1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
/** BEGIN COPYRIGHT BLOCK
* Copyright (C) 2001 Sun Microsystems, Inc. Used by permission.
* Copyright (C) 2005 Red Hat, Inc.
* Copyright (C) 2019 William Brown <william@blackhats.net.au>
* All rights reserved.
*
* License: GPL (version 3 or any later version).
* See LICENSE for details.
* END COPYRIGHT BLOCK **/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*
* Connection Table
*
* The connection table exists to serve a few purposes:
* 1. To prevent memory allocations of a (reasonably) large structures in a high-churn part
* of the codebase. (Connection from slap.h).
* 2. To allow monitoring to iterate over the current set of active connections that exist
* in the server.
* 3. To provide free connection slots to connections that have just been accepted.
*
* Requirement number 2 is the very interesting one, as it means that we need a central location
* to store the connections to allow metric gatherings. Requirement 1 means less today in 2019
* due to the improvements in malloc, and to aid tools like ASAN.
*
* == history ==
* The connection table previously used a simple method to allocate. The connection table can only
* be allocated by one acceptor at a time, which is protected by the connection table lock. The
* table is iterated over and each connection was locked to determine if it was in use. This iteration
* especially on high CT sizes could be very long, especially as:
*
* 1. The CT was always iterated from 0 -> size, meaning the "bottom end" of the table was always
* likely to be full, causing delays.
* 2. The connection lock itself is what is used to protect that sockets IO, so if a connection was
* writing at the time, the CT would delay waiting on the connection IO, only to find that the
* connection was allocated anyway.
*
* Clearly this is an issue. In mid 2019 this behaviour was subtley altered, such that when we
* attempted to lock we used pthread try_lock (nspr locks did not have this capability). If the try
* lock fails this means a connection must be in use, so we can skip it. This yielded a 30%
* improvement in throughput.
*
* == current ==
* The new design is to create a parallel freelist of open slots into the table, which is protected
* under the connection table lock. This should move the allocation algorithm from O(n) worst case
* to O(1) worst case as we always recieve and empty slot *or* ct full. It also reduces lock/atomic
* contention on the CPU to improve things.
*
* The freelist is a ringbuffer of pointers to the connection table. On a small scale it looks like:
*
* |--------------------------------------------|
* | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
* | _ ptr | _ ptr | _ ptr | _ ptr | _ ptr |
* |--------------------------------------------|
* ^ ^- conn_next
* |
* \-- conn_free
*
* As we allocate, we shift conn_next through the list, yielding the ptr that was stored (and
* setting it to NULL as we proceed)
*
* |--------------------------------------------|
* | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
* | _NULL | _NULL | _ ptr | _ ptr | _ ptr |
* |--------------------------------------------|
* ^ ^- conn_next
* |
* \-- conn_free
*
* When a connection is "freed" we return it to conn_free, which is then also slid up.
*
* |--------------------------------------------|
* | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
* | _ ptr | _NULL | _ ptr | _ ptr | _ ptr |
* |--------------------------------------------|
* ^ ^- conn_next
* |
* \-- conn_free
*
* If all connections are exhausted, conn_next will == conn_next, as conn_next must have proceeded
* to the end of the ring, and then wrapped back allocating all previous until we meet with conn_free.
*
* |--------------------------------------------|
* | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
* | _NULL | _NULL | _NULL | _NULL | _NULL |
* |--------------------------------------------|
* ^ ^- conn_next
* |
* \-- conn_free
*
* This means allocations of conns will keep failing until a connection is returned.
*
* |--------------------------------------------|
* | slot 1 | slot 2 | slot 3 | slot 4 | slot 5 |
* | _NULL | _ ptr | _NULL | _NULL | _NULL |
* |--------------------------------------------|
* ^- conn_next ^
* |
* \-- conn_free
*
* And now conn_next can begin to allocate again.
*
*
* -- invariants
* * when conn_free is slid back to meet conn_next, there can be no situation where another
* connection is returned, as none must allocated -if they were allocated, conn_free would have
* moved_along.
* * the ring buffer must be as large as conntable.
* * We do not check conn_next == conn_free (that's the starting state), but we check if the
* slot at conn_next is NULL, which must imply that conn_free has nothing to return.
* * connection_table_move_connection_out_of_active_list is the only function able to return a
* connection to the freelist, as it is the function that is called when the event system has
* determined all IO's are complete, or unable to complete. This function is what prepares the
* connection for re-use, which is why it's the only place the freelist can be appended to.
*
*/
#include "fe.h"
Connection_Table *
connection_table_new(int table_size)
{
Connection_Table *ct;
size_t i = 0;
int ct_list = 0;
int free_idx = 0;
ber_len_t maxbersize = config_get_maxbersize();
ct = (Connection_Table *)slapi_ch_calloc(1, sizeof(Connection_Table));
ct->size = table_size;
ct->list_num = SLAPD_DEFAULT_NUM_LISTENERS;
ct->list_size = (table_size+ct->list_num-1)/ct->list_num; /* to avoid rounding issue */
ct->num_active = (int *)slapi_ch_calloc(1, ct->list_num * sizeof(int));
ct->c = (Connection **)slapi_ch_calloc(1, table_size * sizeof(Connection *));
ct->fd = (struct POLL_STRUCT **)slapi_ch_calloc(1, table_size * sizeof(struct POLL_STRUCT));
ct->table_mutex = PR_NewLock();
/* Allocate the freelist */
ct->c_freelist = (Connection **)slapi_ch_calloc(1, table_size * sizeof(Connection *));
/* NEVER use slot 0, this is a list pointer */
ct->conn_next_offset = 1;
ct->conn_free_offset = 1;
slapi_log_err(SLAPI_LOG_INFO, "connection_table_new", "conntablesize:%d\n", ct->size);
pthread_mutexattr_t monitor_attr = {0};
pthread_mutexattr_init(&monitor_attr);
pthread_mutexattr_settype(&monitor_attr, PTHREAD_MUTEX_RECURSIVE);
for (ct_list = 0; ct_list < ct->list_num; ct_list++) {
ct->c[ct_list] = (Connection *)slapi_ch_calloc(1, ct->list_size * sizeof(Connection));
ct->fd[ct_list] = (struct POLL_STRUCT *)slapi_ch_calloc(1, ct->list_size * sizeof(struct POLL_STRUCT));
/* We rely on the fact that we called calloc, which zeros the block, so we don't
* init any structure element unless a zero value is troublesome later
*/
for (i = 0; i < ct->list_size; i++) {
/*
* Technically this is a no-op due to calloc, but we should always be
* careful with things like this ....
*/
ct->c[ct_list][i].c_state = CONN_STATE_FREE;
/* Start the conn setup. */
LBER_SOCKET invalid_socket;
/* DBDB---move this out of here once everything works */
ct->c[ct_list][i].c_sb = ber_sockbuf_alloc();
invalid_socket = SLAPD_INVALID_SOCKET;
ct->c[ct_list][i].c_sd = SLAPD_INVALID_SOCKET;
ber_sockbuf_ctrl(ct->c[ct_list][i].c_sb, LBER_SB_OPT_SET_FD, &invalid_socket);
ber_sockbuf_ctrl(ct->c[ct_list][i].c_sb, LBER_SB_OPT_SET_MAX_INCOMING, &maxbersize);
/* all connections start out invalid */
ct->fd[ct_list][i].fd = SLAPD_INVALID_SOCKET;
/* The connection table has a double linked list running through it.
* This is used to find out which connections should be looked at
* in the poll loop. Slot 0 in the table is always the head of
* the linked list. Each slot has a c_next and c_prev which are
* pointers back into the array of connection slots. */
ct->c[ct_list][i].c_next = NULL;
ct->c[ct_list][i].c_prev = NULL;
ct->c[ct_list][i].c_ci = i;
ct->c[ct_list][i].c_fdi = SLAPD_INVALID_SOCKET_INDEX;
if (pthread_mutex_init(&(ct->c[ct_list][i].c_mutex), &monitor_attr) != 0) {
slapi_log_err(SLAPI_LOG_ERR, "connection_table_new", "pthread_mutex_init failed\n");
exit(1);
}
ct->c[ct_list][i].c_pdumutex = PR_NewLock();
if (ct->c[ct_list][i].c_pdumutex == NULL) {
slapi_log_err(SLAPI_LOG_ERR, "connection_table_new", "PR_NewLock failed\n");
exit(1);
}
/* Ready to rock, mark as such. */
ct->c[ct_list][i].c_state = CONN_STATE_INIT;
/* Map multiple ct lists to a single freelist. */
ct->c_freelist[free_idx++] = &(ct->c[ct_list][i]);
}
}
return ct;
}
void
connection_table_free(Connection_Table *ct)
{
/* Release the freelist */
slapi_ch_free((void **)&ct->c_freelist);
for (size_t ct_list = 0; ct_list < ct->list_num; ct_list++) {
/* Now release the connections. */
for (size_t i = 0; i < ct->list_size; i++) {
/* Free the contents of the connection structure */
Connection *c = &(ct->c[ct_list][i]);
connection_done(c);
}
slapi_ch_free((void **)&ct->c[ct_list]);
slapi_ch_free((void **)&ct->fd[ct_list]);
}
slapi_ch_free((void **)&ct->c);
slapi_ch_free((void **)&ct->fd);
PR_DestroyLock(ct->table_mutex);
slapi_ch_free((void *)&ct->num_active);
slapi_ch_free((void **)&ct);
}
void
connection_table_abandon_all_operations(Connection_Table *ct)
{
for (size_t ct_list = 0; ct_list < ct->list_num; ct_list++) {
for (size_t i = 0; i < ct->list_size; i++) {
if (ct->c[ct_list][i].c_state != CONN_STATE_FREE) {
pthread_mutex_lock(&(ct->c[ct_list][i].c_mutex));
connection_abandon_operations(&ct->c[ct_list][i]);
pthread_mutex_unlock(&(ct->c[ct_list][i].c_mutex));
}
}
}
}
void
connection_table_disconnect_all(Connection_Table *ct)
{
for (size_t ct_list = 0; ct_list < ct->list_num; ct_list++) {
for (size_t i = 0; i < ct->list_size; i++) {
if (ct->c[ct_list][i].c_state != CONN_STATE_FREE) {
Connection *c = &(ct->c[ct_list][i]);
pthread_mutex_lock(&(c->c_mutex));
disconnect_server_nomutex(c, c->c_connid, -1, SLAPD_DISCONNECT_ABORT, ECANCELED);
pthread_mutex_unlock(&(c->c_mutex));
}
}
}
}
/* Given a file descriptor for a socket, this function will return
* a slot in the connection table to use.
*
* Note: this function is only called from the slapd_daemon (listener)
* thread, which means it will never be called by two threads at
* the same time.
*
* Returns a Connection on success
* Returns NULL on failure
*/
Connection *
connection_table_get_connection(Connection_Table *ct, int sd)
{
PR_Lock(ct->table_mutex);
PR_ASSERT(ct->conn_next_offset != 0);
Connection *c = ct->c_freelist[ct->conn_next_offset];
if (c != NULL) {
/* We allocated it, so now NULL the slot and move forward. */
ct->c_freelist[ct->conn_next_offset] = NULL;
/* Handle overflow. */
ct->conn_next_offset = (ct->conn_next_offset + 1) % ct->size;
if (ct->conn_next_offset == 0) {
/* Never use slot 0 */
ct->conn_next_offset += 1;
}
PR_Unlock(ct->table_mutex);
} else {
/* couldn't find a Connection, table must be full */
slapi_log_err(SLAPI_LOG_CONNS, "connection_table_get_connection", "Max open connections reached\n");
PR_Unlock(ct->table_mutex);
return NULL;
}
/* Now prep the slot for usage. */
PR_ASSERT(c != NULL);
PR_ASSERT(c->c_next == NULL);
PR_ASSERT(c->c_prev == NULL);
PR_ASSERT(c->c_extension == NULL);
PR_ASSERT(c->c_state == CONN_STATE_INIT);
/* Let's make sure there's no cruft left on there from the last time this connection was used. */
/*
* Note: no need to lock c->c_mutex because this function is only
* called by one thread (the slapd_daemon thread), and if we got this
* far then `c' is not being used by any operation threads, etc. The
* memory ordering will be provided by the work queue sending c to a
* thread.
*/
connection_cleanup(c);
/* pointer to connection table that owns this connection */
c->c_ct = ct;
return c;
}
/* active connection iteration functions */
Connection *
connection_table_get_first_active_connection(Connection_Table *ct, size_t listnum)
{
return ct->c[listnum][0].c_next;
}
Connection *
connection_table_get_next_active_connection(Connection_Table *ct __attribute__((unused)), Connection *c)
{
return c->c_next;
}
int
connection_table_iterate_active_connections(Connection_Table *ct, void *arg, Connection_Table_Iterate_Function f)
{
/* Locking in this area seems rather undeveloped, I think because typically only one
* thread accesses the connection table (daemon thread). But now we allow other threads
* to iterate over the table. So we use the "new mutex mutex" to lock the table.
*/
Connection *current_conn = NULL;
int ret = 0;
size_t i = 0;
PR_Lock(ct->table_mutex);
for (i = 0; i < ct->list_num; i++) {
current_conn = connection_table_get_first_active_connection(ct, i);
while (current_conn) {
ret = f(current_conn, arg);
if (ret) {
break;
}
current_conn = connection_table_get_next_active_connection(ct, current_conn);
}
}
PR_Unlock(ct->table_mutex);
return ret;
}
#ifdef FOR_DEBUGGING
static void
connection_table_dump_active_connection(Connection *c)
{
slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_dump_active_connection", "conn=%p fd=%d refcnt=%d c_flags=%d\n"
"mutex=%p next=%p prev=%p ctlist=%d\n\n",
c, c->c_sd, c->c_refcnt, c->c_flags,
c->c_mutex, c->c_next, c->c_prev, c->c_ct_list);
}
static void
connection_table_dump_active_connections(Connection_Table *ct)
{
Connection *c;
int i = 0;
PR_Lock(ct->table_mutex);
for (i = 0; i < ct->numlists; i++) {
slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_dump_active_connections", "********** BEGIN DUMP ************\n");
c = connection_table_get_first_active_connection(ct, i);
while (c) {
connection_table_dump_active_connection(c);
c = connection_table_get_next_active_connection(ct, c);
}
}
slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_dump_active_connections", "********** END DUMP ************\n");
PR_Unlock(ct->table_mutex);
}
#endif
/*
* There's a double linked list of active connections running through the array
* of connections. This function removes a connection (by index) from that
* list. This list is used to find the connections that should be used in the
* poll call.
*
* We only remove from the active list when the connection is ready to be reused,
* in other words, this is the "connection free" function. This is where we readd
* the connection slot to the freelist for re-use.
*/
int
connection_table_move_connection_out_of_active_list(Connection_Table *ct, Connection *c)
{
int c_sd; /* for logging */
/* we always have previous element because list contains a dummy header */;
PR_ASSERT(c->c_prev);
if (c->c_prev == NULL) {
/* c->c_prev is set when the connection is moved ON the active list
* So this connection is already OUT of the active list
*
* Not sure how to recover from here.
* Considering c->c_prev is NULL we can assume refcnt is now 0
* and connection_cleanup was already called.
* If it is not the case, then consequences are:
* - Leak some memory (connext, unsent page result entries, various buffers)
* - hanging connection (fd not closed)
* A option would be to call connection_cleanup here.
*
* The logged message helps to know how frequently the problem exists
*/
slapi_log_err(SLAPI_LOG_CRIT,
"connection_table_move_connection_out_of_active_list",
"conn %d is already OUT of the active list (refcnt is %d)\n",
c->c_sd, c->c_refcnt);
return 0;
}
#ifdef FOR_DEBUGGING
slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_move_connection_out_of_active_list", "Moving connection out of active list\n");
connection_table_dump_active_connection(c);
#endif
c_sd = c->c_sd;
/*
* Note: the connection will NOT be moved off the active list if any other threads still hold
* a reference to the connection (that is, its reference count must be 1 or less).
*/
if (c->c_refcnt > 1) {
slapi_log_err(SLAPI_LOG_CONNS,
"connection_table_move_connection_out_of_active_list",
"Not moving conn %d out of active list because refcnt is %d\n",
c_sd, c->c_refcnt);
return 1; /* failed */
}
/* We need to lock here because we're modifying the linked list */
PR_Lock(ct->table_mutex);
/* Decrement the number of active connections on the ct list this connection was assigned. */
(*(ct->num_active + c->c_ct_list))--;
c->c_ct_list = -1;
c->c_prev->c_next = c->c_next;
if (c->c_next) {
c->c_next->c_prev = c->c_prev;
}
connection_release_nolock(c);
/* Clean the pointer. */
connection_cleanup(c);
/* Finally, place the connection back into the freelist for use */
PR_ASSERT(c->c_refcnt == 0);
PR_ASSERT(ct->conn_free_offset != 0);
PR_ASSERT(ct->c_freelist[ct->conn_free_offset] == NULL);
ct->c_freelist[ct->conn_free_offset] = c;
ct->conn_free_offset = (ct->conn_free_offset + 1) % ct->size;
if (ct->conn_free_offset == 0) {
/* Never use slot 0 */
ct->conn_free_offset += 1;
}
PR_Unlock(ct->table_mutex);
slapi_log_err(SLAPI_LOG_CONNS, "connection_table_move_connection_out_of_active_list",
"Moved conn %d out of active list and freed\n", c_sd);
#ifdef FOR_DEBUGGING
connection_table_dump_active_connections(ct);
#endif
return 0; /* success */
}
/*
* There's a double linked list of active connections running through the array
* of connections. This function adds a connection (by index) to the head of
* that list. This list is used to find the connections that should be used in the
* poll call.
*/
void
connection_table_move_connection_on_to_active_list(Connection_Table *ct, Connection *c)
{
PR_ASSERT(c->c_next == NULL);
PR_ASSERT(c->c_prev == NULL);
PR_Lock(ct->table_mutex);
if (connection_acquire_nolock(c)) {
PR_ASSERT(0);
}
#ifdef FOR_DEBUGGING
slapi_log_err(SLAPI_LOG_DEBUG, "connection_table_move_connection_on_to_active_list",
"Moving connection into active list\n");
connection_table_dump_active_connection(c);
#endif
/* Get the least used ct list and incremant its number of active connections. */
c->c_ct_list = connection_table_get_list(ct);
(*(ct->num_active + c->c_ct_list))++;
c->c_next = ct->c[c->c_ct_list][0].c_next;
if (c->c_next != NULL) {
c->c_next->c_prev = c;
}
c->c_prev = &(ct->c[c->c_ct_list][0]);
ct->c[c->c_ct_list][0].c_next = c;
PR_Unlock(ct->table_mutex);
#ifdef FOR_DEBUGGING
connection_table_dump_active_connections(ct);
#endif
}
/* Find a connection table list with the lowest number of connections. */
int
connection_table_get_list(Connection_Table *ct)
{
size_t i;
int list = 0;
int lowest = ct->num_active[0];
for (i = 1; i < ct->list_num; i++) {
if (*(ct->num_active + i) < lowest) {
lowest = *(ct->num_active + i);
list = i;
}
}
return list;
}
/*
* Replace the following attributes within the entry 'e' with
* information about the connection table:
* connection // multivalued; one value for each active connection
* currentconnections // single valued; an integer count
* totalconnections // single valued; an integer count
* dtablesize // single valued; an integer size
* readwaiters // single valued; an integer count
*/
void
connection_table_as_entry(Connection_Table *ct, Slapi_Entry *e)
{
char buf[BUFSIZ];
char maxthreadbuf[BUFSIZ];
struct berval val;
struct berval *vals[2];
size_t ct_list;
size_t i;
int nconns, nreadwaiters;
struct tm utm;
vals[0] = &val;
vals[1] = NULL;
attrlist_delete(&e->e_attrs, "connection");
nconns = 0;
nreadwaiters = 0;
for (ct_list = 0; ct_list < (ct != NULL ? ct->list_num : 0); ct_list++) {
for (i = 0; i < ct->list_size; i++) {
PR_Lock(ct->table_mutex);
if (ct->c[ct_list][i].c_state == CONN_STATE_FREE) {
PR_Unlock(ct->table_mutex);
continue;
}
/* Can't take c_mutex if holding table_mutex; temporarily unlock */
PR_Unlock(ct->table_mutex);
pthread_mutex_lock(&(ct->c[ct_list][i].c_mutex));
if (ct->c[ct_list][i].c_sd != SLAPD_INVALID_SOCKET) {
char buf2[SLAPI_TIMESTAMP_BUFSIZE+1];
size_t lendn = ct->c[ct_list][i].c_dn ? strlen(ct->c[ct_list][i].c_dn) : 6; /* "NULLDN" */
size_t lenip = ct->c[ct_list][i].c_ipaddr ? strlen(ct->c[ct_list][i].c_ipaddr) : 0;
size_t lenconn = 1;
uint64_t connid = ct->c[ct_list][i].c_connid;
char *bufptr = &buf[0];
char *newbuf = NULL;
int maxthreadstate = 0;
/* Get the connid length */
while (connid > 9) {
lenconn++;
connid /= 10;
}
if (ct->c[ct_list][i].c_flags & CONN_FLAG_MAX_THREADS) {
maxthreadstate = 1;
}
nconns++;
if (ct->c[ct_list][i].c_gettingber) {
nreadwaiters++;
}
gmtime_r(&ct->c[ct_list][i].c_starttime, &utm);
strftime(buf2, SLAPI_TIMESTAMP_BUFSIZE, "%Y%m%d%H%M%SZ", &utm);
/*
* Max threads per connection stats
*
* Appended output "1:2:3"
*
* 1 = Connection max threads state: 1 is in max threads, 0 is not
* 2 = The number of times this thread has hit max threads
* 3 = The number of operations attempted that were blocked
* by max threads.
*/
snprintf(maxthreadbuf, sizeof(maxthreadbuf), "%d:%" PRIu64 ":%" PRIu64 "",
maxthreadstate, ct->c[ct_list][i].c_maxthreadscount,
ct->c[ct_list][i].c_maxthreadsblocked);
if ((lenconn + lenip + lendn + strlen(maxthreadbuf)) > (BUFSIZ - 54)) {
/*
* 54 = 8 for the colon separators +
* 6 for the "i" counter +
* 15 for buf2 (date) +
* 10 for c_opsinitiated +
* 10 for c_opscompleted +
* 1 for c_gettingber +
* 3 for "ip=" +
* 1 for NULL terminator
*/
newbuf = (char *)slapi_ch_malloc(lenconn + lendn + lenip + strlen(maxthreadbuf) + 54);
bufptr = newbuf;
}
sprintf(bufptr, "%zu:%s:%d:%d:%s%s:%s:%s:%" PRIu64 ":ip=%s",
i,
buf2,
ct->c[ct_list][i].c_opsinitiated,
ct->c[ct_list][i].c_opscompleted,
ct->c[ct_list][i].c_gettingber ? "r" : "-",
"",
ct->c[ct_list][i].c_dn ? ct->c[ct_list][i].c_dn : "NULLDN",
maxthreadbuf,
ct->c[ct_list][i].c_connid,
ct->c[ct_list][i].c_ipaddr);
val.bv_val = bufptr;
val.bv_len = strlen(bufptr);
attrlist_merge(&e->e_attrs, "connection", vals);
slapi_ch_free_string(&newbuf);
}
pthread_mutex_unlock(&(ct->c[ct_list][i].c_mutex));
}
}
snprintf(buf, sizeof(buf), "%d", nconns);
val.bv_val = buf;
val.bv_len = strlen(buf);
attrlist_replace(&e->e_attrs, "currentconnections", vals);
snprintf(buf, sizeof(buf), "%" PRIu64, slapi_counter_get_value(num_conns));
val.bv_val = buf;
val.bv_len = strlen(buf);
attrlist_replace(&e->e_attrs, "totalconnections", vals);
snprintf(buf, sizeof(buf), "%" PRIu64, slapi_counter_get_value(conns_in_maxthreads));
val.bv_val = buf;
val.bv_len = strlen(buf);
attrlist_replace(&e->e_attrs, "currentconnectionsatmaxthreads", vals);
snprintf(buf, sizeof(buf), "%" PRIu64, slapi_counter_get_value(max_threads_count));
val.bv_val = buf;
val.bv_len = strlen(buf);
attrlist_replace(&e->e_attrs, "maxthreadsperconnhits", vals);
snprintf(buf, sizeof(buf), "%d", (ct != NULL ? ct->size : 0));
val.bv_val = buf;
val.bv_len = strlen(buf);
attrlist_replace(&e->e_attrs, "dtablesize", vals);
snprintf(buf, sizeof(buf), "%d", nreadwaiters);
val.bv_val = buf;
val.bv_len = strlen(buf);
attrlist_replace(&e->e_attrs, "readwaiters", vals);
}
void
connection_table_dump_activity_to_errors_log(Connection_Table *ct)
{
size_t i;
size_t l;
for (l = 0; l < ct->list_num; l++) {
for (i = 0; i < ct->list_size; i++) {
Connection *c = &(ct->c[l][i]);
if (c->c_state) {
/* Find the connection we are referring to */
int ct_list = c->c_fdi;
pthread_mutex_lock(&(c->c_mutex));
if ((c->c_sd != SLAPD_INVALID_SOCKET) &&
(ct_list >= 0) && (c->c_prfd == ct->fd[l][ct_list].fd)) {
int r = ct->fd[l][ct_list].out_flags & SLAPD_POLL_FLAGS;
if (r) {
slapi_log_err(SLAPI_LOG_CONNS, "connection_table_dump_activity_to_errors_log",
"activity on %zu%s\n", i, r ? "r" : "");
}
}
pthread_mutex_unlock(&(c->c_mutex));
}
}
}
}
#if 0
void dump_op_list(FILE *file, Operation *op);
void
connection_table_dump(Connection_Table *ct)
{
FILE *file;
file = fopen("/tmp/slapd.conn", "a+");
if (file != NULL)
{
int i;
fprintf(file, "=============pid=%d==================\n", getpid());
for ( i = 0; i < ct->size; i++ )
{
if ( (ct->c[i].c_sd == SLAPD_INVALID_SOCKET) && (ct->c[i].c_connid == 0) )
{
continue;
}
fprintf(file, "c[%d].c_dn=0x%x\n", i, ct->c[i].c_dn);
dump_op_list(file, ct->c[i].c_ops);
fprintf(file, "c[%d].c_sb.sb_sd=%d\n", i, ct->c[i].c_sd);
fprintf(file, "c[%d].c_connid=%d\n", i, ct->c[i].c_connid);
fprintf(file, "c[%d].c_opsinitiated=%d\n", i, ct->c[i].c_opsinitiated);
fprintf(file, "c[%d].c_opscompleted=%d\n", i, ct->c[i].c_opscompleted);
}
fclose(file);
}
}
static const char *
op_status2str( int o_status )
{
const char *s = "unknown";
switch( o_status ) {
case SLAPI_OP_STATUS_PROCESSING:
s = "processing";
break;
case SLAPI_OP_STATUS_ABANDONED:
s = "abandoned";
break;
case SLAPI_OP_STATUS_WILL_COMPLETE:
s = "will_complete";
break;
case SLAPI_OP_STATUS_RESULT_SENT:
s = "result_sent";
break;
}
return s;
}
void
dump_op_list(FILE *file, Operation *op)
{
Operation *tmp;
for ( tmp = op; tmp != NULL; tmp = tmp->o_next )
{
fprintf(file,
"(o_msgid=%d, o_tag=%d, o_sdn=0x%x, o_opid=%d, o_connid=%d, o_status=%s)\n",
tmp->o_msgid, tmp->o_tag, slapi_sdn_get_dn(&tmp->o_sdn), tmp->o_connid,
*tmp->o_tid, op_status2str( tmp->o_status ));
}
}
#endif /* 0 */
|