File: conntable.c

package info (click to toggle)
389-ds-base 2.3.1%2Bdfsg1-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 37,536 kB
  • sloc: ansic: 306,972; python: 96,937; cpp: 10,257; perl: 2,854; makefile: 2,046; sh: 925; yacc: 806; xml: 379; lex: 366; javascript: 148; java: 50
file content (777 lines) | stat: -rw-r--r-- 29,212 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/** BEGIN COPYRIGHT BLOCK
 * Copyright (C) 2001 Sun Microsystems, Inc. Used by permission.
 * Copyright (C) 2005 Red Hat, Inc.
 * Copyright (C) 2019 William Brown <william@blackhats.net.au>
 * All rights reserved.
 *
 * License: GPL (version 3 or any later version).
 * See LICENSE for details.
 * END COPYRIGHT BLOCK **/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

/*
 * Connection Table
 *
 * The connection table exists to serve a few purposes:
 * 1. To prevent memory allocations of a (reasonably) large structures in a high-churn part
 *    of the codebase. (Connection from slap.h).
 * 2. To allow monitoring to iterate over the current set of active connections that exist
 *    in the server.
 * 3. To provide free connection slots to connections that have just been accepted.
 *
 * Requirement number 2 is the very interesting one, as it means that we need a central location
 * to store the connections to allow metric gatherings. Requirement 1 means less today in 2019
 * due to the improvements in malloc, and to aid tools like ASAN.
 *
 * == history ==
 * The connection table previously used a simple method to allocate. The connection table can only
 * be allocated by one acceptor at a time, which is protected by the connection table lock. The
 * table is iterated over and each connection was locked to determine if it was in use. This iteration
 * especially on high CT sizes could be very long, especially as:
 *
 * 1. The CT was always iterated from 0 -> size, meaning the "bottom end" of the table was always
 *    likely to be full, causing delays.
 * 2. The connection lock itself is what is used to protect that sockets IO, so if a connection was
 *    writing at the time, the CT would delay waiting on the connection IO, only to find that the
 *    connection was allocated anyway.
 *
 * Clearly this is an issue. In mid 2019 this behaviour was subtley altered, such that when we
 * attempted to lock we used pthread try_lock (nspr locks did not have this capability). If the try
 * lock fails this means a connection must be in use, so we can skip it. This yielded a 30%
 * improvement in throughput.
 *
 * == current ==
 * The new design is to create a parallel freelist of open slots into the table, which is protected
 * under the connection table lock. This should move the allocation algorithm from O(n) worst case
 * to O(1) worst case as we always recieve and empty slot *or* ct full. It also reduces lock/atomic
 * contention on the CPU to improve things.
 *
 * The freelist is a ringbuffer of pointers to the connection table. On a small scale it looks like:
 *
 *  |--------------------------------------------|
 *  | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
 *  | _ ptr  | _ ptr  | _ ptr  | _ ptr  | _ ptr  |
 *  |--------------------------------------------|
 *     ^  ^- conn_next
 *     |
 *     \-- conn_free
 *
 * As we allocate, we shift conn_next through the list, yielding the ptr that was stored (and
 * setting it to NULL as we proceed)
 *
 *  |--------------------------------------------|
 *  | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
 *  | _NULL  | _NULL  | _ ptr  | _ ptr  | _ ptr  |
 *  |--------------------------------------------|
 *     ^                  ^- conn_next
 *     |
 *     \-- conn_free
 *
 * When a connection is "freed" we return it to conn_free, which is then also slid up.
 *
 *  |--------------------------------------------|
 *  | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
 *  | _ ptr  | _NULL  | _ ptr  | _ ptr  | _ ptr  |
 *  |--------------------------------------------|
 *              ^         ^- conn_next
 *              |
 *              \-- conn_free
 *
 * If all connections are exhausted, conn_next will == conn_next, as conn_next must have proceeded
 * to the end of the ring, and then wrapped back allocating all previous until we meet with conn_free.
 *
 *  |--------------------------------------------|
 *  | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
 *  | _NULL  | _NULL  | _NULL  | _NULL  | _NULL  |
 *  |--------------------------------------------|
 *              ^ ^- conn_next
 *              |
 *              \-- conn_free
 *
 * This means allocations of conns will keep failing until a connection is returned.
 *
 *  |--------------------------------------------|
 *  | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
 *  | _NULL  | _ ptr  | _NULL  | _NULL  | _NULL  |
 *  |--------------------------------------------|
 *             ^- conn_next ^
 *                          |
 *                          \-- conn_free
 *
 * And now conn_next can begin to allocate again.
 *
 *
 *  -- invariants
 * * when conn_free is slid back to meet conn_next, there can be no situation where another
 *   connection is returned, as none must allocated  -if they were allocated, conn_free would have
 *   moved_along.
 * * the ring buffer must be as large as conntable.
 * * We do not check conn_next == conn_free (that's the starting state), but we check if the
 *   slot at conn_next is NULL, which must imply that conn_free has nothing to return.
 * * connection_table_move_connection_out_of_active_list is the only function able to return a
 *   connection to the freelist, as it is the function that is called when the event system has
 *   determined all IO's are complete, or unable to complete. This function is what prepares the
 *   connection for re-use, which is why it's the only place the freelist can be appended to.
 *
 */

#include "fe.h"

Connection_Table *
connection_table_new(int table_size)
{
    Connection_Table *ct;
    size_t i = 0;
    int ct_list = 0;
    int free_idx = 0;
    ber_len_t maxbersize = config_get_maxbersize();
    ct = (Connection_Table *)slapi_ch_calloc(1, sizeof(Connection_Table));
    ct->size = table_size;
    ct->list_num = SLAPD_DEFAULT_NUM_LISTENERS;
    ct->list_size = (table_size+ct->list_num-1)/ct->list_num; /* to avoid rounding issue */
    ct->num_active = (int *)slapi_ch_calloc(1, ct->list_num * sizeof(int));
    ct->c = (Connection **)slapi_ch_calloc(1, table_size * sizeof(Connection *));
    ct->fd = (struct POLL_STRUCT **)slapi_ch_calloc(1, table_size * sizeof(struct POLL_STRUCT));
    ct->table_mutex = PR_NewLock();
    /* Allocate the freelist */
    ct->c_freelist = (Connection **)slapi_ch_calloc(1, table_size * sizeof(Connection *));
    /* NEVER use slot 0, this is a list pointer */
    ct->conn_next_offset = 1;
    ct->conn_free_offset = 1;

    slapi_log_err(SLAPI_LOG_INFO, "connection_table_new", "conntablesize:%d\n", ct->size);

    pthread_mutexattr_t monitor_attr = {0};
    pthread_mutexattr_init(&monitor_attr);
    pthread_mutexattr_settype(&monitor_attr, PTHREAD_MUTEX_RECURSIVE);
    for (ct_list = 0; ct_list < ct->list_num; ct_list++) {
        ct->c[ct_list] = (Connection *)slapi_ch_calloc(1, ct->list_size * sizeof(Connection));
        ct->fd[ct_list] = (struct POLL_STRUCT *)slapi_ch_calloc(1, ct->list_size * sizeof(struct POLL_STRUCT));
        /* We rely on the fact that we called calloc, which zeros the block, so we don't
        * init any structure element unless a zero value is troublesome later
        */
        for (i = 0; i < ct->list_size; i++) {
            /*
            * Technically this is a no-op due to calloc, but we should always be
            * careful with things like this ....
            */
            ct->c[ct_list][i].c_state = CONN_STATE_FREE;
            /* Start the conn setup. */

            LBER_SOCKET invalid_socket;
            /* DBDB---move this out of here once everything works */
            ct->c[ct_list][i].c_sb = ber_sockbuf_alloc();
            invalid_socket = SLAPD_INVALID_SOCKET;
            ct->c[ct_list][i].c_sd = SLAPD_INVALID_SOCKET;
            ber_sockbuf_ctrl(ct->c[ct_list][i].c_sb, LBER_SB_OPT_SET_FD, &invalid_socket);
            ber_sockbuf_ctrl(ct->c[ct_list][i].c_sb, LBER_SB_OPT_SET_MAX_INCOMING, &maxbersize);
            /* all connections start out invalid */
            ct->fd[ct_list][i].fd = SLAPD_INVALID_SOCKET;

            /* The connection table has a double linked list running through it.
            * This is used to find out which connections should be looked at
            * in the poll loop.  Slot 0 in the table is always the head of
            * the linked list.  Each slot has a c_next and c_prev which are
            * pointers back into the array of connection slots. */
            ct->c[ct_list][i].c_next = NULL;
            ct->c[ct_list][i].c_prev = NULL;
            ct->c[ct_list][i].c_ci = i;
            ct->c[ct_list][i].c_fdi = SLAPD_INVALID_SOCKET_INDEX;

            if (pthread_mutex_init(&(ct->c[ct_list][i].c_mutex), &monitor_attr) != 0) {
                slapi_log_err(SLAPI_LOG_ERR, "connection_table_new", "pthread_mutex_init failed\n");
                exit(1);
            }

            ct->c[ct_list][i].c_pdumutex = PR_NewLock();
            if (ct->c[ct_list][i].c_pdumutex == NULL) {
                slapi_log_err(SLAPI_LOG_ERR, "connection_table_new", "PR_NewLock failed\n");
                exit(1);
            }

            /* Ready to rock, mark as such. */
            ct->c[ct_list][i].c_state = CONN_STATE_INIT;

            /* Map multiple ct lists to a single freelist. */
            ct->c_freelist[free_idx++] = &(ct->c[ct_list][i]);
        }
    }

    return ct;
}

void
connection_table_free(Connection_Table *ct)
{
    /* Release the freelist */
    slapi_ch_free((void **)&ct->c_freelist);
    for (size_t ct_list = 0; ct_list < ct->list_num; ct_list++) {
        /* Now release the connections. */
        for (size_t i = 0; i < ct->list_size; i++) {
            /* Free the contents of the connection structure */
            Connection *c = &(ct->c[ct_list][i]);
            connection_done(c);
        }

        slapi_ch_free((void **)&ct->c[ct_list]);
        slapi_ch_free((void **)&ct->fd[ct_list]);
    }
    slapi_ch_free((void **)&ct->c);
    slapi_ch_free((void **)&ct->fd);
    PR_DestroyLock(ct->table_mutex);
    slapi_ch_free((void *)&ct->num_active);
    slapi_ch_free((void **)&ct);
}

void
connection_table_abandon_all_operations(Connection_Table *ct)
{
    for (size_t ct_list = 0; ct_list < ct->list_num; ct_list++) {
        for (size_t i = 0; i < ct->list_size; i++) {
            if (ct->c[ct_list][i].c_state != CONN_STATE_FREE) {
                pthread_mutex_lock(&(ct->c[ct_list][i].c_mutex));
                connection_abandon_operations(&ct->c[ct_list][i]);
                pthread_mutex_unlock(&(ct->c[ct_list][i].c_mutex));
            }
        }
    }
}

void
connection_table_disconnect_all(Connection_Table *ct)
{
    for (size_t ct_list = 0; ct_list < ct->list_num; ct_list++) {
        for (size_t i = 0; i < ct->list_size; i++) {
            if (ct->c[ct_list][i].c_state != CONN_STATE_FREE) {
                Connection *c = &(ct->c[ct_list][i]);
                pthread_mutex_lock(&(c->c_mutex));
                disconnect_server_nomutex(c, c->c_connid, -1, SLAPD_DISCONNECT_ABORT, ECANCELED);
                pthread_mutex_unlock(&(c->c_mutex));
            }
        }
    }
}

/* Given a file descriptor for a socket, this function will return
 * a slot in the connection table to use.
 *
 * Note: this function is only called from the slapd_daemon (listener)
 * thread, which means it will never be called by two threads at
 * the same time.
 *
 * Returns a Connection on success
 * Returns NULL on failure
 */
Connection *
connection_table_get_connection(Connection_Table *ct, int sd)
{
    PR_Lock(ct->table_mutex);

    PR_ASSERT(ct->conn_next_offset != 0);
    Connection *c = ct->c_freelist[ct->conn_next_offset];
    if (c != NULL) {
        /* We allocated it, so now NULL the slot and move forward. */
        ct->c_freelist[ct->conn_next_offset] = NULL;
        /* Handle overflow. */
        ct->conn_next_offset = (ct->conn_next_offset + 1) % ct->size;
        if (ct->conn_next_offset == 0) {
            /* Never use slot 0 */
            ct->conn_next_offset += 1;
        }
        PR_Unlock(ct->table_mutex);
    } else {
        /* couldn't find a Connection, table must be full */
        slapi_log_err(SLAPI_LOG_CONNS, "connection_table_get_connection", "Max open connections reached\n");
        PR_Unlock(ct->table_mutex);
        return NULL;
    }

    /* Now prep the slot for usage. */
    PR_ASSERT(c != NULL);
    PR_ASSERT(c->c_next == NULL);
    PR_ASSERT(c->c_prev == NULL);
    PR_ASSERT(c->c_extension == NULL);
    PR_ASSERT(c->c_state == CONN_STATE_INIT);
    /* Let's make sure there's no cruft left on there from the last time this connection was used. */

    /*
     * Note: no need to lock c->c_mutex because this function is only
     * called by one thread (the slapd_daemon thread), and if we got this
     * far then `c' is not being used by any operation threads, etc. The
     * memory ordering will be provided by the work queue sending c to a
     * thread.
     */
    connection_cleanup(c);
    /* pointer to connection table that owns this connection */
    c->c_ct = ct;

    return c;
}

/* active connection iteration functions */

Connection *
connection_table_get_first_active_connection(Connection_Table *ct, size_t listnum)
{
    return ct->c[listnum][0].c_next;
}

Connection *
connection_table_get_next_active_connection(Connection_Table *ct __attribute__((unused)), Connection *c)
{
    return c->c_next;
}

int
connection_table_iterate_active_connections(Connection_Table *ct, void *arg, Connection_Table_Iterate_Function f)
{
    /* Locking in this area seems rather undeveloped, I think because typically only one
     * thread accesses the connection table (daemon thread). But now we allow other threads
     * to iterate over the table. So we use the "new mutex mutex" to lock the table.
     */
    Connection *current_conn = NULL;
    int ret = 0;
    size_t i = 0;
    PR_Lock(ct->table_mutex);
    for (i = 0; i < ct->list_num; i++) {
        current_conn = connection_table_get_first_active_connection(ct, i);
        while (current_conn) {
            ret = f(current_conn, arg);
            if (ret) {
                break;
            }
            current_conn = connection_table_get_next_active_connection(ct, current_conn);
        }
    }
    PR_Unlock(ct->table_mutex);
    return ret;
}

#ifdef FOR_DEBUGGING
static void
connection_table_dump_active_connection(Connection *c)
{
    slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_dump_active_connection", "conn=%p fd=%d refcnt=%d c_flags=%d\n"
                                                                              "mutex=%p next=%p prev=%p ctlist=%d\n\n",
                  c, c->c_sd, c->c_refcnt, c->c_flags,
                  c->c_mutex, c->c_next, c->c_prev, c->c_ct_list);
}

static void
connection_table_dump_active_connections(Connection_Table *ct)
{
    Connection *c;
    int i = 0;

    PR_Lock(ct->table_mutex);
    for (i = 0; i < ct->numlists; i++) {
        slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_dump_active_connections", "********** BEGIN DUMP ************\n");
        c = connection_table_get_first_active_connection(ct, i);
        while (c) {
            connection_table_dump_active_connection(c);
            c = connection_table_get_next_active_connection(ct, c);
        }
    }

    slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_dump_active_connections", "********** END DUMP ************\n");
    PR_Unlock(ct->table_mutex);
}
#endif

/*
 * There's a double linked list of active connections running through the array
 * of connections. This function removes a connection (by index) from that
 * list. This list is used to find the connections that should be used in the
 * poll call.
 *
 * We only remove from the active list when the connection is ready to be reused,
 * in other words, this is the "connection free" function. This is where we readd
 * the connection slot to the freelist for re-use.
 */
int

connection_table_move_connection_out_of_active_list(Connection_Table *ct, Connection *c)
{
    int c_sd; /* for logging */
    /* we always have previous element because list contains a dummy header */;
    PR_ASSERT(c->c_prev);
    if (c->c_prev == NULL) {
        /* c->c_prev is set when the connection is moved ON the active list
         * So this connection is already OUT of the active list
         *
         * Not sure how to recover from here.
         * Considering c->c_prev is NULL we can assume refcnt is now 0
         * and connection_cleanup was already called.
         * If it is not the case, then consequences are:
         *  - Leak some memory (connext, unsent page result entries, various buffers)
         *  - hanging connection (fd not closed)
         * A option would be to call connection_cleanup here.
         *
         * The logged message helps to know how frequently the problem exists
         */
        slapi_log_err(SLAPI_LOG_CRIT,
                      "connection_table_move_connection_out_of_active_list",
                      "conn %d is already OUT of the active list (refcnt is %d)\n",
                      c->c_sd, c->c_refcnt);

        return 0;
    }

#ifdef FOR_DEBUGGING
    slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_move_connection_out_of_active_list", "Moving connection out of active list\n");
    connection_table_dump_active_connection(c);
#endif

    c_sd = c->c_sd;
    /*
     * Note: the connection will NOT be moved off the active list if any other threads still hold
     * a reference to the connection (that is, its reference count must be 1 or less).
     */
    if (c->c_refcnt > 1) {
        slapi_log_err(SLAPI_LOG_CONNS,
                      "connection_table_move_connection_out_of_active_list",
                      "Not moving conn %d out of active list because refcnt is %d\n",
                      c_sd, c->c_refcnt);
        return 1; /* failed */
    }

    /* We need to lock here because we're modifying the linked list */
    PR_Lock(ct->table_mutex);

    /* Decrement the number of active connections on the ct list this connection was assigned. */
    (*(ct->num_active + c->c_ct_list))--;
    c->c_ct_list = -1;

    c->c_prev->c_next = c->c_next;

    if (c->c_next) {
        c->c_next->c_prev = c->c_prev;
    }

    connection_release_nolock(c);

    /* Clean the pointer. */
    connection_cleanup(c);

    /* Finally, place the connection back into the freelist for use */
    PR_ASSERT(c->c_refcnt == 0);
    PR_ASSERT(ct->conn_free_offset != 0);
    PR_ASSERT(ct->c_freelist[ct->conn_free_offset] == NULL);
    ct->c_freelist[ct->conn_free_offset] = c;
    ct->conn_free_offset = (ct->conn_free_offset + 1) % ct->size;
    if (ct->conn_free_offset == 0) {
        /* Never use slot 0 */
        ct->conn_free_offset += 1;
    }

    PR_Unlock(ct->table_mutex);

    slapi_log_err(SLAPI_LOG_CONNS, "connection_table_move_connection_out_of_active_list",
                  "Moved conn %d out of active list and freed\n", c_sd);

#ifdef FOR_DEBUGGING
    connection_table_dump_active_connections(ct);
#endif
    return 0; /* success */
}

/*
 * There's a double linked list of active connections running through the array
 * of connections. This function adds a connection (by index) to the head of
 * that list. This list is used to find the connections that should be used in the
 * poll call.
 */
void
connection_table_move_connection_on_to_active_list(Connection_Table *ct, Connection *c)
{
    PR_ASSERT(c->c_next == NULL);
    PR_ASSERT(c->c_prev == NULL);

    PR_Lock(ct->table_mutex);

    if (connection_acquire_nolock(c)) {
        PR_ASSERT(0);
    }

#ifdef FOR_DEBUGGING
    slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_move_connection_on_to_active_list",
                  "Moving connection into active list\n");
    connection_table_dump_active_connection(c);
#endif

    /* Get the least used ct list and incremant its number of active connections. */
    c->c_ct_list = connection_table_get_list(ct);
    (*(ct->num_active + c->c_ct_list))++;

    c->c_next = ct->c[c->c_ct_list][0].c_next;
    if (c->c_next != NULL) {
        c->c_next->c_prev = c;
    }
    c->c_prev = &(ct->c[c->c_ct_list][0]);
    ct->c[c->c_ct_list][0].c_next = c;

    PR_Unlock(ct->table_mutex);

#ifdef FOR_DEBUGGING
    connection_table_dump_active_connections(ct);
#endif
}

/* Find a connection table list with the lowest number of connections. */
int
connection_table_get_list(Connection_Table *ct)
{
    size_t i;
    int list = 0;
    int lowest = ct->num_active[0];
    for (i = 1; i < ct->list_num; i++) {
        if (*(ct->num_active + i) < lowest) {
            lowest = *(ct->num_active + i);
            list = i;
        }
    }
    return list;
}

/*
 * Replace the following attributes within the entry 'e' with
 * information about the connection table:
 *    connection            // multivalued; one value for each active connection
 *    currentconnections    // single valued; an integer count
 *    totalconnections        // single valued; an integer count
 *    dtablesize            // single valued; an integer size
 *    readwaiters            // single valued; an integer count
 */
void
connection_table_as_entry(Connection_Table *ct, Slapi_Entry *e)
{
    char buf[BUFSIZ];
    char maxthreadbuf[BUFSIZ];
    struct berval val;
    struct berval *vals[2];
    size_t ct_list;
    size_t i;
    int nconns, nreadwaiters;
    struct tm utm;

    vals[0] = &val;
    vals[1] = NULL;

    attrlist_delete(&e->e_attrs, "connection");
    nconns = 0;
    nreadwaiters = 0;
    for (ct_list = 0; ct_list < (ct != NULL ? ct->list_num : 0); ct_list++) {
        for (i = 0; i < ct->list_size; i++) {
            PR_Lock(ct->table_mutex);
            if (ct->c[ct_list][i].c_state == CONN_STATE_FREE) {
                PR_Unlock(ct->table_mutex);
                continue;
            }
            /* Can't take c_mutex if holding table_mutex; temporarily unlock */
            PR_Unlock(ct->table_mutex);

            pthread_mutex_lock(&(ct->c[ct_list][i].c_mutex));
            if (ct->c[ct_list][i].c_sd != SLAPD_INVALID_SOCKET) {
                char buf2[SLAPI_TIMESTAMP_BUFSIZE+1];
                size_t lendn = ct->c[ct_list][i].c_dn ? strlen(ct->c[ct_list][i].c_dn) : 6; /* "NULLDN" */
                size_t lenip = ct->c[ct_list][i].c_ipaddr ? strlen(ct->c[ct_list][i].c_ipaddr) : 0;
                size_t lenconn = 1;
                uint64_t connid = ct->c[ct_list][i].c_connid;
                char *bufptr = &buf[0];
                char *newbuf = NULL;
                int maxthreadstate = 0;

                /* Get the connid length */
                while (connid > 9) {
                    lenconn++;
                    connid /= 10;
                }

                if (ct->c[ct_list][i].c_flags & CONN_FLAG_MAX_THREADS) {
                    maxthreadstate = 1;
                }

                nconns++;
                if (ct->c[ct_list][i].c_gettingber) {
                    nreadwaiters++;
                }

                gmtime_r(&ct->c[ct_list][i].c_starttime, &utm);
                strftime(buf2, SLAPI_TIMESTAMP_BUFSIZE, "%Y%m%d%H%M%SZ", &utm);

                /*
                * Max threads per connection stats
                *
                * Appended output "1:2:3"
                *
                * 1 = Connection max threads state:  1 is in max threads, 0 is not
                * 2 = The number of times this thread has hit max threads
                * 3 = The number of operations attempted that were blocked
                *     by max threads.
                */
                snprintf(maxthreadbuf, sizeof(maxthreadbuf), "%d:%" PRIu64 ":%" PRIu64 "",
                        maxthreadstate, ct->c[ct_list][i].c_maxthreadscount,
                        ct->c[ct_list][i].c_maxthreadsblocked);

                if ((lenconn + lenip + lendn + strlen(maxthreadbuf)) > (BUFSIZ - 54)) {
                    /*
                    * 54 =  8 for the colon separators +
                    *       6 for the "i" counter +
                    *      15 for buf2 (date) +
                    *      10 for c_opsinitiated +
                    *      10 for c_opscompleted +
                    *       1 for c_gettingber +
                    *       3 for "ip=" +
                    *       1 for NULL terminator
                    */
                    newbuf = (char *)slapi_ch_malloc(lenconn + lendn + lenip + strlen(maxthreadbuf) + 54);
                    bufptr = newbuf;
                }

                sprintf(bufptr, "%zu:%s:%d:%d:%s%s:%s:%s:%" PRIu64 ":ip=%s",
                        i,
                        buf2,
                        ct->c[ct_list][i].c_opsinitiated,
                        ct->c[ct_list][i].c_opscompleted,
                        ct->c[ct_list][i].c_gettingber ? "r" : "-",
                        "",
                        ct->c[ct_list][i].c_dn ? ct->c[ct_list][i].c_dn : "NULLDN",
                        maxthreadbuf,
                        ct->c[ct_list][i].c_connid,
                        ct->c[ct_list][i].c_ipaddr);
                val.bv_val = bufptr;
                val.bv_len = strlen(bufptr);
                attrlist_merge(&e->e_attrs, "connection", vals);
                slapi_ch_free_string(&newbuf);
            }
            pthread_mutex_unlock(&(ct->c[ct_list][i].c_mutex));
        }
    }

    snprintf(buf, sizeof(buf), "%d", nconns);
    val.bv_val = buf;
    val.bv_len = strlen(buf);
    attrlist_replace(&e->e_attrs, "currentconnections", vals);

    snprintf(buf, sizeof(buf), "%" PRIu64, slapi_counter_get_value(num_conns));
    val.bv_val = buf;
    val.bv_len = strlen(buf);
    attrlist_replace(&e->e_attrs, "totalconnections", vals);

    snprintf(buf, sizeof(buf), "%" PRIu64, slapi_counter_get_value(conns_in_maxthreads));
    val.bv_val = buf;
    val.bv_len = strlen(buf);
    attrlist_replace(&e->e_attrs, "currentconnectionsatmaxthreads", vals);

    snprintf(buf, sizeof(buf), "%" PRIu64, slapi_counter_get_value(max_threads_count));
    val.bv_val = buf;
    val.bv_len = strlen(buf);
    attrlist_replace(&e->e_attrs, "maxthreadsperconnhits", vals);

    snprintf(buf, sizeof(buf), "%d", (ct != NULL ? ct->size : 0));
    val.bv_val = buf;
    val.bv_len = strlen(buf);
    attrlist_replace(&e->e_attrs, "dtablesize", vals);

    snprintf(buf, sizeof(buf), "%d", nreadwaiters);
    val.bv_val = buf;
    val.bv_len = strlen(buf);
    attrlist_replace(&e->e_attrs, "readwaiters", vals);
}

void
connection_table_dump_activity_to_errors_log(Connection_Table *ct)
{
    size_t i;
    size_t l;
    for (l = 0; l < ct->list_num; l++) {
        for (i = 0; i < ct->list_size; i++) {
            Connection *c = &(ct->c[l][i]);
            if (c->c_state) {
                /* Find the connection we are referring to */
                int ct_list = c->c_fdi;
                pthread_mutex_lock(&(c->c_mutex));
                if ((c->c_sd != SLAPD_INVALID_SOCKET) &&
                    (ct_list >= 0) && (c->c_prfd == ct->fd[l][ct_list].fd)) {
                    int r = ct->fd[l][ct_list].out_flags & SLAPD_POLL_FLAGS;
                    if (r) {
                        slapi_log_err(SLAPI_LOG_CONNS, "connection_table_dump_activity_to_errors_log",
                                    "activity on %zu%s\n", i, r ? "r" : "");
                    }
                }
                pthread_mutex_unlock(&(c->c_mutex));
            }
        }
    }
}

#if 0
void dump_op_list(FILE *file, Operation *op);

void
connection_table_dump(Connection_Table *ct)
{
    FILE *file;

    file = fopen("/tmp/slapd.conn", "a+");
    if (file != NULL)
    {
        int    i;
        fprintf(file, "=============pid=%d==================\n", getpid());
        for ( i = 0; i < ct->size; i++ )
        {
            if ( (ct->c[i].c_sd == SLAPD_INVALID_SOCKET) && (ct->c[i].c_connid == 0) )
            {
                continue;
            }
            fprintf(file, "c[%d].c_dn=0x%x\n", i, ct->c[i].c_dn);
            dump_op_list(file, ct->c[i].c_ops);
            fprintf(file, "c[%d].c_sb.sb_sd=%d\n", i, ct->c[i].c_sd);
            fprintf(file, "c[%d].c_connid=%d\n", i, ct->c[i].c_connid);
            fprintf(file, "c[%d].c_opsinitiated=%d\n", i, ct->c[i].c_opsinitiated);
            fprintf(file, "c[%d].c_opscompleted=%d\n", i, ct->c[i].c_opscompleted);
        }
        fclose(file);
    }
}

static const char *
op_status2str( int o_status )
{
    const char *s = "unknown";

    switch( o_status ) {
    case SLAPI_OP_STATUS_PROCESSING:
        s = "processing";
        break;
    case SLAPI_OP_STATUS_ABANDONED:
        s = "abandoned";
        break;
    case SLAPI_OP_STATUS_WILL_COMPLETE:
        s = "will_complete";
        break;
    case SLAPI_OP_STATUS_RESULT_SENT:
        s = "result_sent";
        break;
    }

    return s;
}

void
dump_op_list(FILE *file, Operation *op)
{
    Operation       *tmp;

        for ( tmp = op; tmp != NULL; tmp = tmp->o_next )
    {
        fprintf(file,
         "(o_msgid=%d, o_tag=%d, o_sdn=0x%x, o_opid=%d, o_connid=%d, o_status=%s)\n",
        tmp->o_msgid, tmp->o_tag, slapi_sdn_get_dn(&tmp->o_sdn), tmp->o_connid,
        *tmp->o_tid, op_status2str( tmp->o_status ));
    }
}
#endif /* 0 */