1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
/** BEGIN COPYRIGHT BLOCK
* Copyright (C) 2017 Red Hat, Inc.
* All rights reserved.
*
* License: GPL (version 3 or any later version).
* See LICENSE for details.
* END COPYRIGHT BLOCK **/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "back-ldbm.h"
/*
* In filterindex, rather than calling idl_union multiple times over
* this idl_set provides better apis to do efficent set manipulations
* for idl results.
*
* previously or results were calculated as:
* |(a)(b)(c)(d)
*
* t1 = union(a, b)
* t2 = union(t1, c)
* t3 = union(t2, d)
* As you can see, this results in n-1 union operations. Depending on
* the size of the IDL, this could signifigantly affect performance.
* It actually let to a situation where re-arranging a query would be
* faster.
*
* This idl_set code allows us to perform a k-way intersection and union.
* this means given some arbitrary number of IDLists (k), we intersect
* or union all k of them at the same time, rather than generating
* intermediates.
*
* k-way union
* -----------
*
* First, if we have allids, return.
* Imagine we have these sets:
*
* (1,2,3,4) (1,5,6) (1), ()
*
* We start with a pointer at the head of each:
*
* (1,2,3,4) (1,5,6) (1), ()
* ^ ^ ^ ^
*
* if the idl is empty, we prune it:
*
* (1,2,3,4) (1,5,6) (1)
* ^ ^ ^
*
* Now we check the min id for all sets. In this case the
* sets agree it's 1, so we add 1 to the result set.
*
* now we move the pointers along and prune the empty set
*
* (1,2,3,4) (1,5,6)
* ^ ^
*
* Now the next min is 2 - when we examine the second list
* because 5 > 2, we ignore this for now. Finally we then
* insert 2. We advance the pointer.
*
* (1,2,3,4) (1,5,6)
* ^ ^
* We continue this until we exhaust the first list, or the
* second.
*
* k-way intersection
* ------------------
*
* k-way intersection intersects multiple idls at the same time.
* it works by continually iterating over our lists to build a
* quorum, where all idls agree on the current minimal element.
*
* given:
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
*
* we start our pointers at the start as in k-way union
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=0, q=0
*
* since min=0, we set this to the min of the first list. Because
* the first list "agrees" that 1 is the min, we set quorum to 1.
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=1, q=1
*
* Now we move to the next list. It also has 1 as the min, so we
* increase the quorum.
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=1, q=2
*
* When we advance to the third list we see 3 is the min. So we reset
* min to 3, and q to 1 (since only this list thinks 3 is min so far)
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=3, q=1
*
* We now go back to the first list. Since 1 < min, we advance our
* pointer til either we exceed min or equal it. In this case we
* equal it and add to quorum.
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=3, q=2
*
* When we get to the next list, we repeat this. We advance to 5.
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=5, q=1
*
* Next when we get to list 3 we have 5, and finall list 1 we have 5
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=5, q=2
*
* (1,2,3,4,5,6) (1,2,5,6) (3,5,6)
* ^ ^ ^
* | min=5, q=3
*
* We finally have quorum! Now we insert 5 to the result_list, and
* advance all our idl by 1.
*
*
*/
IDListSet *
idl_set_create()
{
IDListSet *idl_set = (IDListSet *)slapi_ch_calloc(1, sizeof(IDListSet));
/* all other fields are 0 thanks to calloc */
return idl_set;
}
static void
idl_set_free_idls(IDListSet *idl_set)
{
/* Free idlists */
IDList *idl = idl_set->head;
IDList *next_idl = NULL;
while (idl != NULL) {
next_idl = idl->next;
idl_free(&idl);
idl = next_idl;
}
/* Free complements if any */
idl = idl_set->complement_head;
while (idl != NULL) {
next_idl = idl->next;
idl_free(&idl);
idl = next_idl;
}
}
void
idl_set_destroy(IDListSet *idl_set)
{
slapi_ch_free((void **)&(idl_set));
}
void
idl_set_insert_idl(IDListSet *idl_set, IDList *idl)
{
PR_ASSERT(idl);
/*
* prune incoming allids - for union, we just return
* allids, for intersection, if we only have
* allids we return, else we just ignore it.
*/
if (idl_is_allids(idl)) {
idl_set->allids = 1;
idl_free(&idl);
return;
}
/*
* Track the current min set to make intersect alloc small
*/
if (idl_set->minimum == NULL || idl->b_nids < idl_set->minimum->b_nids) {
idl_set->minimum = idl;
}
/*
* Track this for max possible union size of these sets.
*/
idl_set->total_size += idl->b_nids;
idl->next = idl_set->head;
idl_set->head = idl;
idl_set->count += 1;
return;
}
/*
* The difference between this and insert is that complement implies
* a future intersection, and that we plan to use a "not" query.
*
* As a result, the order of operations is to:
* * intersect all sets
* * apply complements.
*/
void
idl_set_insert_complement_idl(IDListSet *idl_set, IDList *idl)
{
PR_ASSERT(idl);
/*
* If we complement to ALLIDS, the result is empty set.
* so we can put empty set into the main list. This will cause
* -- no change to union (but this should never be called during OR / union)
* -- shortcut of the AND to trigger immediately
*/
idl->next = idl_set->complement_head;
idl_set->complement_head = idl;
}
int64_t
idl_set_union_shortcut(IDListSet *idl_set)
{
/* Are we able to shortcut the union process? */
/* This generally indicates the presence of allids */
return idl_set->allids;
}
int64_t
idl_set_intersection_shortcut(IDListSet *idl_set)
{
/* If we have a 0 length idl, we can never create an intersection. */
if (idl_set->minimum != NULL && idl_set->minimum->b_nids <= FILTER_TEST_THRESHOLD) {
return 1;
}
return 0;
}
IDList *
idl_set_union(IDListSet *idl_set, backend *be)
{
/*
* Check allids first, because allids = 1, may not
* have set count > 0.
*/
if (idl_set->allids != 0) {
idl_set_free_idls(idl_set);
return idl_allids(be);
} else if (idl_set->count == 0) {
return idl_alloc(0);
} else if (idl_set->count == 1) {
return idl_set->head;
} else if (idl_set->count == 2) {
IDList *result_list = idl_union(be, idl_set->head, idl_set->head->next);
idl_free(&(idl_set->head->next));
idl_free(&(idl_set->head));
return result_list;
}
/*
* Allocate a new set based on the size of our sets.
*/
IDList *result_list = idl_alloc(idl_set->total_size);
IDList *idl = NULL;
IDList *idl_del = NULL;
IDList *prev_idl = NULL;
NIDS last_min = 0;
NIDS next_min = 0;
/*
* Now we iterate over our sets - if the current itr is
* cur_min and ! in the new set, add it. While we do this
* we are finding the next_min to repeat.
*
* we continue until we exhaust every set we have.
*
* check for idl_set->head->next NULL?
*/
while (idl_set->head != NULL) {
prev_idl = NULL;
idl = idl_set->head;
/* now find the next smallest */
while (idl) {
/*
* Did our head value get inserted last round?
*/
if (idl->b_ids[idl->itr] == last_min && last_min != 0) {
/*
* Our value was previously inserted - advance itr.
*/
idl->itr += 1;
}
/*
* Nothing left to search in this idl
* itr should never be >, but lets be safe.
*/
if (idl->itr >= idl->b_nids) {
if (prev_idl) {
prev_idl->next = idl->next;
} else {
/*
* This is our base case: when we strike the last
* idl, and prev is null, and next is null, we are done!
*/
PR_ASSERT(idl == idl_set->head);
idl_set->head = idl->next;
}
idl_del = idl;
idl = idl_del->next;
idl_free(&idl_del);
/* No need to touch prev_idl. */
} else {
/*
* Now check our value and see if it's this iterations
* smallest candidate.
*/
if (idl->b_ids[idl->itr] < next_min || next_min == 0) {
next_min = idl->b_ids[idl->itr];
}
/* Go to the next idl. */
prev_idl = idl;
idl = idl->next;
}
}
/* Insert the current smallest value we have */
/* next_min can be 0 because we freed all idls remaining */
if (next_min > 0) {
idl_append(result_list, next_min);
}
last_min = next_min;
next_min = 0;
}
return result_list;
}
IDList *
idl_set_intersect(IDListSet *idl_set, backend *be)
{
IDList *result_list = NULL;
if (idl_set->allids) {
/* if any component was allids we have to apply the filtertest */
slapi_be_set_flag(be, SLAPI_BE_FLAG_DONT_BYPASS_FILTERTEST);
}
if (idl_set->allids != 0 && idl_set->count == 0) {
/*
* We only have allids, so must be allids.
*/
result_list = idl_allids(be);
} else if (idl_set->count == 0) {
/*
* No allids, but we do have ... nothing?
*/
result_list = idl_alloc(0);
} else if (idl_set->count == 1) {
/*
* If allids, when we intersect head, we get head, so just skip that.
*/
result_list = idl_set->head;
} else if (idl_set->minimum->b_nids <= FILTER_TEST_THRESHOLD) {
result_list = idl_set->minimum;
slapi_be_set_flag(be, SLAPI_BE_FLAG_DONT_BYPASS_FILTERTEST);
/* Free the other IDLs which are not the minimum. */
IDList *next = NULL;
IDList *idl = idl_set->head;
while (idl != NULL) {
next = idl->next;
if (idl != idl_set->minimum) {
idl_free(&idl);
}
idl = next;
}
} else if (idl_set->count == 2) {
/*
* If we have two items only, just intersect them.
*/
result_list = idl_intersection(be, idl_set->head, idl_set->head->next);
idl_free(&(idl_set->head->next));
idl_free(&(idl_set->head));
} else {
/*
* Must have at least 2 idls or more, so do a k-way intersection.
* result_list is allocated to size of min, because intersection can not
* exceed the size of the smallest set we have.
*
* we don't care if we have allids here, because we'll ignore it anyway.
*/
result_list = idl_alloc(idl_set->minimum->b_nids);
IDList *idl = NULL;
/* The previous value we inserted. */
NIDS last_min = 0;
/* The next minimum we have found */
NIDS next_min = 0;
uint64_t finished = 0;
uint64_t quorum = 0;
while (idl_set->head != NULL) {
idl = idl_set->head;
/* now find the next smallest */
while (idl && finished == 0) {
/*
* Did our head value get inserted last round?
*/
if (idl->b_ids[idl->itr] == last_min && last_min != 0) {
/*
* Our value was previously inserted - advance itr.
*/
idl->itr += 1;
}
/*
* Nothing left to search in this idl
* itr should never be >, but lets be safe.
*/
if (idl->itr >= idl->b_nids) {
/*
* This is our base case: when we have emptied *one*
* idl, intersections of the remaining values can never be
* valid.
*/
finished = 1;
/*
* ensure we don't insert, we're done.
*/
quorum = 0;
} else {
/*
* Still data in IDLs
*/
if (next_min == 0) {
/* Must be head: so put our value as next_min */
next_min = idl->b_ids[idl->itr];
} else if (next_min < idl->b_ids[idl->itr]) {
/*
* Must be a diff id. mark it as skip, nothing can be
* inserted this iteration.
*/
quorum = 1;
/*
* Because this is our minimum value of this IDL, set the next_min
* to it.
*/
next_min = idl->b_ids[idl->itr];
} else if (next_min > idl->b_ids[idl->itr]) {
/*
* We must be behind the next_min. We need to advance til we are
* eq or greater.
*
* I tried optimising this to lookahead and jump by blocks of 256
* or 64, and it made it slower. Probably not worth it :(
*/
while (idl->itr < idl->b_nids && next_min > idl->b_ids[idl->itr]) {
idl->itr += 1;
}
/*
* Right, made it here. Are we out of ids?
*/
if (idl->itr >= idl->b_nids) {
finished = 1;
quorum = 0;
} else if (next_min < idl->b_ids[idl->itr]) {
/* okay, we don't have next_min. Update and reset */
next_min = idl->b_ids[idl->itr];
quorum = 1;
} else {
/* Great! we match! */
quorum += 1;
}
} else {
/*
* Must be in agreeance - this head is the next_min
*/
quorum += 1;
}
/*
* check if all the idls agree this is the smallest value
* so we insert it!
*/
if (next_min > 0 && quorum == idl_set->count) {
idl_append(result_list, next_min);
last_min = next_min;
next_min = 0;
quorum = 0;
}
/* Go to the next idl. */
idl = idl->next;
}
}
if (finished) {
/*
* We emptied an IDL - drain them all.
*/
IDList *idl_del = NULL;
idl = idl_set->head;
while (idl) {
idl_del = idl;
idl = idl_del->next;
idl_free(&idl_del);
}
idl_set->head = NULL;
}
}
}
/* Now, that we have the "smallest" intersection possible, we need to subtract
* elements as required.
*
* NOTE: This is still not optimised yet!
*/
if (idl_set->complement_head != NULL && result_list->b_nids > 0) {
IDList *new_result_list = NULL;
IDList *next_idl = NULL;
IDList *idl = idl_set->complement_head;
while (idl != NULL) {
next_idl = idl->next;
if (idl_notin(be, result_list, idl, &new_result_list)) {
/*
* idl_notin returns 1 on new alloc, so free result_list and idl
*/
idl_free(&idl);
idl_free(&result_list);
result_list = new_result_list;
} else {
/*
* idl_notin returns 0 when it "does nothing", so just free idl.
*/
idl_free(&idl);
}
idl = next_idl;
}
}
return result_list;
}
|