCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += vertices.size();
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
}
ENSURE(indices.size() % 3 == 0); // GL_TRIANGLES indices, so must be multiple of 3
m_VB = g_VBMan.Allocate(sizeof(SVertex), vertices.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER);
if (m_VB)
{
// allocation might fail (e.g. due to too many vertices)
m_VB->m_Owner->UpdateChunkVertices(m_VB, &vertices[0]); // copy data into VBO
for (size_t k = 0; k < indices.size(); ++k)
indices[k] += m_VB->m_Index;
m_VBIndices = g_VBMan.Allocate(sizeof(u16), indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER);
if (m_VBIndices)
m_VBIndices->m_Owner->UpdateChunkVertices(m_VBIndices, &indices[0]);
}
}
void CTexturedLineRData::CreateLineCap(const CVector3D& corner1, const CVector3D& corner2, const CVector3D& lineDirectionNormal,
SOverlayTexturedLine::LineCapType endCapType, std::vector<SVertex>& verticesOut,
std::vector<u16>& indicesOut)
{
if (endCapType == SOverlayTexturedLine::LINECAP_FLAT)
return; // no action needed, this is the default
// When not in closed mode, we've created artificial points for the start- and endpoints that extend the line in the
// direction of the first and the last segment, respectively. Thus, we know both the start and endpoints have perpendicular
// butt endings, i.e. the end corner vertices on either side of the line extend perpendicularly from the segment direction.
// That is to say, when viewed from the top, we will have something like
// .
// this: and not like this: /|
// ----+ / |
// | / .
// | /
// ----+ /
//
int roundCapPoints = 8; // amount of points to sample along the semicircle for rounded caps (including corner points)
float radius = m_Line->m_Thickness;
CVector3D centerPoint = (corner1 + corner2) * 0.5f;
SVertex centerVertex(centerPoint, 0.5f, 0.5f);
u16 indexOffset = verticesOut.size(); // index offset in verticesOut from where we start adding our vertices
switch (endCapType)
{
case SOverlayTexturedLine::LINECAP_SHARP:
{
roundCapPoints = 3; // creates only one point directly ahead
radius *= 1.5f; // make it a bit sharper (note that we don't use the radius for the butt-end corner points so it should be ok)
centerVertex.m_UVs[0] = 0.480f; // slight visual correction to make the texture match up better at the corner points
}
// fall-through
case SOverlayTexturedLine::LINECAP_ROUND:
{
// Draw a rounded line cap in the 3D plane of the line specified by the two corner points and the normal vector of the
// line's direction. The terrain normal at the centroid between the two corner points is perpendicular to this plane.
// The way this works is by taking a vector from the corner points' centroid to one of the corner points (which is then
// of radius length), and rotate it around the terrain normal vector in that centroid. This will rotate the vector in
// the line's plane, producing the desired rounded cap.
// To please OpenGL's winding order, this angle needs to be negated depending on whether we start rotating from
// the (center -> corner1) or (center -> corner2) vector. For the (center -> corner2) vector, we apparently need to use
// the negated angle.
float stepAngle = -(float)(M_PI/(roundCapPoints-1));
// Push the vertices in triangle fan order (easy to generate GL_TRIANGLES indices for afterwards)
// Note that we're manually adding the corner vertices instead of having them be generated by the rotating vector.
// This is because we want to support an overly large radius to make the sharp line ending look sharper.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, 0.f, 0.f));
// Get the base vector that we will incrementally rotate in the cap plane to produce the radial sample points.
// Normally corner2 - centerPoint would suffice for this since it is of radius length, but we want to support custom
// radii to support tuning the 'sharpness' of sharp end caps (see above)
CVector3D rotationBaseVector = (corner2 - centerPoint).Normalized() * radius;
// Calculate the normal vector of the plane in which we're going to be drawing the line cap. This is the vector that
// is perpendicular to both baseVector and the 'lineDirectionNormal' vector indicating the direction of the line.
// Note that we shouldn't use terrain->CalcExactNormal() here because if the line is being rendered on top of water,
// then CalcExactNormal will return the normal vector of the terrain that's underwater (which can be quite funky).
CVector3D capPlaneNormal = lineDirectionNormal.Cross(rotationBaseVector).Normalized();
for (int i = 1; i < roundCapPoints - 1; ++i)
{
// Rotate the centerPoint -> corner vector by i*stepAngle radians around the cap plane normal at the center point.
CQuaternion quatRotation;
quatRotation.FromAxisAngle(capPlaneNormal, i * stepAngle);
CVector3D worldPos3D = centerPoint + quatRotation.Rotate(rotationBaseVector);
// Let v range from 0 to 1 as we move along the semi-circle, keep u fixed at 0 (i.e. curve the left vertical edge
// of the texture around the edge of the semicircle)
float u = 0.f;
float v = clamp((i/(float)(roundCapPoints-1)), 0.f, 1.f); // pos, u, v
verticesOut.push_back(SVertex(worldPos3D, u, v));
}
// connect back to the other butt-end corner point to complete the semicircle
verticesOut.push_back(SVertex(corner1, 0.f, 1.f));
// now push indices in GL_TRIANGLES order; vertices[indexOffset] is the center vertex, vertices[indexOffset + 1] is the
// first corner point, then a bunch of radial samples, and then at the end we have the other corner point again. So:
for (int i=1; i < roundCapPoints; ++i)
{
indicesOut.push_back(indexOffset); // center vertex
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
case SOverlayTexturedLine::LINECAP_SQUARE:
{
// Extend the (corner1 -> corner2) vector along the direction normal and draw a square line ending consisting of
// three triangles (sort of like a triangle fan)
// NOTE: The order in which the vertices are pushed out determines the visibility, as they
// are rendered only one-sided; the wrong order of vertices will make the cap visible only from the bottom.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, 0.f, 0.f));
verticesOut.push_back(SVertex(corner2 + (lineDirectionNormal * (m_Line->m_Thickness)), 0.f, 0.33333f)); // extend butt corner point 2 along the normal vector
verticesOut.push_back(SVertex(corner1 + (lineDirectionNormal * (m_Line->m_Thickness)), 0.f, 0.66666f)); // extend butt corner point 1 along the normal vector
verticesOut.push_back(SVertex(corner1, 0.f, 1.0f)); // push butt corner point 1
for (int i=1; i < 4; ++i)
{
indicesOut.push_back(indexOffset); // center point
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
default:
break;
}
}
|