File: AAC.v

package info (click to toggle)
aac-tactics 8.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 396 kB
  • sloc: ml: 2,604; makefile: 34
file content (1141 lines) | stat: -rw-r--r-- 37,651 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
(***************************************************************************)
(*  This is part of aac_tactics, it is distributed under the terms of the  *)
(*         GNU Lesser General Public License version 3                     *)
(*              (see file LICENSE for more details)                        *)
(*                                                                         *)
(*       Copyright 2009-2010: Thomas Braibant, Damien Pous.                *)
(***************************************************************************)

(** * Theory file for the aac_rewrite tactic

   We define several base classes to package associative and possibly
   commutative operators, and define a data-type for reified (or
   quoted) expressions (with morphisms).

   We then define a reflexive decision procedure to decide the
   equality of reified terms: first normalise reified terms, then
   compare them. This allows us to close transitivity steps
   automatically, in the [aac_rewrite] tactic.
  
   We restrict ourselves to the case where all symbols operate on a
   single fixed type. In particular, this means that we cannot handle
   situations like  

   [H: forall x y, nat_of_pos (pos_of_nat (x) + y) + x = ....]

   where one occurrence of [+] operates on nat while the other one
   operates on positive. *)

Require Import Arith NArith.
Require Import List.
Require Import FMapPositive FMapFacts.
Require Import RelationClasses Equality.
Require Export Morphisms.

Set Implicit Arguments.
Set Asymmetric Patterns.

Local Open Scope signature_scope.

(** * Environments for the reification process: we use positive maps to index elements *)

Section sigma.
  Definition sigma := PositiveMap.t.
  Definition sigma_get A (null : A) (map : sigma A) (n : positive) : A :=
    match PositiveMap.find n map with
      | None => null
      | Some x => x
    end.
  Definition sigma_add := @PositiveMap.add.
  Definition sigma_empty := @PositiveMap.empty.
End sigma.


(** * Classes for properties of operators *)

Class Associative (X:Type) (R:relation X) (dot: X -> X -> X) :=
  law_assoc : forall x y z, R (dot x (dot y z)) (dot (dot x y) z).
Class Commutative (X:Type) (R: relation X) (plus: X -> X -> X) :=
  law_comm: forall x y, R (plus x y) (plus y x).
Class Unit (X:Type) (R:relation X) (op : X -> X -> X) (unit:X) := {
  law_neutral_left: forall x, R (op unit x) x;
  law_neutral_right: forall x, R (op x unit) x
}.


(** Class used to find the equivalence relation on which operations
   are A or AC, starting from the relation appearing in the goal *)

Class AAC_lift X (R: relation X) (E : relation X) := {
  aac_lift_equivalence : Equivalence E;
  aac_list_proper : Proper (E ==> E ==> iff) R
}.

(** simple instances, when we have a subrelation, or an equivalence *)

Instance aac_lift_subrelation {X} {R} {E} {HE: Equivalence E}
  {HR: @Transitive X R} {HER: subrelation E R}: AAC_lift  R E | 3.
Proof.
  constructor; trivial.
  intros ? ? H ? ? H'. split; intro G.
   rewrite <- H, G. apply HER, H'.
   rewrite H, G. apply HER. symmetry. apply H'.
Qed.

Instance aac_lift_proper {X} {R : relation X} {E} {HE: Equivalence E}
  {HR: Proper (E==>E==>iff) R}: AAC_lift  R E | 4 := {}.



Module Internal.

(** * Utilities for the evaluation function *)

Section copy.

  Context {X} {R} {HR: @Equivalence X R} {plus}
   (op: Associative R plus) (op': Commutative R plus) (po: Proper (R ==> R ==> R) plus).

  (* copy n x = x+...+x (n times) *)
  Fixpoint copy' n x := match n with
                         | xH => x
                         | xI n => let xn := copy' n x in plus (plus xn xn) x
                         | xO n => let xn := copy' n x in (plus xn xn)
                       end.
  Definition copy n x :=  Prect (fun _ => X) x (fun _ xn => plus x xn) n.
     
  Lemma copy_plus : forall n m x, R (copy (n+m) x) (plus (copy n x) (copy m x)).
  Proof.
    unfold copy.
    induction n using Pind; intros m x.
     rewrite Prect_base. rewrite <- Pplus_one_succ_l. rewrite Prect_succ. reflexivity. 
     rewrite Pplus_succ_permute_l. rewrite 2Prect_succ. rewrite IHn. apply op.
  Qed.
  Lemma copy_xH : forall x, R (copy 1 x) x.
  Proof. intros; unfold copy; rewrite Prect_base. reflexivity. Qed.
  Lemma copy_Psucc : forall n x, R (copy (Psucc n) x) (plus x (copy n x)).
  Proof. intros; unfold copy; rewrite Prect_succ. reflexivity. Qed.

  Global Instance copy_compat n: Proper (R ==> R) (copy n).
  Proof.
    unfold copy.
    induction n using Pind; intros x y H.
     rewrite 2Prect_base. assumption.
     rewrite 2Prect_succ. apply po; auto.
  Qed.

End copy.

(** * Utilities for positive numbers
   which we use as:
     - indices for morphisms and symbols
     - multiplicity of terms in sums *)

Local Notation idx := positive.

Fixpoint eq_idx_bool i j :=
  match i,j with
    | xH, xH => true
    | xO i, xO j => eq_idx_bool i j
    | xI i, xI j => eq_idx_bool i j
    | _, _ => false
  end.

Fixpoint idx_compare i j :=
  match i,j with
    | xH, xH => Eq
    | xH, _ => Lt
    | _, xH => Gt
    | xO i, xO j => idx_compare i j
    | xI i, xI j => idx_compare i j
    | xI _, xO _ => Gt
    | xO _, xI _ => Lt
  end.

Local Notation pos_compare := idx_compare (only parsing).

(** Specification predicate for boolean binary functions *)
Inductive decide_spec {A} {B} (R : A -> B -> Prop) (x : A) (y : B) : bool -> Prop :=
| decide_true : R x y -> decide_spec R x y true
| decide_false : ~(R x y) -> decide_spec R x y false.

Lemma eq_idx_spec : forall i j, decide_spec (@eq _) i j (eq_idx_bool i j).
Proof.
  induction i; destruct j; simpl; try (constructor; congruence).
   case (IHi j); constructor; congruence.
   case (IHi j); constructor; congruence.
Qed.

(** weak specification predicate for comparison functions: only the 'Eq' case is specified *)
Inductive compare_weak_spec A: A -> A -> comparison -> Prop :=
| pcws_eq: forall i, compare_weak_spec i i Eq
| pcws_lt: forall i j, compare_weak_spec i j Lt
| pcws_gt: forall i j, compare_weak_spec i j Gt.

Lemma pos_compare_weak_spec: forall i j, compare_weak_spec i j (pos_compare i j).
Proof. induction i; destruct j; simpl; try constructor; case (IHi j); intros; constructor. Qed.

Lemma idx_compare_reflect_eq: forall i j, idx_compare i j = Eq -> i=j.
Proof. intros i j. case (pos_compare_weak_spec i j); intros; congruence. Qed.

(** * Dependent types utilities *)

Local Notation cast T H u := (eq_rect _ T u _ H).

Section dep.
  Variable U: Type.
  Variable T: U -> Type.

  Lemma cast_eq: (forall u v: U, {u=v}+{u<>v}) ->
    forall A (H: A=A) (u: T A), cast T H u = u.
  Proof. intros. rewrite <- Eqdep_dec.eq_rect_eq_dec; trivial. Qed.

  Variable f: forall A B, T A -> T B -> comparison.
  Definition reflect_eqdep := forall A u B v (H: A=B), @f A B u v = Eq -> cast T H u = v.

  (* these lemmas have to remain transparent to get structural recursion
     in the lemma [tcompare_weak_spec] below *)
  Lemma reflect_eqdep_eq: reflect_eqdep ->
    forall A u v, @f A A u v = Eq -> u = v.
  Proof. intros H A u v He. apply (H _ _ _ _ eq_refl He). Defined.

  Lemma reflect_eqdep_weak_spec: reflect_eqdep ->
    forall A u v, compare_weak_spec u v (@f A A u v).
  Proof.
    intros. case_eq (f u v); try constructor.
    intro H'. apply reflect_eqdep_eq in H'. subst. constructor. assumption.
  Defined.
End dep.



(** * Utilities about (non-empty) lists and multisets  *)

Inductive nelist (A : Type) : Type :=
| nil : A -> nelist A
| cons : A -> nelist A -> nelist A.

Local Notation "x :: y" := (cons x y).

Fixpoint nelist_map (A B: Type) (f: A -> B) l :=
  match l with
    | nil x => nil ( f x)
    | cons x l => cons ( f x) (nelist_map  f l)
  end.

Fixpoint appne  A l l' : nelist A :=
  match l with
    nil x => cons x l'
    | cons t q => cons t (appne A q l')
  end.

Local Notation "x ++ y" := (appne x y).

(** finite multisets are represented with ordered lists with multiplicities *)
Definition mset A := nelist (A*positive).

(** lexicographic composition of comparisons (this is a notation to keep it lazy) *)
Local Notation lex e f := (match e with Eq => f | _ => e end).  


Section lists.

  (** comparison functions *)

  Section c.
    Variables A B: Type.
    Variable compare: A -> B -> comparison.
    Fixpoint list_compare h k :=
      match h,k with
        | nil x, nil y => compare x y
        | nil x, _   => Lt
        | _,   nil x => Gt
        | u::h, v::k => lex (compare u v) (list_compare h k)
      end. 
  End c.
  Definition mset_compare A B compare: mset A -> mset B -> comparison :=
    list_compare (fun un vm =>
      let '(u,n) := un in
        let '(v,m) := vm in
          lex (compare u v) (pos_compare n m)).

  Section list_compare_weak_spec.
    Variable A: Type.
    Variable compare: A -> A -> comparison.
    Hypothesis Hcompare: forall u v, compare_weak_spec u v (compare u v).
    (* this lemma has to remain transparent to get structural recursion
       in the lemma [tcompare_weak_spec] below *)
    Lemma list_compare_weak_spec: forall h k,
      compare_weak_spec h k (list_compare compare h k).
    Proof.
      induction h as [|u h IHh]; destruct k as [|v k]; simpl; try constructor.

      case (Hcompare a a0 ); try constructor.
      case (Hcompare u v ); try constructor.
      case (IHh k); intros; constructor.
    Defined.
  End list_compare_weak_spec.

  Section mset_compare_weak_spec.
    Variable A: Type.
    Variable compare: A -> A -> comparison.
    Hypothesis Hcompare: forall u v, compare_weak_spec u v (compare u v).
    (* this lemma has to remain transparent to get structural recursion
       in the lemma [tcompare_weak_spec] below *)
    Lemma mset_compare_weak_spec: forall h k,
      compare_weak_spec h k (mset_compare compare h k).
    Proof.
      apply list_compare_weak_spec.
      intros [u n] [v m].
       case (Hcompare u v); try constructor.
       case (pos_compare_weak_spec n m); try constructor.
    Defined.
  End mset_compare_weak_spec.

  (** (sorted) merging functions  *)

  Section m.
    Variable A: Type.
    Variable compare: A -> A -> comparison.
    Definition insert n1 h1 :=
      let fix insert_aux l2 :=
      match l2 with
        | nil (h2,n2) =>
          match compare h1 h2 with
            | Eq => nil (h1,Pplus n1 n2)
            | Lt => (h1,n1):: nil (h2,n2)
            | Gt => (h2,n2):: nil (h1,n1)
          end
        | (h2,n2)::t2 =>
          match compare h1 h2 with
            | Eq => (h1,Pplus n1 n2):: t2
            | Lt => (h1,n1)::l2
            | Gt => (h2,n2)::insert_aux t2
          end
      end
      in insert_aux.
   
    Fixpoint merge_msets l1 :=
      match l1 with
        | nil (h1,n1) => fun l2 => insert n1 h1 l2
        | (h1,n1)::t1 =>
          let fix merge_aux l2 :=
            match l2 with
               | nil (h2,n2) =>
                match compare h1 h2 with
                  | Eq => (h1,Pplus n1 n2) :: t1
                  | Lt => (h1,n1):: merge_msets t1 l2
                  | Gt => (h2,n2)::  l1
                end
              | (h2,n2)::t2 =>
                match compare h1 h2 with
                  | Eq => (h1,Pplus n1 n2)::merge_msets t1 t2
                  | Lt => (h1,n1)::merge_msets t1 l2
                  | Gt => (h2,n2)::merge_aux t2
                end
            end
            in merge_aux
      end.

    (** interpretation of a list with a constant and a binary operation *)

    Variable B: Type.
    Variable map: A -> B.
    Variable b2: B -> B -> B.
    Fixpoint fold_map l :=
      match l with
        | nil x => map x
        | u::l => b2 (map u) (fold_map l)
      end.

    (** mapping and merging *)

    Variable merge: A -> nelist B -> nelist B.
    Fixpoint merge_map (l: nelist A): nelist B :=
      match l with
        | nil x => nil (map x)
        | u::l => merge u (merge_map l)
      end.

    Variable ret : A -> B.
    Variable bind : A -> B -> B.
    Fixpoint fold_map' (l : nelist A) : B :=
      match l with
        | nil x => ret x
        | u::l => bind u (fold_map' l)
      end.

  End m.
End lists.

(** * Packaging structures *)

(** ** free symbols  *)

Module Sym.
  Section t.
    Context {X} {R : relation X} .
   
    (** type of an arity  *)
    Fixpoint type_of  (n: nat) :=
      match n with
        | O => X
        | S n => X -> type_of  n
      end.

    (** relation to be preserved at an arity  *)
    Fixpoint rel_of n : relation (type_of n) :=
      match n with
        | O => R
      | S n => respectful R (rel_of n)
      end.
   
  (** a symbol package contains an arity,
     a value of the corresponding type,
     and a proof that the value is a proper morphism *)
  Record pack  : Type := mkPack {
    ar : nat;
    value :> type_of  ar;
    morph : Proper (rel_of ar) value
  }.

  (** helper to build default values, when filling reification environments *)
  Definition null: pack := mkPack 1 (fun x => x) (fun _ _ H => H).
   
  End t.

End Sym.
  
(** ** binary operations *)

Module Bin.
  Section t.
    Context {X} {R: relation X}.

    Record pack := mk_pack {
      value:> X -> X -> X;
      compat: Proper (R ==> R ==> R) value;
      assoc: Associative R value;
      comm: option (Commutative R value)
    }.
  End t.
  (*    See #<a href="Instances.html">Instances.v</a># for concrete instances of these classes. *)

End Bin.


(** * Reification, normalisation, and decision  *)

Section s.
  Context {X} {R: relation X} {E: @Equivalence X R}.
  Infix "==" := R (at level 80).

  (* We use environments to store the various operators and the
     morphisms.*)
 
  Variable e_sym: idx -> @Sym.pack X R.
  Variable e_bin: idx -> @Bin.pack X R.

 
  (** packaging units (depends on e_bin) *)

  Record unit_of u := mk_unit_for {
    uf_idx: idx;
    uf_desc: Unit R (Bin.value (e_bin uf_idx)) u
  }.

  Record unit_pack := mk_unit_pack {
    u_value:> X;
    u_desc: list (unit_of u_value)
  }.
  Variable e_unit: positive -> unit_pack.
 
  Hint Resolve e_bin e_unit: typeclass_instances.

  (** ** Almost normalised syntax
     a term in [T] is in normal form if:
     - sums do not contain sums
     - products do not contain products
     - there are no unary sums or products
     - lists and msets are lexicographically sorted according to the order we define below
    
     [vT n] denotes the set of term vectors of size [n] (the mutual dependency could be removed),

     Note that [T] and [vT] depend on the [e_sym] environment (which
     contains, among other things, the arity of symbols)
     *)

  Inductive T: Type :=
  | sum: idx -> mset T -> T
  | prd: idx -> nelist T -> T
  | sym: forall i, vT (Sym.ar (e_sym i)) -> T
  | unit : idx -> T
  with vT: nat -> Type :=
  | vnil: vT O
  | vcons: forall n, T -> vT n -> vT (S n).


  (** lexicographic rpo over the normalised syntax *)
  Fixpoint compare (u v: T) :=
    match u,v with
      | sum i l, sum j vs => lex (idx_compare i j) (mset_compare compare l vs)
      | prd i l, prd j vs => lex (idx_compare i j) (list_compare compare l vs)
      | sym i l, sym j vs => lex (idx_compare i j) (vcompare l vs)
      | unit i , unit j => idx_compare i j
      | unit _ , _        => Lt
      | _      , unit _  => Gt
      | sum _ _, _        => Lt
      | _      , sum _ _  => Gt
      | prd _ _, _        => Lt
      | _      , prd _ _  => Gt

    end
  with vcompare i j (us: vT i) (vs: vT j) :=
    match us,vs with
      | vnil, vnil => Eq
      | vnil, _    => Lt
      | _,    vnil => Gt
      | vcons _ u us, vcons _ v vs => lex (compare u v) (vcompare us vs)
    end.
 


  (** ** Evaluation from syntax to the abstract domain *)

  Fixpoint eval u: X :=
    match u with
      | sum i l => let o := Bin.value (e_bin i) in
        fold_map (fun un => let '(u,n):=un in @copy _ o n (eval u)) o l
      | prd i l => fold_map eval (Bin.value (e_bin i)) l
      | sym i v => eval_aux v (Sym.value (e_sym i))
      | unit i  => e_unit i
    end
  with eval_aux i (v: vT i): Sym.type_of i -> X :=
    match v with
      | vnil => fun f => f
      | vcons _ u v => fun f => eval_aux v (f (eval u))
    end.

  (** we need to show that compare reflects equality (this is because
     we work with msets rather than lists with arities) *)
  Lemma tcompare_weak_spec: forall (u v : T), compare_weak_spec u v (compare u v)
  with vcompare_reflect_eqdep: forall i us j vs (H: i=j), vcompare us vs = Eq -> cast vT H us = vs.
  Proof.
    induction u.
     destruct v; simpl; try constructor.
      case (pos_compare_weak_spec p p0); intros; try constructor.
      case (mset_compare_weak_spec compare tcompare_weak_spec m m0); intros; try constructor.
     destruct v; simpl; try constructor.
      case (pos_compare_weak_spec p p0); intros; try constructor.
      case (list_compare_weak_spec compare tcompare_weak_spec n n0); intros; try constructor.
     destruct v0; simpl; try constructor.
      case_eq (idx_compare i i0); intro Hi; try constructor.
      apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst. (* the [symmetry] is required ! *)
      case_eq (vcompare v v0); intro Hv; try constructor.
      rewrite <- (vcompare_reflect_eqdep _ _ _ _ eq_refl Hv). constructor.
     destruct v; simpl; try constructor.
      case_eq (idx_compare p p0); intro Hi; try constructor.
      apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst.  constructor.

    induction us; destruct vs; simpl; intros H Huv; try discriminate.
     apply cast_eq, eq_nat_dec.
     injection H; intro Hn.
     revert Huv; case (tcompare_weak_spec t t0); intros; try discriminate.
     symmetry in Hn. subst.   (* symmetry required *)
     rewrite <- (IHus _ _ eq_refl Huv).
     apply cast_eq, eq_nat_dec.
  Qed.

  Instance eval_aux_compat i (l: vT i): Proper (@Sym.rel_of X R i ==> R) (eval_aux l).
  Proof.
    induction l; simpl; repeat intro.
     assumption.
     apply IHl, H. reflexivity.
  Qed.

 
  (* is [i] a unit for [j] ? *)
  Definition is_unit_of j i :=
    List.existsb (fun p => eq_idx_bool j (uf_idx p)) (u_desc (e_unit i)).

  (* is [i] commutative ? *)
  Definition is_commutative i :=
    match Bin.comm (e_bin i) with Some _ => true | None => false end.


  (** ** Normalisation *)

  Inductive discr {A} : Type :=
  | Is_op : A -> discr
  | Is_unit : idx -> discr
  | Is_nothing : discr .
 
  (* This is called sum in the std lib *)
  Inductive m {A} {B} :=
  | left : A -> m
  | right : B -> m.

  Definition comp A B (merge : B -> B -> B) (l : B) (l' : @m A B) : @m A B :=
    match l' with
      | left _ => right l
      | right l' => right (merge l l')
    end.
 
  (** auxiliary functions, to clean up sums  *)

  Section sums.
    Variable i : idx.
    Variable is_unit : idx -> bool.

    Definition sum' (u: mset T): T :=
      match u with
        | nil (u,xH) => u
        | _ => sum i u
      end.

    Definition is_sum  (u: T) : @discr (mset T) :=
    match u with
      | sum j l => if eq_idx_bool j i then Is_op l else Is_nothing
      | unit j => if is_unit j   then Is_unit j else Is_nothing
      | u => Is_nothing
    end.

    Definition copy_mset n (l: mset T): mset T :=
      match n with
        | xH => l
        | _ => nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l
      end.
   
    Definition return_sum  u n :=
      match is_sum  u with
        | Is_nothing => right (nil (u,n))
        | Is_op l' =>  right (copy_mset n l')
        | Is_unit j => left j
      end.
   
    Definition add_to_sum u n (l : @m idx (mset T))  :=
      match is_sum  u with
        | Is_nothing => comp (merge_msets compare) (nil (u,n)) l
        | Is_op l' => comp (merge_msets compare) (copy_mset n l') l
        | Is_unit _ => l
    end.


    Definition norm_msets_ norm  (l: mset T) :=
    fold_map'
    (fun un => let '(u,n) := un in  return_sum  (norm u) n)
    (fun un l => let '(u,n) := un in  add_to_sum  (norm u) n l) l.


  End sums.
 
  (** similar functions for products *)

  Section prds.

    Variable i : idx.
    Variable is_unit : idx -> bool.
    Definition prd'  (u: nelist T): T :=
    match u with
      | nil u => u
      | _ => prd i u
    end.

    Definition is_prd (u: T) : @discr (nelist T) :=
    match u with
      | prd j l => if eq_idx_bool j i then Is_op l else Is_nothing
      | unit j => if is_unit j  then Is_unit j else Is_nothing
      | u => Is_nothing
    end.
 
   
    Definition return_prd u :=
      match is_prd u with
        | Is_nothing => right (nil (u))
        | Is_op l' =>  right (l')
        | Is_unit j => left j
      end.
   
    Definition add_to_prd  u  (l : @m idx (nelist T))  :=
      match is_prd  u with
        | Is_nothing => comp (@appne T) (nil (u)) l
        | Is_op l' => comp (@appne T) (l') l
        | Is_unit _ => l
      end.

    Definition norm_lists_ norm (l : nelist T) :=
    fold_map'
    (fun u => return_prd  (norm u))
    (fun u l => add_to_prd (norm u) l) l.


  End prds.


  Definition run_list x := match x with
                        | left n => nil (unit n)
                        | right l => l
                      end.
 
  Definition norm_lists norm i l :=
    let is_unit := is_unit_of i in
      run_list (norm_lists_ i is_unit norm l).

  Definition run_msets x := match x with
                        | left n => nil (unit n, xH)
                        | right l => l
                      end.
 
  Definition norm_msets norm i l :=
    let is_unit := is_unit_of i in
      run_msets (norm_msets_ i is_unit norm l).
 
  Fixpoint norm u {struct u}:=
    match u with
      | sum i l => if is_commutative i then sum' i (norm_msets norm i l)  else u
      | prd i l => prd' i (norm_lists norm i l)
      | sym i l => sym i (vnorm l)
      | unit i => unit i
    end
  with vnorm i (l: vT i): vT i :=
    match l with
      | vnil => vnil
      | vcons _ u l => vcons (norm u) (vnorm l)
    end.

  (** ** Correctness *)

  Lemma is_unit_of_Unit  : forall i j : idx,
   is_unit_of i j = true -> Unit R (Bin.value (e_bin i)) (eval (unit j)).
  Proof.
    intros. unfold is_unit_of in H.
    rewrite existsb_exists in H.
    destruct H as [x [H H']].
    revert H' ; case (eq_idx_spec); [intros H' _ ; subst| intros _ H'; discriminate].
    simpl. destruct x. simpl. auto.
  Qed.
 
  Instance Binvalue_Commutative i (H :  is_commutative i = true) : Commutative R  (@Bin.value _ _ (e_bin i) ).
  Proof.
    unfold is_commutative in H.
    destruct (Bin.comm (e_bin i)); auto.
    discriminate.
  Qed.

  Instance Binvalue_Associative i :Associative R (@Bin.value _ _ (e_bin i) ).
  Proof.
    destruct ((e_bin i)); auto.
  Qed.
 
  Instance Binvalue_Proper i : Proper (R ==> R ==> R) (@Bin.value _ _ (e_bin i) ).
  Proof.
    destruct ((e_bin i)); auto.
  Qed.
  Hint Resolve Binvalue_Proper Binvalue_Associative Binvalue_Commutative.

  (** auxiliary lemmas about sums  *)

  Hint Resolve is_unit_of_Unit.
  Section sum_correctness.
    Variable i : idx.
    Variable is_unit : idx -> bool.
    Hypothesis is_unit_sum_Unit : forall j, is_unit j = true->  @Unit X R (Bin.value (e_bin i)) (eval (unit j)).

    Inductive is_sum_spec_ind : T ->  @discr (mset T) -> Prop :=
    | is_sum_spec_op : forall j l, j = i -> is_sum_spec_ind (sum j l) (Is_op l)
    | is_sum_spec_unit : forall j, is_unit j = true ->  is_sum_spec_ind (unit j) (Is_unit j)
    | is_sum_spec_nothing : forall u, is_sum_spec_ind  u (Is_nothing).
 
    Lemma is_sum_spec u : is_sum_spec_ind u (is_sum i is_unit u).
    Proof.
      unfold is_sum; case u; intros; try constructor.
      case_eq (eq_idx_bool p i); intros; subst;  try constructor; auto.
      revert H. case eq_idx_spec; try discriminate. auto.
      case_eq (is_unit p); intros; try constructor. auto.
    Qed.

    Instance assoc :   @Associative X R (Bin.value (e_bin i)).
    Proof.
      destruct (e_bin i). simpl. assumption.
    Qed.
    Instance proper :   Proper (R ==> R ==> R)(Bin.value (e_bin i)).
    Proof.
      destruct (e_bin i). simpl. assumption.
    Qed.
    Hypothesis comm : @Commutative X R (Bin.value (e_bin i)).

    Lemma sum'_sum : forall  (l: mset T),  eval (sum' i l) ==eval (sum i l) .
    Proof.
      intros [[a n] | [a n] l]; destruct n;  simpl; reflexivity.
    Qed.

    Lemma eval_sum_nil x:
      eval (sum i (nil (x,xH))) == (eval x).
    Proof. rewrite <- sum'_sum. reflexivity.   Qed.
     
    Lemma eval_sum_cons : forall n a (l: mset T),
      (eval (sum i ((a,n)::l))) == (@Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i)) n (eval a)) (eval (sum i l))).
    Proof.
      intros n a [[? ? ]|[b m] l]; simpl; reflexivity.
    Qed.
   
    Inductive compat_sum_unit : @m idx (mset T) -> Prop :=
    | csu_left : forall x,  is_unit x = true->  compat_sum_unit  (left x)
    | csu_right : forall m, compat_sum_unit (right m)
    .

    Lemma compat_sum_unit_return x n : compat_sum_unit  (return_sum i is_unit x n).
    Proof.
      unfold return_sum.
      case is_sum_spec; intros; try constructor; auto.
    Qed.
   
    Lemma compat_sum_unit_add : forall x n h,
      compat_sum_unit  h
      ->
     compat_sum_unit
     (add_to_sum i (is_unit_of i) x n
       h).
    Proof.
      unfold add_to_sum;intros; inversion H;
        case_eq  (is_sum i (is_unit_of i) x);
        intros; simpl; try constructor || eauto. apply H0.
    Qed.

    (* Hint Resolve copy_plus. : this lags because of  the inference of the implicit arguments *)
    Hint Extern 5 (copy (?n + ?m) (eval ?a) == Bin.value (copy ?n (eval ?a)) (copy ?m (eval ?a))) => apply copy_plus.
    Hint Extern 5 (?x == ?x) => reflexivity.
    Hint Extern 5 ( Bin.value ?x ?y == Bin.value ?y ?x) => apply Bin.comm.
   
    Lemma eval_merge_bin : forall (h k: mset T),
      eval (sum i (merge_msets compare h k)) == @Bin.value _ _ (e_bin i) (eval (sum i h)) (eval (sum i k)).
    Proof.
      induction h as [[a n]|[a n] h IHh]; intro k.
      simpl.
      induction k as [[b m]|[b m] k IHk]; simpl.
      destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto. apply copy_plus; auto.
     
      destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto.
      rewrite copy_plus,law_assoc; auto. 
      rewrite IHk;  clear IHk. rewrite 2 law_assoc. apply proper. apply law_comm. reflexivity.
     
      induction k as [[b m]|[b m] k IHk]; simpl;  simpl in IHh.
      destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl.
      rewrite  (law_comm _ (copy m (eval a))), law_assoc, <- copy_plus,  Pplus_comm; auto. 
      rewrite <- law_assoc, IHh.  reflexivity.
      rewrite law_comm. reflexivity.
     
      simpl in IHk.
      destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl.
      rewrite IHh; clear IHh. rewrite 2 law_assoc. rewrite (law_comm _ (copy m (eval a))). rewrite law_assoc, <- copy_plus,  Pplus_comm; auto. 
      rewrite IHh; clear IHh. simpl.  rewrite law_assoc. reflexivity. 
      rewrite 2 (law_comm  (copy m (eval b))). rewrite law_assoc.  apply proper; [ | reflexivity]. 
      rewrite <- IHk. reflexivity.
    Qed.

 
    Lemma copy_mset' n (l: mset T):  copy_mset n l = nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l.
    Proof.
      unfold copy_mset.  destruct n; try reflexivity.
     
      simpl. induction l as [|[a l] IHl]; simpl; try congruence.  destruct a.  reflexivity.
    Qed.
   
   
    Lemma copy_mset_succ  n (l: mset T):  eval (sum i (copy_mset (Psucc n) l)) == @Bin.value _ _ (e_bin i) (eval (sum i l)) (eval (sum i (copy_mset n l))).
    Proof.
      rewrite 2 copy_mset'.
     
      induction l as [[a m]|[a m] l IHl].
      simpl eval.   rewrite <- copy_plus; auto. rewrite Pmult_Sn_m. reflexivity.
     
      simpl nelist_map.  rewrite ! eval_sum_cons. rewrite IHl.  clear IHl.
      rewrite Pmult_Sn_m. rewrite copy_plus; auto. rewrite <- !law_assoc.
      apply Binvalue_Proper; try reflexivity.
      rewrite law_comm . rewrite <- !law_assoc. apply proper; try reflexivity.
      apply law_comm.
    Qed.

    Lemma copy_mset_copy : forall n  (m : mset T), eval (sum i (copy_mset n m)) == @copy _ (@Bin.value _ _ (e_bin i)) n (eval (sum i m)).
    Proof.
      induction n using Pind; intros.
     
      unfold copy_mset. rewrite copy_xH. reflexivity.
      rewrite copy_mset_succ. rewrite copy_Psucc. rewrite IHn. reflexivity.
    Qed.
   
    Instance compat_sum_unit_Unit : forall p, compat_sum_unit (left p) ->
      @Unit X R (Bin.value (e_bin i)) (eval (unit p)).
    Proof.
      intros.
      inversion H. subst.  auto.
    Qed.
  
    Lemma copy_n_unit : forall j n, is_unit j = true ->
      eval (unit j) == @copy _ (Bin.value (e_bin i)) n (eval (unit j)).
    Proof.
      intros.
      induction n using Prect.
      rewrite copy_xH. reflexivity.
      rewrite copy_Psucc. rewrite <- IHn. apply is_unit_sum_Unit in H. rewrite law_neutral_left. reflexivity.
    Qed.

   
    Lemma z0  l r (H : compat_sum_unit  r):
      eval (sum i (run_msets (comp (merge_msets compare) l r))) == eval (sum i ((merge_msets compare) (l) (run_msets r))).
    Proof.
      unfold comp. unfold run_msets.
      case_eq r; intros; subst.
      rewrite eval_merge_bin; auto.
      rewrite eval_sum_nil.
      apply compat_sum_unit_Unit in H. rewrite law_neutral_right.  reflexivity.
      reflexivity.
    Qed.

    Lemma z1 : forall n x,
      eval (sum i (run_msets (return_sum i (is_unit) x n )))
      == @copy _ (@Bin.value _ _ (e_bin i)) n (eval x).
    Proof.
      intros. unfold return_sum.  unfold run_msets.
      case (is_sum_spec); intros; subst.
      rewrite copy_mset_copy.
      reflexivity.
     
      rewrite eval_sum_nil. apply copy_n_unit. auto.
      reflexivity.
    Qed.
    Lemma z2 : forall  u n x, compat_sum_unit  x ->
      eval (sum i ( run_msets
        (add_to_sum i (is_unit) u n x)))
      == 
      @Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i))  n (eval u)) (eval (sum i (run_msets x))).
    Proof.
      intros u n x Hix .
      unfold add_to_sum.
      case is_sum_spec; intros; subst.
   
      rewrite z0 by auto.  rewrite eval_merge_bin.  rewrite copy_mset_copy. reflexivity.
      rewrite <- copy_n_unit by assumption.
      apply is_unit_sum_Unit in H.
      rewrite law_neutral_left. reflexivity.
     
     
      rewrite z0 by auto.  rewrite eval_merge_bin. reflexivity.
    Qed.
  End sum_correctness.
  Lemma eval_norm_msets i norm
    (Comm : Commutative R (Bin.value (e_bin i)))
    (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (sum i (norm_msets norm i h)) == eval (sum i h).
  Proof.
    unfold norm_msets.
    assert (H :
      forall h : mset T,
        eval (sum i (run_msets (norm_msets_ i (is_unit_of i) norm h))) ==  eval (sum i h) /\ compat_sum_unit (is_unit_of i) (norm_msets_ i (is_unit_of i) norm h)).
      
    induction h as [[a n] | [a n] h [IHh IHh']]; simpl norm_msets_; split.
    rewrite z1 by auto. rewrite Hnorm . reflexivity. auto.
    apply compat_sum_unit_return.
      
    rewrite z2 by auto. rewrite IHh. 
    rewrite eval_sum_cons.  rewrite Hnorm. reflexivity. apply compat_sum_unit_add, IHh'.
   
    apply H.
  Defined.
 
  (** auxiliary lemmas about products  *)

  Section prd_correctness.
    Variable i : idx.
    Variable is_unit : idx -> bool.
    Hypothesis is_unit_prd_Unit : forall j, is_unit j = true->  @Unit X R (Bin.value (e_bin i)) (eval (unit j)).

    Inductive is_prd_spec_ind  : T ->  @discr (nelist T) -> Prop :=
    | is_prd_spec_op :
      forall j l, j = i -> is_prd_spec_ind (prd j l) (Is_op l)
    | is_prd_spec_unit :
      forall j, is_unit j = true ->  is_prd_spec_ind (unit j) (Is_unit j)
    | is_prd_spec_nothing :
      forall u, is_prd_spec_ind u (Is_nothing).
   
    Lemma is_prd_spec u : is_prd_spec_ind u (is_prd i is_unit u).
    Proof.
      unfold is_prd; case u; intros; try constructor.
      case (eq_idx_spec); intros; subst;  try constructor; auto.
      case_eq (is_unit p); intros; try constructor; auto.  
    Qed.

    Lemma prd'_prd : forall (l: nelist T), eval (prd' i l) == eval (prd i l).
    Proof.
      intros  [?|? [|? ?]]; simpl; reflexivity.
    Qed.
   
   
    Lemma eval_prd_nil x:  eval (prd i (nil x)) == eval x. 
    Proof.
      rewrite <- prd'_prd. simpl. reflexivity.
    Qed.
    Lemma eval_prd_cons a : forall (l: nelist T), eval (prd i (a::l)) == @Bin.value _ _ (e_bin i) (eval a) (eval (prd i l)).
    Proof.
      intros  [|b l]; simpl; reflexivity.
    Qed.       
    Lemma eval_prd_app : forall (h k: nelist T), eval (prd i (h++k)) == @Bin.value _ _ (e_bin i) (eval (prd i h)) (eval (prd i k)).
    Proof.
      induction h; intro k. simpl; try reflexivity.
      simpl appne.  rewrite  2 eval_prd_cons, IHh, law_assoc. reflexivity.
    Qed.       

    Inductive compat_prd_unit : @m idx (nelist T) -> Prop :=
    | cpu_left : forall x,  is_unit  x = true -> compat_prd_unit  (left x)
    | cpu_right : forall m, compat_prd_unit (right m)
    .
 
    Lemma compat_prd_unit_return  x: compat_prd_unit (return_prd i is_unit x).
    Proof.
      unfold return_prd.
      case (is_prd_spec); intros; try constructor; auto.
    Qed.

    Lemma compat_prd_unit_add  : forall x  h,
      compat_prd_unit  h
      ->
      compat_prd_unit
      (add_to_prd i is_unit x
        h).
    Proof.
      intros.
      unfold add_to_prd.
      unfold comp.
      case (is_prd_spec); intros; try constructor; auto.
      unfold comp; case h; try constructor.
      unfold comp; case h; try constructor.
    Qed.

   
    Instance compat_prd_Unit : forall p, compat_prd_unit (left p) ->
      @Unit X R (Bin.value (e_bin i)) (eval (unit p)).
    Proof.
      intros.
      inversion H; subst. apply is_unit_prd_Unit. assumption.
    Qed.

    Lemma z0' : forall l (r: @m idx (nelist T)), compat_prd_unit r ->
      eval (prd i (run_list (comp (@appne T) l r))) == eval (prd i ((appne (l) (run_list r)))).
    Proof.
      intros.
      unfold comp. unfold run_list. case_eq r; intros; auto; subst.
      rewrite eval_prd_app.
      rewrite eval_prd_nil.
      apply compat_prd_Unit in H. rewrite law_neutral_right. reflexivity.
      reflexivity.
    Qed.
 
    Lemma z1' a :  eval (prd i (run_list (return_prd i is_unit a))) ==  eval (prd i (nil a)).
    Proof.
      intros. unfold return_prd.  unfold run_list.
      case (is_prd_spec); intros; subst; reflexivity.
    Qed.
    Lemma z2' : forall  u  x, compat_prd_unit  x -> 
      eval (prd i ( run_list
        (add_to_prd i is_unit u x))) ==  @Bin.value _ _ (e_bin i) (eval u) (eval (prd i (run_list x))).
    Proof.
      intros u x Hix.
      unfold add_to_prd.
      case (is_prd_spec); intros; subst.
      rewrite z0' by auto.  rewrite eval_prd_app.  reflexivity.
      apply is_unit_prd_Unit in H. rewrite law_neutral_left. reflexivity.
      rewrite z0' by auto.  rewrite eval_prd_app. reflexivity.
    Qed.
 
  End prd_correctness.




  Lemma eval_norm_lists i (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (prd i (norm_lists norm i h)) == eval (prd i h).
  Proof.
    unfold norm_lists.
    assert (H :  forall h : nelist T,
      eval (prd i (run_list (norm_lists_ i (is_unit_of i) norm h))) ==
      eval (prd i h)
      /\ compat_prd_unit (is_unit_of i) (norm_lists_ i (is_unit_of i) norm h)).
  
   
      induction h as [a | a h [IHh IHh']]; simpl norm_lists_; split.
      rewrite z1'. simpl.  apply Hnorm.
   
      apply compat_prd_unit_return.
   
      rewrite z2'. rewrite IHh.  rewrite eval_prd_cons.  rewrite Hnorm. reflexivity. apply is_unit_of_Unit.
      auto.

      apply compat_prd_unit_add. auto.
      apply H.
    Defined.

  (** correctness of the normalisation function *)

  Theorem eval_norm: forall u, eval (norm u) == eval u
    with eval_norm_aux: forall i (l: vT i) (f: Sym.type_of i),
      Proper (@Sym.rel_of X R i) f -> eval_aux (vnorm l) f == eval_aux l f.
  Proof.
    induction u as [ p m | p l | ? | ?];  simpl norm.
    case_eq (is_commutative p); intros.
    rewrite sum'_sum.
    apply eval_norm_msets; auto.
    reflexivity.

    rewrite prd'_prd.
    apply eval_norm_lists; auto.

    apply eval_norm_aux, Sym.morph.

    reflexivity.

    induction l; simpl; intros f Hf. reflexivity.
    rewrite eval_norm. apply IHl, Hf; reflexivity.
  Qed.


  (** corollaries, for goal normalisation or decision *)

  Lemma normalise : forall (u v: T), eval (norm u) == eval (norm v) -> eval u == eval v.
  Proof. intros u v. rewrite 2 eval_norm. trivial. Qed.
   
  Lemma compare_reflect_eq: forall u v, compare u v = Eq -> eval u == eval v.
  Proof. intros u v. case (tcompare_weak_spec u v); intros; try congruence. reflexivity. Qed.

  Lemma decide: forall (u v: T), compare (norm u) (norm v) = Eq -> eval u == eval v.
  Proof. intros u v H. apply normalise. apply compare_reflect_eq. apply H. Qed.

  Lemma lift_normalise {S} {H : AAC_lift S R}:
    forall (u v: T), (let x := norm u in let y := norm v in
      S (eval x) (eval y)) -> S (eval u) (eval v).
  Proof. destruct H. intros u v; simpl; rewrite 2 eval_norm. trivial. Qed.

End s.
End Internal.

Local Ltac internal_normalize :=
  let x := fresh in let y := fresh in
  intro x; intro y; vm_compute in x; vm_compute in y; unfold x; unfold y;
  compute [Internal.eval Internal.fold_map Internal.copy Prect]; simpl.


(** * Lemmas for performing transitivity steps
   given an instance of AAC_lift *)

Section t.
  Context `{AAC_lift}.

  Lemma lift_transitivity_left  (y x z : X): E x y -> R y z -> R x z.
  Proof. destruct H as [Hequiv Hproper]; intros G;rewrite G. trivial. Qed.
 
  Lemma lift_transitivity_right (y x z : X): E y z -> R x y -> R x z.
  Proof.  destruct H as [Hequiv Hproper]; intros G. rewrite G. trivial. Qed.

  Lemma lift_reflexivity {HR :Reflexive R}: forall x y, E x y -> R x y.
  Proof. destruct H. intros ? ? G. rewrite G. reflexivity. Qed.

End t.
       
Declare ML Module "aac".