1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
|
/* Copyright (C) 2012 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "simulation2/system/Component.h"
#include "ICmpObstructionManager.h"
#include "simulation2/MessageTypes.h"
#include "simulation2/helpers/Geometry.h"
#include "simulation2/helpers/Render.h"
#include "simulation2/helpers/Spatial.h"
#include "simulation2/serialization/SerializeTemplates.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "maths/MathUtil.h"
#include "ps/Overlay.h"
#include "ps/Profile.h"
#include "renderer/Scene.h"
#include "ps/CLogger.h"
// Externally, tags are opaque non-zero positive integers.
// Internally, they are tagged (by shape) indexes into shape lists.
// idx must be non-zero.
#define TAG_IS_VALID(tag) ((tag).valid())
#define TAG_IS_UNIT(tag) (((tag).n & 1) == 0)
#define TAG_IS_STATIC(tag) (((tag).n & 1) == 1)
#define UNIT_INDEX_TO_TAG(idx) tag_t(((idx) << 1) | 0)
#define STATIC_INDEX_TO_TAG(idx) tag_t(((idx) << 1) | 1)
#define TAG_TO_INDEX(tag) ((tag).n >> 1)
/**
* Internal representation of axis-aligned sometimes-square sometimes-circle shapes for moving units
*/
struct UnitShape
{
entity_id_t entity;
entity_pos_t x, z;
entity_pos_t r; // radius of circle, or half width of square
ICmpObstructionManager::flags_t flags;
entity_id_t group; // control group (typically the owner entity, or a formation controller entity) (units ignore collisions with others in the same group)
};
/**
* Internal representation of arbitrary-rotation static square shapes for buildings
*/
struct StaticShape
{
entity_id_t entity;
entity_pos_t x, z; // world-space coordinates
CFixedVector2D u, v; // orthogonal unit vectors - axes of local coordinate space
entity_pos_t hw, hh; // half width/height in local coordinate space
ICmpObstructionManager::flags_t flags;
entity_id_t group;
entity_id_t group2;
};
/**
* Serialization helper template for UnitShape
*/
struct SerializeUnitShape
{
template<typename S>
void operator()(S& serialize, const char* UNUSED(name), UnitShape& value)
{
serialize.NumberU32_Unbounded("entity", value.entity);
serialize.NumberFixed_Unbounded("x", value.x);
serialize.NumberFixed_Unbounded("z", value.z);
serialize.NumberFixed_Unbounded("r", value.r);
serialize.NumberU8_Unbounded("flags", value.flags);
serialize.NumberU32_Unbounded("group", value.group);
}
};
/**
* Serialization helper template for StaticShape
*/
struct SerializeStaticShape
{
template<typename S>
void operator()(S& serialize, const char* UNUSED(name), StaticShape& value)
{
serialize.NumberU32_Unbounded("entity", value.entity);
serialize.NumberFixed_Unbounded("x", value.x);
serialize.NumberFixed_Unbounded("z", value.z);
serialize.NumberFixed_Unbounded("u.x", value.u.X);
serialize.NumberFixed_Unbounded("u.y", value.u.Y);
serialize.NumberFixed_Unbounded("v.x", value.v.X);
serialize.NumberFixed_Unbounded("v.y", value.v.Y);
serialize.NumberFixed_Unbounded("hw", value.hw);
serialize.NumberFixed_Unbounded("hh", value.hh);
serialize.NumberU8_Unbounded("flags", value.flags);
serialize.NumberU32_Unbounded("group", value.group);
serialize.NumberU32_Unbounded("group2", value.group2);
}
};
class CCmpObstructionManager : public ICmpObstructionManager
{
public:
static void ClassInit(CComponentManager& componentManager)
{
componentManager.SubscribeToMessageType(MT_RenderSubmit); // for debug overlays
}
DEFAULT_COMPONENT_ALLOCATOR(ObstructionManager)
bool m_DebugOverlayEnabled;
bool m_DebugOverlayDirty;
std::vector<SOverlayLine> m_DebugOverlayLines;
SpatialSubdivision<u32> m_UnitSubdivision;
SpatialSubdivision<u32> m_StaticSubdivision;
// TODO: using std::map is a bit inefficient; is there a better way to store these?
std::map<u32, UnitShape> m_UnitShapes;
std::map<u32, StaticShape> m_StaticShapes;
u32 m_UnitShapeNext; // next allocated id
u32 m_StaticShapeNext;
bool m_PassabilityCircular;
entity_pos_t m_WorldX0;
entity_pos_t m_WorldZ0;
entity_pos_t m_WorldX1;
entity_pos_t m_WorldZ1;
static std::string GetSchema()
{
return "<a:component type='system'/><empty/>";
}
virtual void Init(const CParamNode& UNUSED(paramNode))
{
m_DebugOverlayEnabled = false;
m_DebugOverlayDirty = true;
m_UnitShapeNext = 1;
m_StaticShapeNext = 1;
m_DirtyID = 1; // init to 1 so default-initialised grids are considered dirty
m_PassabilityCircular = false;
m_WorldX0 = m_WorldZ0 = m_WorldX1 = m_WorldZ1 = entity_pos_t::Zero();
// Initialise with bogus values (these will get replaced when
// SetBounds is called)
ResetSubdivisions(entity_pos_t::FromInt(1), entity_pos_t::FromInt(1));
}
virtual void Deinit()
{
}
template<typename S>
void SerializeCommon(S& serialize)
{
SerializeSpatialSubdivision<SerializeU32_Unbounded>()(serialize, "unit subdiv", m_UnitSubdivision);
SerializeSpatialSubdivision<SerializeU32_Unbounded>()(serialize, "static subdiv", m_StaticSubdivision);
SerializeMap<SerializeU32_Unbounded, SerializeUnitShape>()(serialize, "unit shapes", m_UnitShapes);
SerializeMap<SerializeU32_Unbounded, SerializeStaticShape>()(serialize, "static shapes", m_StaticShapes);
serialize.NumberU32_Unbounded("unit shape next", m_UnitShapeNext);
serialize.NumberU32_Unbounded("static shape next", m_StaticShapeNext);
serialize.Bool("circular", m_PassabilityCircular);
serialize.NumberFixed_Unbounded("world x0", m_WorldX0);
serialize.NumberFixed_Unbounded("world z0", m_WorldZ0);
serialize.NumberFixed_Unbounded("world x1", m_WorldX1);
serialize.NumberFixed_Unbounded("world z1", m_WorldZ1);
}
virtual void Serialize(ISerializer& serialize)
{
// TODO: this could perhaps be optimised by not storing all the obstructions,
// and instead regenerating them from the other entities on Deserialize
SerializeCommon(serialize);
}
virtual void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize)
{
Init(paramNode);
SerializeCommon(deserialize);
}
virtual void HandleMessage(const CMessage& msg, bool UNUSED(global))
{
switch (msg.GetType())
{
case MT_RenderSubmit:
{
const CMessageRenderSubmit& msgData = static_cast<const CMessageRenderSubmit&> (msg);
RenderSubmit(msgData.collector);
break;
}
}
}
virtual void SetBounds(entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1)
{
m_WorldX0 = x0;
m_WorldZ0 = z0;
m_WorldX1 = x1;
m_WorldZ1 = z1;
MakeDirtyAll();
// Subdivision system bounds:
ENSURE(x0.IsZero() && z0.IsZero()); // don't bother implementing non-zero offsets yet
ResetSubdivisions(x1, z1);
}
void ResetSubdivisions(entity_pos_t x1, entity_pos_t z1)
{
// Use 8x8 tile subdivisions
// (TODO: find the optimal number instead of blindly guessing)
m_UnitSubdivision.Reset(x1, z1, entity_pos_t::FromInt(8*TERRAIN_TILE_SIZE));
m_StaticSubdivision.Reset(x1, z1, entity_pos_t::FromInt(8*TERRAIN_TILE_SIZE));
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
CFixedVector2D center(it->second.x, it->second.z);
CFixedVector2D halfSize(it->second.r, it->second.r);
m_UnitSubdivision.Add(it->first, center - halfSize, center + halfSize);
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
CFixedVector2D center(it->second.x, it->second.z);
CFixedVector2D bbHalfSize = Geometry::GetHalfBoundingBox(it->second.u, it->second.v, CFixedVector2D(it->second.hw, it->second.hh));
m_StaticSubdivision.Add(it->first, center - bbHalfSize, center + bbHalfSize);
}
}
virtual tag_t AddUnitShape(entity_id_t ent, entity_pos_t x, entity_pos_t z, entity_pos_t r, flags_t flags, entity_id_t group)
{
UnitShape shape = { ent, x, z, r, flags, group };
u32 id = m_UnitShapeNext++;
m_UnitShapes[id] = shape;
MakeDirtyUnit(flags);
m_UnitSubdivision.Add(id, CFixedVector2D(x - r, z - r), CFixedVector2D(x + r, z + r));
return UNIT_INDEX_TO_TAG(id);
}
virtual tag_t AddStaticShape(entity_id_t ent, entity_pos_t x, entity_pos_t z, entity_angle_t a, entity_pos_t w, entity_pos_t h, flags_t flags, entity_id_t group, entity_id_t group2 /* = INVALID_ENTITY */)
{
fixed s, c;
sincos_approx(a, s, c);
CFixedVector2D u(c, -s);
CFixedVector2D v(s, c);
StaticShape shape = { ent, x, z, u, v, w/2, h/2, flags, group, group2 };
u32 id = m_StaticShapeNext++;
m_StaticShapes[id] = shape;
MakeDirtyStatic(flags);
CFixedVector2D center(x, z);
CFixedVector2D bbHalfSize = Geometry::GetHalfBoundingBox(u, v, CFixedVector2D(w/2, h/2));
m_StaticSubdivision.Add(id, center - bbHalfSize, center + bbHalfSize);
return STATIC_INDEX_TO_TAG(id);
}
virtual ObstructionSquare GetUnitShapeObstruction(entity_pos_t x, entity_pos_t z, entity_pos_t r)
{
CFixedVector2D u(entity_pos_t::FromInt(1), entity_pos_t::Zero());
CFixedVector2D v(entity_pos_t::Zero(), entity_pos_t::FromInt(1));
ObstructionSquare o = { x, z, u, v, r, r };
return o;
}
virtual ObstructionSquare GetStaticShapeObstruction(entity_pos_t x, entity_pos_t z, entity_angle_t a, entity_pos_t w, entity_pos_t h)
{
fixed s, c;
sincos_approx(a, s, c);
CFixedVector2D u(c, -s);
CFixedVector2D v(s, c);
ObstructionSquare o = { x, z, u, v, w/2, h/2 };
return o;
}
virtual void MoveShape(tag_t tag, entity_pos_t x, entity_pos_t z, entity_angle_t a)
{
ENSURE(TAG_IS_VALID(tag));
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
m_UnitSubdivision.Move(TAG_TO_INDEX(tag),
CFixedVector2D(shape.x - shape.r, shape.z - shape.r),
CFixedVector2D(shape.x + shape.r, shape.z + shape.r),
CFixedVector2D(x - shape.r, z - shape.r),
CFixedVector2D(x + shape.r, z + shape.r));
shape.x = x;
shape.z = z;
MakeDirtyUnit(shape.flags);
}
else
{
fixed s, c;
sincos_approx(a, s, c);
CFixedVector2D u(c, -s);
CFixedVector2D v(s, c);
StaticShape& shape = m_StaticShapes[TAG_TO_INDEX(tag)];
CFixedVector2D fromBbHalfSize = Geometry::GetHalfBoundingBox(shape.u, shape.v, CFixedVector2D(shape.hw, shape.hh));
CFixedVector2D toBbHalfSize = Geometry::GetHalfBoundingBox(u, v, CFixedVector2D(shape.hw, shape.hh));
m_StaticSubdivision.Move(TAG_TO_INDEX(tag),
CFixedVector2D(shape.x, shape.z) - fromBbHalfSize,
CFixedVector2D(shape.x, shape.z) + fromBbHalfSize,
CFixedVector2D(x, z) - toBbHalfSize,
CFixedVector2D(x, z) + toBbHalfSize);
shape.x = x;
shape.z = z;
shape.u = u;
shape.v = v;
MakeDirtyStatic(shape.flags);
}
}
virtual void SetUnitMovingFlag(tag_t tag, bool moving)
{
ENSURE(TAG_IS_VALID(tag) && TAG_IS_UNIT(tag));
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
if (moving)
shape.flags |= FLAG_MOVING;
else
shape.flags &= (flags_t)~FLAG_MOVING;
MakeDirtyDebug();
}
}
virtual void SetUnitControlGroup(tag_t tag, entity_id_t group)
{
ENSURE(TAG_IS_VALID(tag) && TAG_IS_UNIT(tag));
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
shape.group = group;
}
}
virtual void SetStaticControlGroup(tag_t tag, entity_id_t group, entity_id_t group2)
{
ENSURE(TAG_IS_VALID(tag) && TAG_IS_STATIC(tag));
if (TAG_IS_STATIC(tag))
{
StaticShape& shape = m_StaticShapes[TAG_TO_INDEX(tag)];
shape.group = group;
shape.group2 = group2;
}
}
virtual void RemoveShape(tag_t tag)
{
ENSURE(TAG_IS_VALID(tag));
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
m_UnitSubdivision.Remove(TAG_TO_INDEX(tag),
CFixedVector2D(shape.x - shape.r, shape.z - shape.r),
CFixedVector2D(shape.x + shape.r, shape.z + shape.r));
MakeDirtyUnit(shape.flags);
m_UnitShapes.erase(TAG_TO_INDEX(tag));
}
else
{
StaticShape& shape = m_StaticShapes[TAG_TO_INDEX(tag)];
CFixedVector2D center(shape.x, shape.z);
CFixedVector2D bbHalfSize = Geometry::GetHalfBoundingBox(shape.u, shape.v, CFixedVector2D(shape.hw, shape.hh));
m_StaticSubdivision.Remove(TAG_TO_INDEX(tag), center - bbHalfSize, center + bbHalfSize);
MakeDirtyStatic(shape.flags);
m_StaticShapes.erase(TAG_TO_INDEX(tag));
}
}
virtual ObstructionSquare GetObstruction(tag_t tag)
{
ENSURE(TAG_IS_VALID(tag));
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
CFixedVector2D u(entity_pos_t::FromInt(1), entity_pos_t::Zero());
CFixedVector2D v(entity_pos_t::Zero(), entity_pos_t::FromInt(1));
ObstructionSquare o = { shape.x, shape.z, u, v, shape.r, shape.r };
return o;
}
else
{
StaticShape& shape = m_StaticShapes[TAG_TO_INDEX(tag)];
ObstructionSquare o = { shape.x, shape.z, shape.u, shape.v, shape.hw, shape.hh };
return o;
}
}
virtual bool TestLine(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r);
virtual bool TestStaticShape(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h, std::vector<entity_id_t>* out);
virtual bool TestUnitShape(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r, std::vector<entity_id_t>* out);
virtual bool Rasterise(Grid<u8>& grid);
virtual void GetObstructionsInRange(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, std::vector<ObstructionSquare>& squares);
virtual bool FindMostImportantObstruction(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r, ObstructionSquare& square);
virtual void SetPassabilityCircular(bool enabled)
{
m_PassabilityCircular = enabled;
MakeDirtyAll();
}
virtual void SetDebugOverlay(bool enabled)
{
m_DebugOverlayEnabled = enabled;
m_DebugOverlayDirty = true;
if (!enabled)
m_DebugOverlayLines.clear();
}
void RenderSubmit(SceneCollector& collector);
private:
// To support lazy updates of grid rasterisations of obstruction data,
// we maintain a DirtyID here and increment it whenever obstructions change;
// if a grid has a lower DirtyID then it needs to be updated.
size_t m_DirtyID;
/**
* Mark all previous Rasterise()d grids as dirty, and the debug display.
* Call this when the world bounds have changed.
*/
void MakeDirtyAll()
{
++m_DirtyID;
m_DebugOverlayDirty = true;
}
/**
* Mark the debug display as dirty.
* Call this when nothing has changed except a unit's 'moving' flag.
*/
void MakeDirtyDebug()
{
m_DebugOverlayDirty = true;
}
/**
* Mark all previous Rasterise()d grids as dirty, if they depend on this shape.
* Call this when a static shape has changed.
*/
void MakeDirtyStatic(flags_t flags)
{
if (flags & (FLAG_BLOCK_PATHFINDING|FLAG_BLOCK_FOUNDATION))
++m_DirtyID;
m_DebugOverlayDirty = true;
}
/**
* Mark all previous Rasterise()d grids as dirty, if they depend on this shape.
* Call this when a unit shape has changed.
*/
void MakeDirtyUnit(flags_t flags)
{
if (flags & (FLAG_BLOCK_PATHFINDING|FLAG_BLOCK_FOUNDATION))
++m_DirtyID;
m_DebugOverlayDirty = true;
}
/**
* Test whether a Rasterise()d grid is dirty and needs updating
*/
template<typename T>
bool IsDirty(const Grid<T>& grid)
{
return grid.m_DirtyID < m_DirtyID;
}
/**
* Return whether the given point is within the world bounds by at least r
*/
bool IsInWorld(entity_pos_t x, entity_pos_t z, entity_pos_t r)
{
return (m_WorldX0+r <= x && x <= m_WorldX1-r && m_WorldZ0+r <= z && z <= m_WorldZ1-r);
}
/**
* Return whether the given point is within the world bounds
*/
bool IsInWorld(CFixedVector2D p)
{
return (m_WorldX0 <= p.X && p.X <= m_WorldX1 && m_WorldZ0 <= p.Y && p.Y <= m_WorldZ1);
}
};
REGISTER_COMPONENT_TYPE(ObstructionManager)
bool CCmpObstructionManager::TestLine(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r)
{
PROFILE("TestLine");
// Check that both end points are within the world (which means the whole line must be)
if (!IsInWorld(x0, z0, r) || !IsInWorld(x1, z1, r))
return true;
CFixedVector2D posMin (std::min(x0, x1) - r, std::min(z0, z1) - r);
CFixedVector2D posMax (std::max(x0, x1) + r, std::max(z0, z1) + r);
std::vector<u32> unitShapes = m_UnitSubdivision.GetInRange(posMin, posMax);
for (size_t i = 0; i < unitShapes.size(); ++i)
{
std::map<u32, UnitShape>::iterator it = m_UnitShapes.find(unitShapes[i]);
ENSURE(it != m_UnitShapes.end());
if (!filter.TestShape(UNIT_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, INVALID_ENTITY))
continue;
CFixedVector2D center(it->second.x, it->second.z);
CFixedVector2D halfSize(it->second.r + r, it->second.r + r);
if (Geometry::TestRayAASquare(CFixedVector2D(x0, z0) - center, CFixedVector2D(x1, z1) - center, halfSize))
return true;
}
std::vector<u32> staticShapes = m_StaticSubdivision.GetInRange(posMin, posMax);
for (size_t i = 0; i < staticShapes.size(); ++i)
{
std::map<u32, StaticShape>::iterator it = m_StaticShapes.find(staticShapes[i]);
ENSURE(it != m_StaticShapes.end());
if (!filter.TestShape(STATIC_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, it->second.group2))
continue;
CFixedVector2D center(it->second.x, it->second.z);
CFixedVector2D halfSize(it->second.hw + r, it->second.hh + r);
if (Geometry::TestRaySquare(CFixedVector2D(x0, z0) - center, CFixedVector2D(x1, z1) - center, it->second.u, it->second.v, halfSize))
return true;
}
return false;
}
bool CCmpObstructionManager::TestStaticShape(const IObstructionTestFilter& filter,
entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h,
std::vector<entity_id_t>* out)
{
PROFILE("TestStaticShape");
// TODO: should use the subdivision stuff here, if performance is non-negligible
if (out)
out->clear();
fixed s, c;
sincos_approx(a, s, c);
CFixedVector2D u(c, -s);
CFixedVector2D v(s, c);
CFixedVector2D center(x, z);
CFixedVector2D halfSize(w/2, h/2);
// Check that all corners are within the world (which means the whole shape must be)
if (!IsInWorld(center + u.Multiply(halfSize.X) + v.Multiply(halfSize.Y)) ||
!IsInWorld(center + u.Multiply(halfSize.X) - v.Multiply(halfSize.Y)) ||
!IsInWorld(center - u.Multiply(halfSize.X) + v.Multiply(halfSize.Y)) ||
!IsInWorld(center - u.Multiply(halfSize.X) - v.Multiply(halfSize.Y)))
{
if (out)
out->push_back(INVALID_ENTITY); // no entity ID, so just push an arbitrary marker
else
return true;
}
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
if (!filter.TestShape(UNIT_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, INVALID_ENTITY))
continue;
CFixedVector2D center1(it->second.x, it->second.z);
if (Geometry::PointIsInSquare(center1 - center, u, v, CFixedVector2D(halfSize.X + it->second.r, halfSize.Y + it->second.r)))
{
if (out)
out->push_back(it->second.entity);
else
return true;
}
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
if (!filter.TestShape(STATIC_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, it->second.group2))
continue;
CFixedVector2D center1(it->second.x, it->second.z);
CFixedVector2D halfSize1(it->second.hw, it->second.hh);
if (Geometry::TestSquareSquare(center, u, v, halfSize, center1, it->second.u, it->second.v, halfSize1))
{
if (out)
out->push_back(it->second.entity);
else
return true;
}
}
if (out)
return !out->empty(); // collided if the list isn't empty
else
return false; // didn't collide, if we got this far
}
bool CCmpObstructionManager::TestUnitShape(const IObstructionTestFilter& filter,
entity_pos_t x, entity_pos_t z, entity_pos_t r,
std::vector<entity_id_t>* out)
{
PROFILE("TestUnitShape");
// TODO: should use the subdivision stuff here, if performance is non-negligible
// Check that the shape is within the world
if (!IsInWorld(x, z, r))
{
if (out)
out->push_back(INVALID_ENTITY); // no entity ID, so just push an arbitrary marker
else
return true;
}
CFixedVector2D center(x, z);
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
if (!filter.TestShape(UNIT_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, INVALID_ENTITY))
continue;
entity_pos_t r1 = it->second.r;
if (!(it->second.x + r1 < x - r || it->second.x - r1 > x + r || it->second.z + r1 < z - r || it->second.z - r1 > z + r))
{
if (out)
out->push_back(it->second.entity);
else
return true;
}
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
if (!filter.TestShape(STATIC_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, it->second.group2))
continue;
CFixedVector2D center1(it->second.x, it->second.z);
if (Geometry::PointIsInSquare(center1 - center, it->second.u, it->second.v, CFixedVector2D(it->second.hw + r, it->second.hh + r)))
{
if (out)
out->push_back(it->second.entity);
else
return true;
}
}
if (out)
return !out->empty(); // collided if the list isn't empty
else
return false; // didn't collide, if we got this far
}
/**
* Compute the tile indexes on the grid nearest to a given point
*/
static void NearestTile(entity_pos_t x, entity_pos_t z, u16& i, u16& j, u16 w, u16 h)
{
i = (u16)clamp((x / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), 0, w-1);
j = (u16)clamp((z / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), 0, h-1);
}
/**
* Returns the position of the center of the given tile
*/
static void TileCenter(u16 i, u16 j, entity_pos_t& x, entity_pos_t& z)
{
x = entity_pos_t::FromInt(i*(int)TERRAIN_TILE_SIZE + (int)TERRAIN_TILE_SIZE/2);
z = entity_pos_t::FromInt(j*(int)TERRAIN_TILE_SIZE + (int)TERRAIN_TILE_SIZE/2);
}
bool CCmpObstructionManager::Rasterise(Grid<u8>& grid)
{
if (!IsDirty(grid))
return false;
PROFILE("Rasterise");
grid.m_DirtyID = m_DirtyID;
// TODO: this is all hopelessly inefficient
// What we should perhaps do is have some kind of quadtree storing Shapes so it's
// quick to invalidate and update small numbers of tiles
grid.reset();
// For tile-based pathfinding:
// Since we only count tiles whose centers are inside the square,
// we maybe want to expand the square a bit so we're less likely to think there's
// free space between buildings when there isn't. But this is just a random guess
// and needs to be tweaked until everything works nicely.
//entity_pos_t expandPathfinding = entity_pos_t::FromInt(TERRAIN_TILE_SIZE / 2);
// Actually that's bad because units get stuck when the A* pathfinder thinks they're
// blocked on all sides, so it's better to underestimate
entity_pos_t expandPathfinding = entity_pos_t::FromInt(0);
// For AI building foundation planning, we want to definitely block all
// potentially-obstructed tiles (so we don't blindly build on top of an obstruction),
// so we need to expand by at least 1/sqrt(2) of a tile
entity_pos_t expandFoundation = (entity_pos_t::FromInt(TERRAIN_TILE_SIZE) * 3) / 4;
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
CFixedVector2D center(it->second.x, it->second.z);
if (it->second.flags & FLAG_BLOCK_PATHFINDING)
{
CFixedVector2D halfSize(it->second.hw + expandPathfinding, it->second.hh + expandPathfinding);
CFixedVector2D halfBound = Geometry::GetHalfBoundingBox(it->second.u, it->second.v, halfSize);
u16 i0, j0, i1, j1;
NearestTile(center.X - halfBound.X, center.Y - halfBound.Y, i0, j0, grid.m_W, grid.m_H);
NearestTile(center.X + halfBound.X, center.Y + halfBound.Y, i1, j1, grid.m_W, grid.m_H);
for (u16 j = j0; j <= j1; ++j)
{
for (u16 i = i0; i <= i1; ++i)
{
entity_pos_t x, z;
TileCenter(i, j, x, z);
if (Geometry::PointIsInSquare(CFixedVector2D(x, z) - center, it->second.u, it->second.v, halfSize))
grid.set(i, j, grid.get(i, j) | TILE_OBSTRUCTED_PATHFINDING);
}
}
}
if (it->second.flags & FLAG_BLOCK_FOUNDATION)
{
CFixedVector2D halfSize(it->second.hw + expandFoundation, it->second.hh + expandFoundation);
CFixedVector2D halfBound = Geometry::GetHalfBoundingBox(it->second.u, it->second.v, halfSize);
u16 i0, j0, i1, j1;
NearestTile(center.X - halfBound.X, center.Y - halfBound.Y, i0, j0, grid.m_W, grid.m_H);
NearestTile(center.X + halfBound.X, center.Y + halfBound.Y, i1, j1, grid.m_W, grid.m_H);
for (u16 j = j0; j <= j1; ++j)
{
for (u16 i = i0; i <= i1; ++i)
{
entity_pos_t x, z;
TileCenter(i, j, x, z);
if (Geometry::PointIsInSquare(CFixedVector2D(x, z) - center, it->second.u, it->second.v, halfSize))
grid.set(i, j, grid.get(i, j) | TILE_OBSTRUCTED_FOUNDATION);
}
}
}
}
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
CFixedVector2D center(it->second.x, it->second.z);
if (it->second.flags & FLAG_BLOCK_PATHFINDING)
{
entity_pos_t r = it->second.r + expandPathfinding;
u16 i0, j0, i1, j1;
NearestTile(center.X - r, center.Y - r, i0, j0, grid.m_W, grid.m_H);
NearestTile(center.X + r, center.Y + r, i1, j1, grid.m_W, grid.m_H);
for (u16 j = j0; j <= j1; ++j)
for (u16 i = i0; i <= i1; ++i)
grid.set(i, j, grid.get(i, j) | TILE_OBSTRUCTED_PATHFINDING);
}
if (it->second.flags & FLAG_BLOCK_FOUNDATION)
{
entity_pos_t r = it->second.r + expandFoundation;
u16 i0, j0, i1, j1;
NearestTile(center.X - r, center.Y - r, i0, j0, grid.m_W, grid.m_H);
NearestTile(center.X + r, center.Y + r, i1, j1, grid.m_W, grid.m_H);
for (u16 j = j0; j <= j1; ++j)
for (u16 i = i0; i <= i1; ++i)
grid.set(i, j, grid.get(i, j) | TILE_OBSTRUCTED_FOUNDATION);
}
}
// Any tiles outside or very near the edge of the map are impassable
// WARNING: CCmpRangeManager::LosIsOffWorld needs to be kept in sync with this
const u16 edgeSize = 3; // number of tiles around the edge that will be off-world
u8 edgeFlags = TILE_OBSTRUCTED_PATHFINDING | TILE_OBSTRUCTED_FOUNDATION | TILE_OUTOFBOUNDS;
if (m_PassabilityCircular)
{
for (u16 j = 0; j < grid.m_H; ++j)
{
for (u16 i = 0; i < grid.m_W; ++i)
{
// Based on CCmpRangeManager::LosIsOffWorld
// but tweaked since it's tile-based instead.
// (We double all the values so we can handle half-tile coordinates.)
// This needs to be slightly tighter than the LOS circle,
// else units might get themselves lost in the SoD around the edge.
ssize_t dist2 = (i*2 + 1 - grid.m_W)*(i*2 + 1 - grid.m_W)
+ (j*2 + 1 - grid.m_H)*(j*2 + 1 - grid.m_H);
if (dist2 >= (grid.m_W - 2*edgeSize) * (grid.m_H - 2*edgeSize))
grid.set(i, j, edgeFlags);
}
}
}
else
{
u16 i0, j0, i1, j1;
NearestTile(m_WorldX0, m_WorldZ0, i0, j0, grid.m_W, grid.m_H);
NearestTile(m_WorldX1, m_WorldZ1, i1, j1, grid.m_W, grid.m_H);
for (u16 j = 0; j < grid.m_H; ++j)
for (u16 i = 0; i < i0+edgeSize; ++i)
grid.set(i, j, edgeFlags);
for (u16 j = 0; j < grid.m_H; ++j)
for (u16 i = (u16)(i1-edgeSize+1); i < grid.m_W; ++i)
grid.set(i, j, edgeFlags);
for (u16 j = 0; j < j0+edgeSize; ++j)
for (u16 i = (u16)(i0+edgeSize); i < i1-edgeSize+1; ++i)
grid.set(i, j, edgeFlags);
for (u16 j = (u16)(j1-edgeSize+1); j < grid.m_H; ++j)
for (u16 i = (u16)(i0+edgeSize); i < i1-edgeSize+1; ++i)
grid.set(i, j, edgeFlags);
}
return true;
}
void CCmpObstructionManager::GetObstructionsInRange(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, std::vector<ObstructionSquare>& squares)
{
PROFILE("GetObstructionsInRange");
ENSURE(x0 <= x1 && z0 <= z1);
std::vector<u32> unitShapes = m_UnitSubdivision.GetInRange(CFixedVector2D(x0, z0), CFixedVector2D(x1, z1));
for (size_t i = 0; i < unitShapes.size(); ++i)
{
std::map<u32, UnitShape>::iterator it = m_UnitShapes.find(unitShapes[i]);
ENSURE(it != m_UnitShapes.end());
if (!filter.TestShape(UNIT_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, INVALID_ENTITY))
continue;
entity_pos_t r = it->second.r;
// Skip this object if it's completely outside the requested range
if (it->second.x + r < x0 || it->second.x - r > x1 || it->second.z + r < z0 || it->second.z - r > z1)
continue;
CFixedVector2D u(entity_pos_t::FromInt(1), entity_pos_t::Zero());
CFixedVector2D v(entity_pos_t::Zero(), entity_pos_t::FromInt(1));
ObstructionSquare s = { it->second.x, it->second.z, u, v, r, r };
squares.push_back(s);
}
std::vector<u32> staticShapes = m_StaticSubdivision.GetInRange(CFixedVector2D(x0, z0), CFixedVector2D(x1, z1));
for (size_t i = 0; i < staticShapes.size(); ++i)
{
std::map<u32, StaticShape>::iterator it = m_StaticShapes.find(staticShapes[i]);
ENSURE(it != m_StaticShapes.end());
if (!filter.TestShape(STATIC_INDEX_TO_TAG(it->first), it->second.flags, it->second.group, it->second.group2))
continue;
entity_pos_t r = it->second.hw + it->second.hh; // overestimate the max dist of an edge from the center
// Skip this object if its overestimated bounding box is completely outside the requested range
if (it->second.x + r < x0 || it->second.x - r > x1 || it->second.z + r < z0 || it->second.z - r > z1)
continue;
// TODO: maybe we should use Geometry::GetHalfBoundingBox to be more precise?
ObstructionSquare s = { it->second.x, it->second.z, it->second.u, it->second.v, it->second.hw, it->second.hh };
squares.push_back(s);
}
}
bool CCmpObstructionManager::FindMostImportantObstruction(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r, ObstructionSquare& square)
{
std::vector<ObstructionSquare> squares;
CFixedVector2D center(x, z);
// First look for obstructions that are covering the exact target point
GetObstructionsInRange(filter, x, z, x, z, squares);
// Building squares are more important but returned last, so check backwards
for (std::vector<ObstructionSquare>::reverse_iterator it = squares.rbegin(); it != squares.rend(); ++it)
{
CFixedVector2D halfSize(it->hw, it->hh);
if (Geometry::PointIsInSquare(CFixedVector2D(it->x, it->z) - center, it->u, it->v, halfSize))
{
square = *it;
return true;
}
}
// Then look for obstructions that cover the target point when expanded by r
// (i.e. if the target is not inside an object but closer than we can get to it)
// TODO: actually do that
// (This might matter when you tell a unit to walk too close to the edge of a building)
return false;
}
void CCmpObstructionManager::RenderSubmit(SceneCollector& collector)
{
if (!m_DebugOverlayEnabled)
return;
CColor defaultColour(0, 0, 1, 1);
CColor movingColour(1, 0, 1, 1);
CColor boundsColour(1, 1, 0, 1);
// If the shapes have changed, then regenerate all the overlays
if (m_DebugOverlayDirty)
{
m_DebugOverlayLines.clear();
m_DebugOverlayLines.push_back(SOverlayLine());
m_DebugOverlayLines.back().m_Color = boundsColour;
SimRender::ConstructSquareOnGround(GetSimContext(),
(m_WorldX0+m_WorldX1).ToFloat()/2.f, (m_WorldZ0+m_WorldZ1).ToFloat()/2.f,
(m_WorldX1-m_WorldX0).ToFloat(), (m_WorldZ1-m_WorldZ0).ToFloat(),
0, m_DebugOverlayLines.back(), true);
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
m_DebugOverlayLines.push_back(SOverlayLine());
m_DebugOverlayLines.back().m_Color = ((it->second.flags & FLAG_MOVING) ? movingColour : defaultColour);
SimRender::ConstructSquareOnGround(GetSimContext(), it->second.x.ToFloat(), it->second.z.ToFloat(), it->second.r.ToFloat()*2, it->second.r.ToFloat()*2, 0, m_DebugOverlayLines.back(), true);
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
m_DebugOverlayLines.push_back(SOverlayLine());
m_DebugOverlayLines.back().m_Color = defaultColour;
float a = atan2f(it->second.v.X.ToFloat(), it->second.v.Y.ToFloat());
SimRender::ConstructSquareOnGround(GetSimContext(), it->second.x.ToFloat(), it->second.z.ToFloat(), it->second.hw.ToFloat()*2, it->second.hh.ToFloat()*2, a, m_DebugOverlayLines.back(), true);
}
m_DebugOverlayDirty = false;
}
for (size_t i = 0; i < m_DebugOverlayLines.size(); ++i)
collector.Submit(&m_DebugOverlayLines[i]);
}
|