File: control

package info (click to toggle)
aac-tactics 8.8.0+1.gbp069dc3b-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 384 kB
  • sloc: ml: 2,941; makefile: 39
file content (59 lines) | stat: -rw-r--r-- 1,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Source: aac-tactics
Section: math
Priority: optional
Maintainer: Debian OCaml Maintainers <debian-ocaml-maint@lists.debian.org>
Uploaders: St├ęphane Glondu <glondu@debian.org>
Build-Depends:
 debhelper (>= 10),
 dh-ocaml (>= 0.9~),
 ocaml-nox (>= 4.02.3),
 coq (>= 8.9.0),
 libcoq-ocaml-dev
Standards-Version: 4.3.0
Homepage: https://github.com/coq-contribs/aac-tactics
Vcs-Browser: https://salsa.debian.org/ocaml-team/aac-tactics
Vcs-Git: https://salsa.debian.org/ocaml-team/aac-tactics.git

Package: libaac-tactics-ocaml
Section: ocaml
Architecture: any
Depends:
 ${ocaml:Depends},
 ${shlibs:Depends},
 ${misc:Depends}
Recommends: libaac-tactics-coq
Enhances: coq
Provides: ${ocaml:Provides}
Description: Coq tactics for reasoning modulo AC (plugin)
 This Coq plugin provides tactics for rewriting universally quantified
 equations, modulo associative (and possibly commutative) operators.
 .
 This package provides the plugin itself.

Package: libaac-tactics-ocaml-dev
Section: ocaml
Architecture: any
Depends:
 ${ocaml:Depends},
 ${shlibs:Depends},
 ${misc:Depends}
Provides: ${ocaml:Provides}
Description: Coq tactics for reasoning modulo AC (devt files)
 This Coq plugin provides tactics for rewriting universally quantified
 equations, modulo associative (and possibly commutative) operators.
 .
 This package provides the static native-code library, needed to build
 custom toplevels, and the compiled interfaces.

Package: libaac-tactics-coq
Architecture: all
Depends:
 libaac-tactics-ocaml (>= ${source:Version}),
 coq-${F:CoqABI},
 ${misc:Depends}
Provides: aac-tactics
Description: Coq tactics for reasoning modulo AC (theories)
 This Coq plugin provides tactics for rewriting universally quantified
 equations, modulo associative (and possibly commutative) operators.
 .
 This package provides the Coq support library.