1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
(***************************************************************************)
(* This is part of aac_tactics, it is distributed under the terms of the *)
(* GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2009-2010: Thomas Braibant, Damien Pous. *)
(***************************************************************************)
(** aac_rewrite -- rewriting modulo *)
module Control = struct
let debug = false
let printing = false
let time = false
end
module Debug = AAC_helper.Debug (Control)
open Debug
let time_tac msg tac =
if Control.time then AAC_coq.tclTIME msg tac else tac
let tac_or_exn tac exn msg = fun gl ->
try tac gl with e ->
pr_constr "last goal" (Tacmach.pf_concl gl);
exn msg e
(* helper to be used with the previous function: raise a new anomaly
except if a another one was previously raised *)
let push_anomaly msg = function
| Util.Anomaly _ as e -> raise e
| _ -> AAC_coq.anomaly msg
module M = AAC_matcher
open Term
open Names
open Coqlib
open Proof_type
(** The various kind of relation we can encounter, as a hierarchy *)
type rew_relation =
| Bare of AAC_coq.Relation.t
| Transitive of AAC_coq.Transitive.t
| Equivalence of AAC_coq.Equivalence.t
(** {!promote try to go higher in the aforementionned hierarchy} *)
let promote (rlt : AAC_coq.Relation.t) (k : rew_relation -> Proof_type.tactic) =
try AAC_coq.Equivalence.cps_from_relation rlt
(fun e -> k (Equivalence e))
with
| Not_found ->
begin
try AAC_coq.Transitive.cps_from_relation rlt
(fun trans -> k (Transitive trans))
with
|Not_found -> k (Bare rlt)
end
(*
Various situations:
p == q |- left == right : rewrite <- ->
p <= q |- left <= right : rewrite ->
p <= q |- left == right : failure
p == q |- left <= right : rewrite <- ->
Not handled
p <= q |- left >= right : failure
*)
(** aac_lift : the ideal type beyond AAC.v/AAC_lift
A base relation r, together with an equivalence relation, and the
proof that the former lifts to the later. Howver, we have to
ensure manually the invariant : r.carrier == e.carrier, and that
lift connects the two things *)
type aac_lift =
{
r : AAC_coq.Relation.t;
e : AAC_coq.Equivalence.t;
lift : Term.constr
}
type rewinfo =
{
hypinfo : AAC_coq.Rewrite.hypinfo;
in_left : bool; (** are we rewriting in the left hand-sie of the goal *)
pattern : constr;
subject : constr;
morph_rlt : AAC_coq.Relation.t; (** the relation we look for in morphism *)
eqt : AAC_coq.Equivalence.t; (** the equivalence we use as workbase *)
rlt : AAC_coq.Relation.t; (** the relation in the goal *)
lifting: aac_lift
}
let infer_lifting (rlt: AAC_coq.Relation.t) (k : lift:aac_lift -> Proof_type.tactic) : Proof_type.tactic =
AAC_coq.cps_evar_relation rlt.AAC_coq.Relation.carrier (fun e ->
let lift_ty =
mkApp (Lazy.force AAC_theory.Stubs.lift,
[|
rlt.AAC_coq.Relation.carrier;
rlt.AAC_coq.Relation.r;
e
|]
) in
AAC_coq.cps_resolve_one_typeclass ~error:"Cannot infer a lifting"
lift_ty (fun lift goal ->
let x = rlt.AAC_coq.Relation.carrier in
let r = rlt.AAC_coq.Relation.r in
let eq = (AAC_coq.nf_evar goal e) in
let equiv = AAC_coq.lapp AAC_theory.Stubs.lift_proj_equivalence [| x;r;eq; lift |] in
let lift =
{
r = rlt;
e = AAC_coq.Equivalence.make x eq equiv;
lift = lift;
}
in
k ~lift:lift goal
))
(** Builds a rewinfo, once and for all *)
let dispatch in_left (left,right,rlt) hypinfo (k: rewinfo -> Proof_type.tactic ) : Proof_type.tactic=
let l2r = hypinfo.AAC_coq.Rewrite.l2r in
infer_lifting rlt
(fun ~lift ->
let eq = lift.e in
k {
hypinfo = hypinfo;
in_left = in_left;
pattern = if l2r then hypinfo.AAC_coq.Rewrite.left else hypinfo.AAC_coq.Rewrite.right;
subject = if in_left then left else right;
morph_rlt = AAC_coq.Equivalence.to_relation eq;
eqt = eq;
lifting = lift;
rlt = rlt
}
)
(** {1 Tactics} *)
(** Build the reifiers, the reified terms, and the evaluation fonction *)
let handle eqt zero envs (t : AAC_matcher.Terms.t) (t' : AAC_matcher.Terms.t) k =
let (x,r,_) = AAC_coq.Equivalence.split eqt in
AAC_theory.Trans.mk_reifier (AAC_coq.Equivalence.to_relation eqt) zero envs
(fun (maps, reifier) ->
(* fold through a term and reify *)
let t = AAC_theory.Trans.reif_constr_of_t reifier t in
let t' = AAC_theory.Trans.reif_constr_of_t reifier t' in
(* Some letins *)
let eval = (mkApp (Lazy.force AAC_theory.Stubs.eval, [|x;r; maps.AAC_theory.Trans.env_sym; maps.AAC_theory.Trans.env_bin; maps.AAC_theory.Trans.env_units|])) in
AAC_coq.cps_mk_letin "eval" eval (fun eval ->
AAC_coq.cps_mk_letin "left" t (fun t ->
AAC_coq.cps_mk_letin "right" t' (fun t' ->
k maps eval t t'))))
(** [by_aac_reflexivity] is a sub-tactic that closes a sub-goal that
is merely a proof of equality of two terms modulo AAC *)
let by_aac_reflexivity zero
eqt envs (t : AAC_matcher.Terms.t) (t' : AAC_matcher.Terms.t) : Proof_type.tactic =
handle eqt zero envs t t'
(fun maps eval t t' ->
let (x,r,e) = AAC_coq.Equivalence.split eqt in
let decision_thm = AAC_coq.lapp AAC_theory.Stubs.decide_thm
[|x;r;e;
maps.AAC_theory.Trans.env_sym;
maps.AAC_theory.Trans.env_bin;
maps.AAC_theory.Trans.env_units;
t;t';
|]
in
(* This convert is required to deal with evars in a proper
way *)
let convert_to = mkApp (r, [| mkApp (eval,[| t |]); mkApp (eval, [|t'|])|]) in
let convert = Tactics.convert_concl convert_to Term.VMcast in
let apply_tac = Tactics.apply decision_thm in
(Tacticals.tclTHENLIST
[
convert ;
tac_or_exn apply_tac AAC_coq.user_error "unification failure";
tac_or_exn (time_tac "vm_norm" (Tactics.normalise_in_concl)) AAC_coq.anomaly "vm_compute failure";
Tacticals.tclORELSE Tactics.reflexivity
(Tacticals.tclFAIL 0 (Pp.str "Not an equality modulo A/AC"))
])
)
let by_aac_normalise zero lift ir t t' =
let eqt = lift.e in
let rlt = lift.r in
handle eqt zero ir t t'
(fun maps eval t t' ->
let (x,r,e) = AAC_coq.Equivalence.split eqt in
let normalise_thm = AAC_coq.lapp AAC_theory.Stubs.lift_normalise_thm
[|x;r;e;
maps.AAC_theory.Trans.env_sym;
maps.AAC_theory.Trans.env_bin;
maps.AAC_theory.Trans.env_units;
rlt.AAC_coq.Relation.r;
lift.lift;
t;t';
|]
in
(* This convert is required to deal with evars in a proper
way *)
let convert_to = mkApp (rlt.AAC_coq.Relation.r, [| mkApp (eval,[| t |]); mkApp (eval, [|t'|])|]) in
let convert = Tactics.convert_concl convert_to Term.VMcast in
let apply_tac = Tactics.apply normalise_thm in
(Tacticals.tclTHENLIST
[
convert ;
apply_tac;
])
)
(** A handler tactic, that reifies the goal, and infer the liftings,
and then call its continuation *)
let aac_conclude
(k : Term.constr -> aac_lift -> AAC_theory.Trans.ir -> AAC_matcher.Terms.t -> AAC_matcher.Terms.t -> Proof_type.tactic) = fun goal ->
let (equation : Term.types) = Tacmach.pf_concl goal in
let envs = AAC_theory.Trans.empty_envs () in
let left, right,r =
match AAC_coq.match_as_equation goal equation with
| None -> AAC_coq.user_error "The goal is not an applied relation"
| Some x -> x in
try infer_lifting r
(fun ~lift goal ->
let eq = AAC_coq.Equivalence.to_relation lift.e in
let tleft,tright, goal = AAC_theory.Trans.t_of_constr goal eq envs (left,right) in
let goal, ir = AAC_theory.Trans.ir_of_envs goal eq envs in
let concl = Tacmach.pf_concl goal in
let _ = pr_constr "concl "concl in
let evar_map = Tacmach.project goal in
Tacticals.tclTHEN
(Refiner.tclEVARS evar_map)
(k left lift ir tleft tright)
goal
)goal
with
| Not_found -> AAC_coq.user_error "No lifting from the goal's relation to an equivalence"
open Libnames
open Tacinterp
let aac_normalise = fun goal ->
let ids = Tacmach.pf_ids_of_hyps goal in
Tacticals.tclTHENLIST
[
aac_conclude by_aac_normalise;
Tacinterp.interp (
<:tactic<
intro x;
intro y;
vm_compute in x;
vm_compute in y;
unfold x;
unfold y;
compute [Internal.eval Internal.fold_map Internal.copy Prect]; simpl
>>
);
Tactics.keep ids
] goal
let aac_reflexivity = fun goal ->
aac_conclude
(fun zero lift ir t t' ->
let x,r = AAC_coq.Relation.split (lift.r) in
let r_reflexive = (AAC_coq.Classes.mk_reflexive x r) in
AAC_coq.cps_resolve_one_typeclass ~error:"The goal's relation is not reflexive"
r_reflexive
(fun reflexive ->
let lift_reflexivity =
mkApp (Lazy.force (AAC_theory.Stubs.lift_reflexivity),
[|
x;
r;
lift.e.AAC_coq.Equivalence.eq;
lift.lift;
reflexive
|])
in
Tacticals.tclTHEN
(Tactics.apply lift_reflexivity)
(fun goal ->
let concl = Tacmach.pf_concl goal in
let _ = pr_constr "concl "concl in
by_aac_reflexivity zero lift.e ir t t' goal)
)
) goal
(** A sub-tactic to lift the rewriting using AAC_lift *)
let lift_transitivity in_left (step:constr) preorder lifting (using_eq : AAC_coq.Equivalence.t): tactic =
fun goal ->
(* catch the equation and the two members*)
let concl = Tacmach.pf_concl goal in
let (left, right, _ ) = match AAC_coq.match_as_equation goal concl with
| Some x -> x
| None -> AAC_coq.user_error "The goal is not an equation"
in
let lift_transitivity =
let thm =
if in_left
then
Lazy.force AAC_theory.Stubs.lift_transitivity_left
else
Lazy.force AAC_theory.Stubs.lift_transitivity_right
in
mkApp (thm,
[|
preorder.AAC_coq.Relation.carrier;
preorder.AAC_coq.Relation.r;
using_eq.AAC_coq.Equivalence.eq;
lifting;
step;
left;
right;
|])
in
Tacticals.tclTHENLIST
[
Tactics.apply lift_transitivity
] goal
(** The core tactic for aac_rewrite *)
let core_aac_rewrite ?abort
rewinfo
subst
(by_aac_reflexivity : AAC_matcher.Terms.t -> AAC_matcher.Terms.t -> Proof_type.tactic)
(tr : constr) t left : tactic =
pr_constr "transitivity through" tr;
let tran_tac =
lift_transitivity rewinfo.in_left tr rewinfo.rlt rewinfo.lifting.lift rewinfo.eqt
in
AAC_coq.Rewrite.rewrite ?abort rewinfo.hypinfo subst (fun rew ->
Tacticals.tclTHENSV
(tac_or_exn (tran_tac) AAC_coq.anomaly "Unable to make the transitivity step")
(
if rewinfo.in_left
then [| by_aac_reflexivity left t ; rew |]
else [| by_aac_reflexivity t left ; rew |]
)
)
exception NoSolutions
(** Choose a substitution from a
[(int * Terms.t * Env.env AAC_search_monad.m) AAC_search_monad.m ] *)
(* WARNING: Beware, since the printing function can change the order of the
printed monad, this function has to be updated accordingly *)
let choose_subst subterm sol m=
try
let (depth,pat,envm) = match subterm with
| None -> (* first solution *)
List.nth ( List.rev (AAC_search_monad.to_list m)) 0
| Some x ->
List.nth ( List.rev (AAC_search_monad.to_list m)) x
in
let env = match sol with
None ->
List.nth ( (AAC_search_monad.to_list envm)) 0
| Some x -> List.nth ( (AAC_search_monad.to_list envm)) x
in
pat, env
with
| _ -> raise NoSolutions
(** rewrite the constr modulo AC from left to right in the left member
of the goal *)
let aac_rewrite ?abort rew ?(l2r=true) ?(show = false) ?(in_left=true) ?strict ~occ_subterm ~occ_sol ?extra : Proof_type.tactic = fun goal ->
let envs = AAC_theory.Trans.empty_envs () in
let (concl : Term.types) = Tacmach.pf_concl goal in
let (_,_,rlt) as concl =
match AAC_coq.match_as_equation goal concl with
| None -> AAC_coq.user_error "The goal is not an applied relation"
| Some (left, right, rlt) -> left,right,rlt
in
let check_type x =
Tacmach.pf_conv_x goal x rlt.AAC_coq.Relation.carrier
in
AAC_coq.Rewrite.get_hypinfo rew ~l2r ?check_type:(Some check_type)
(fun hypinfo ->
dispatch in_left concl hypinfo
(
fun rewinfo ->
let goal =
match extra with
| Some t -> AAC_theory.Trans.add_symbol goal rewinfo.morph_rlt envs t
| None -> goal
in
let pattern, subject, goal =
AAC_theory.Trans.t_of_constr goal rewinfo.morph_rlt envs
(rewinfo.pattern , rewinfo.subject)
in
let goal, ir = AAC_theory.Trans.ir_of_envs goal rewinfo.morph_rlt envs in
let units = AAC_theory.Trans.ir_to_units ir in
let m = AAC_matcher.subterm ?strict units pattern subject in
(* We sort the monad in increasing size of contet *)
let m = AAC_search_monad.sort (fun (x,_,_) (y,_,_) -> x - y) m in
if show
then
AAC_print.print rewinfo.morph_rlt ir m (hypinfo.AAC_coq.Rewrite.context)
else
try
let pat,subst = choose_subst occ_subterm occ_sol m in
let tr_step = AAC_matcher.Subst.instantiate subst pat in
let tr_step_raw = AAC_theory.Trans.raw_constr_of_t ir rewinfo.morph_rlt [] tr_step in
let conv = (AAC_theory.Trans.raw_constr_of_t ir rewinfo.morph_rlt (hypinfo.AAC_coq.Rewrite.context)) in
let subst = AAC_matcher.Subst.to_list subst in
let subst = List.map (fun (x,y) -> x, conv y) subst in
let by_aac_reflexivity = (by_aac_reflexivity rewinfo.subject rewinfo.eqt ir) in
core_aac_rewrite ?abort rewinfo subst by_aac_reflexivity tr_step_raw tr_step subject
with
| NoSolutions ->
Tacticals.tclFAIL 0
(Pp.str (if occ_subterm = None && occ_sol = None
then "No matching occurence modulo AC found"
else "No such solution"))
)
) goal
open Rewrite
open Tacmach
open Tacticals
open Tacexpr
open Tacinterp
open Extraargs
open Genarg
let rec add k x = function
| [] -> [k,x]
| k',_ as ky::q ->
if k'=k then AAC_coq.user_error ("redondant argument ("^k^")")
else ky::add k x q
let get k l = try Some (List.assoc k l) with Not_found -> None
let get_lhs l = try List.assoc "in_right" l; false with Not_found -> true
let aac_rewrite ~args =
aac_rewrite ~occ_subterm:(get "at" args) ~occ_sol:(get "subst" args) ~in_left:(get_lhs args)
let pr_aac_args _ _ _ l =
List.fold_left
(fun acc -> function
| ("in_right" as s,_) -> Pp.(++) (Pp.str s) acc
| (k,i) -> Pp.(++) (Pp.(++) (Pp.str k) (Pp.int i)) acc
) (Pp.str "") l
ARGUMENT EXTEND aac_args
TYPED AS ((string * int) list )
PRINTED BY pr_aac_args
| [ "at" integer(n) aac_args(q) ] -> [ add "at" n q ]
| [ "subst" integer(n) aac_args(q) ] -> [ add "subst" n q ]
| [ "in_right" aac_args(q) ] -> [ add "in_right" 0 q ]
| [ ] -> [ [] ]
END
let pr_constro _ _ _ = fun b ->
match b with
| None -> Pp.str ""
| Some o -> Pp.str "<constr>"
ARGUMENT EXTEND constro
TYPED AS (constr option)
PRINTED BY pr_constro
| [ "[" constr(c) "]" ] -> [ Some c ]
| [ ] -> [ None ]
END
TACTIC EXTEND _aac_reflexivity_
| [ "aac_reflexivity" ] -> [ aac_reflexivity ]
END
TACTIC EXTEND _aac_normalise_
| [ "aac_normalise" ] -> [ aac_normalise ]
END
TACTIC EXTEND _aac_rewrite_
| [ "aac_rewrite" orient(l2r) constr(c) aac_args(args) constro(extra)] ->
[ fun gl -> aac_rewrite ?extra ~args ~l2r ~strict:true c gl ]
END
TACTIC EXTEND _aac_pattern_
| [ "aac_pattern" orient(l2r) constr(c) aac_args(args) constro(extra)] ->
[ fun gl -> aac_rewrite ?extra ~args ~l2r ~strict:true ~abort:true c gl ]
END
TACTIC EXTEND _aac_instances_
| [ "aac_instances" orient(l2r) constr(c) aac_args(args) constro(extra)] ->
[ fun gl -> aac_rewrite ?extra ~args ~l2r ~strict:true ~show:true c gl ]
END
TACTIC EXTEND _aacu_rewrite_
| [ "aacu_rewrite" orient(l2r) constr(c) aac_args(args) constro(extra)] ->
[ fun gl -> aac_rewrite ?extra ~args ~l2r ~strict:false c gl ]
END
TACTIC EXTEND _aacu_pattern_
| [ "aacu_pattern" orient(l2r) constr(c) aac_args(args) constro(extra)] ->
[ fun gl -> aac_rewrite ?extra ~args ~l2r ~strict:false ~abort:true c gl ]
END
TACTIC EXTEND _aacu_instances_
| [ "aacu_instances" orient(l2r) constr(c) aac_args(args) constro(extra)] ->
[ fun gl -> aac_rewrite ?extra ~args ~l2r ~strict:false ~show:true c gl ]
END
|