1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
/*
* node.cpp - part of abakus
* Copyright (C) 2004, 2005 Michael Pyne <michael.pyne@kdemail.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <kdebug.h>
#include <math.h>
#include "node.h"
#include "valuemanager.h"
#include "function.h"
void Node::deleteNode(Node *node)
{
if(dynamic_cast<BaseFunction *>(node) != 0)
delete node;
}
BaseFunction::BaseFunction(const char *name) :
m_name(name)
{
}
const Function *BaseFunction::function() const
{
return FunctionManager::instance()->function(m_name);
}
UnaryFunction::UnaryFunction(const char *name, Node *operand) :
BaseFunction(name), m_node(operand)
{
}
UnaryFunction::~UnaryFunction()
{
deleteNode(m_node);
m_node = 0;
}
void UnaryFunction::setOperand(Node *operand)
{
m_node = operand;
}
void UnaryFunction::applyMap(NodeFunctor &fn) const
{
fn(operand());
fn(this);
}
QString UnaryFunction::infixString() const
{
return QString("%1(%2)").arg(name(), operand()->infixString());
}
BuiltinFunction::BuiltinFunction(const char *name, Node *operand) :
UnaryFunction(name, operand)
{
}
Abakus::number_t BuiltinFunction::value() const
{
if(function() && operand()) {
Abakus::number_t fnValue = operand()->value();
return evaluateFunction(function(), fnValue);
}
return Abakus::number_t(0);
}
Abakus::number_t BuiltinFunction::derivative() const
{
Abakus::number_t du = operand()->derivative();
Abakus::number_t value = operand()->value();
Abakus::number_t one(1), zero(0);
if(du == zero)
return du;
// In case these functions get added later, these derivatives may
// be useful:
// d/dx(asinh u) = (du/dx * 1 / sqrt(x^2 + 1))
// d/dx(acosh u) = (du/dx * 1 / sqrt(x^2 - 1))
// d/dx(atanh u) = (du/dx * 1 / (1 - x^2))
// This is very unfortunate duplication.
if(name() == "sin")
return value.cos() * du;
else if(name() == "cos")
return -value.sin() * du;
else if(name() == "tan") {
Abakus::number_t cosResult;
cosResult = value.cos();
cosResult = cosResult * cosResult;
return one / cosResult;
}
else if(name() == "asinh") {
value = value * value + one;
return du / value.sqrt();
}
else if(name() == "acosh") {
value = value * value - one;
return du / value.sqrt();
}
else if(name() == "atanh") {
value = one - value * value;
return du / value;
}
else if(name() == "sinh") {
return du * value.cosh();
}
else if(name() == "cosh") {
return du * value.sinh(); // Yes the sign is correct.
}
else if(name() == "tanh") {
Abakus::number_t tanh = value.tanh();
return du * (one - tanh * tanh);
}
else if(name() == "atan") {
return one * du / (one + value * value);
}
else if(name() == "acos") {
// Same as asin but with inverted sign.
return -(one / (value * value - one).sqrt() * du);
}
else if(name() == "asin") {
return one / (value * value - one).sqrt() * du;
}
else if(name() == "ln") {
return du / value;
}
else if(name() == "exp") {
return du * value.exp();
}
else if(name() == "log") {
return du / value / Abakus::number_t(10).ln();
}
else if(name() == "sqrt") {
Abakus::number_t half("0.5");
return half * value.pow(-half) * du;
}
else if(name() == "abs") {
return (value / value.abs()) * du;
}
// Approximate it.
Abakus::number_t epsilon("1e-15");
Abakus::number_t fxh = evaluateFunction(function(), value + epsilon);
Abakus::number_t fx = evaluateFunction(function(), value);
return (fxh - fx) / epsilon;
}
DerivativeFunction::~DerivativeFunction()
{
deleteNode(m_operand);
m_operand = 0;
}
Abakus::number_t DerivativeFunction::value() const
{
ValueManager *vm = ValueManager::instance();
Abakus::number_t result;
if(vm->isValueSet("x")) {
Abakus::number_t oldValue = vm->value("x");
vm->setValue("x", m_where->value());
result = m_operand->derivative();
vm->setValue("x", oldValue);
}
else {
vm->setValue("x", m_where->value());
result = m_operand->derivative();
vm->removeValue("x");
}
return result;
}
Abakus::number_t DerivativeFunction::derivative() const
{
kdError() << k_funcinfo << endl;
kdError() << "This function is never supposed to be called!\n";
return m_operand->derivative();
}
void DerivativeFunction::applyMap(NodeFunctor &fn) const
{
fn(m_operand);
fn(this);
}
QString DerivativeFunction::infixString() const
{
return QString("deriv(%1, %2)").arg(m_operand->infixString(), m_where->infixString());
}
UnaryOperator::UnaryOperator(Type type, Node *operand)
: m_type(type), m_node(operand)
{
}
UnaryOperator::~UnaryOperator()
{
deleteNode(m_node);
m_node = 0;
}
void UnaryOperator::applyMap(NodeFunctor &fn) const
{
fn(operand());
fn(this);
}
QString UnaryOperator::infixString() const
{
if(dynamic_cast<BinaryOperator *>(operand()))
return QString("-(%1)").arg(operand()->infixString());
return QString("-%1").arg(operand()->infixString());
}
Abakus::number_t UnaryOperator::derivative() const
{
switch(type()) {
case Negation:
return -(operand()->derivative());
default:
kdError() << "Impossible case encountered for UnaryOperator!\n";
return Abakus::number_t(0);
}
}
Abakus::number_t UnaryOperator::value() const
{
switch(type()) {
case Negation:
return -(operand()->value());
default:
kdError() << "Impossible case encountered for UnaryOperator!\n";
return Abakus::number_t(0);
}
}
BinaryOperator::BinaryOperator(Type type, Node *left, Node *right) :
m_type(type), m_left(left), m_right(right)
{
}
BinaryOperator::~BinaryOperator()
{
deleteNode(m_left);
m_left = 0;
deleteNode(m_right);
m_right = 0;
}
void BinaryOperator::applyMap(NodeFunctor &fn) const
{
fn(leftNode());
fn(rightNode());
fn(this);
}
QString BinaryOperator::infixString() const
{
QString op;
switch(type()) {
case Addition:
op = "+";
break;
case Subtraction:
op = "-";
break;
case Multiplication:
op = "*";
break;
case Division:
op = "/";
break;
case Exponentiation:
op = "^";
break;
default:
op = "Error";
}
QString left = QString(isSimpleNode(leftNode()) ? "%1" : "(%1)").arg(leftNode()->infixString());
QString right = QString(isSimpleNode(rightNode()) ? "%1" : "(%1)").arg(rightNode()->infixString());
return QString("%1 %2 %3").arg(left, op, right);
}
Abakus::number_t BinaryOperator::derivative() const
{
if(!leftNode() || !rightNode()) {
kdError() << "Can't evaluate binary operator!\n";
return Abakus::number_t(0);
}
Abakus::number_t f = leftNode()->value();
Abakus::number_t fPrime = leftNode()->derivative();
Abakus::number_t g = rightNode()->value();
Abakus::number_t gPrime = rightNode()->derivative();
switch(type()) {
case Addition:
return fPrime + gPrime;
case Subtraction:
return fPrime - gPrime;
case Multiplication:
return f * gPrime + fPrime * g;
case Division:
return (g * fPrime - f * gPrime) / (g * g);
case Exponentiation:
return f.pow(g) * ((g / f) * fPrime + gPrime * f.ln());
default:
kdError() << "Impossible case encountered evaluating binary operator!\n";
return Abakus::number_t(0);
}
}
Abakus::number_t BinaryOperator::value() const
{
if(!leftNode() || !rightNode()) {
kdError() << "Can't evaluate binary operator!\n";
return Abakus::number_t(0);
}
Abakus::number_t lValue = leftNode()->value();
Abakus::number_t rValue = rightNode()->value();
switch(type()) {
case Addition:
return lValue + rValue;
case Subtraction:
return lValue - rValue;
case Multiplication:
return lValue * rValue;
case Division:
return lValue / rValue;
case Exponentiation:
return lValue.pow(rValue);
default:
kdError() << "Impossible case encountered evaluating binary operator!\n";
return Abakus::number_t(0);
}
}
bool BinaryOperator::isSimpleNode(Node *node) const
{
if(dynamic_cast<Identifier *>(node) ||
dynamic_cast<NumericValue *>(node) ||
dynamic_cast<UnaryOperator *>(node) ||
dynamic_cast<BaseFunction *>(node))
{
return true;
}
return false;
}
Identifier::Identifier(const char *name) : m_name(name)
{
}
Abakus::number_t Identifier::value() const
{
return ValueManager::instance()->value(name());
}
void Identifier::applyMap(NodeFunctor &fn) const
{
fn(this);
}
QString NumericValue::infixString() const
{
return value().toString();
}
// vim: set et ts=8 sw=4:
|