File: lesson_base2.html

package info (click to toggle)
abinit 7.8.2-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 278,292 kB
  • ctags: 19,095
  • sloc: f90: 463,759; python: 50,419; xml: 32,095; perl: 6,968; sh: 6,209; ansic: 4,705; fortran: 951; objc: 323; makefile: 43; csh: 42; pascal: 31
file content (453 lines) | stat: -rw-r--r-- 19,277 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
<html>
<head>
<title>Tutorial #2</title>
</head>
<body bgcolor="#ffffff">
<hr>
<h1>ABINIT, second lesson of the tutorial:</h1>
<h2>The H2 molecule, with convergence studies. </h2>
<hr>
<p>This lesson aims at showing how to get converged values
for the following physical properties:
<ul>
<li>the bond length
<li>the atomisation energy
</ul>
You will learn about the numerical quality
of the calculations, then make convergence studies
with respect to the number of planewaves and the
size of the supercell, and finally consider
the effect of the XC functional.
The problems related to the use of different
pseudopotential are not examined.

<p>You will also finish to read the abinit_help file.

<p>This lesson should take about 1 hour.

<h5>Copyright (C) 2000-2014 ABINIT group (XG,RC)
<br> This file is distributed under the terms of the GNU General Public License, see
~abinit/COPYING or <a href="http://www.gnu.org/copyleft/gpl.txt">
http://www.gnu.org/copyleft/gpl.txt </a>.
<br> For the initials of contributors, see ~abinit/doc/developers/contributors.txt .
</h5>

<script type="text/javascript" src="list_internal_links.js"> </script>

<h3><b>Content of lesson 2</b></h3>
<ul>
  <li><a href="lesson_base2.html#20">2.0</a> Summary of the previous lesson</li>
  <li><a href="lesson_base2.html#21">2.1</a> The convergence in <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a></li>
  <li><a href="lesson_base2.html#22">2.2</a> The convergence in <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a></li>
  <li><a href="lesson_base2.html#23">2.3</a> The convergence in <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a></li>
  <li><a href="lesson_base2.html#24">2.4</a> The final calculation in Local (Spin)
    Density Approximation.</li>
  <li><a href="lesson_base2.html#25">2.5</a> The use of the Generalized Gradient Approximation.</li>
</ul>
<hr>
<h4><a name="20"></a></h4>
<h3><b>2.0. Summary of the previous lesson.</b></h3>

<p>We studied the H2 molecule in a big box.
  We used 10 Ha as cut-off energy, a 10x10x10 Bohr^3 supercell, the local-density
  approximation (as well as the local-spin-density approximation) in the Teter
  parametrization (<a href="../input_variables/varbas.html#ixc" target="kwimg">ixc</a>=1, the default),
  and a pseudopotential from the Goedecker-Hutter-Teter table.
<p>At this stage, we compared our results:
<ul>
  <li>bond length: 1.522 Bohr</li>
  <li> atomisation energy at that bond length: 0.1656 Ha = 4.506 eV</li>
</ul>
with the experimental data (as well as theoretical data using
a much more accurate technique than DFT)
<ul>
  <li> bond length: 1.401 Bohr</li>
  <li> atomisation energy: 4.747 eV</li>
</ul>
The bond length is awful (nearly 10% off), and the atomisation energy is a bit
too low, 5 % off.
<h3><br>

<hr>
  <a name="21">&nbsp;</a> <a name="22">&nbsp;</a> </h3>

<p><h3><b>2.1 and 2.2
The convergence in ecut</b></h3>

<p><b>2.1.a</b><b>
Computing the bond length and corresponding atomisation energy
in one run.</b>

<p>

<i>Before beginning, you might consider to work in a different subdirectory as
for lesson_base1. Why not "Work2"? </i> <br>

<p>Because we will compute many times the bond length and atomisation energy,
  it is worth to make a single input file that will do all the associated operations.
  You should try to use 2 datasets (try to combine ~abinit/tests/tutorial/Input/tbase1_3.in
  with ~abinit/tests/tutorial/Input/tbase1_5.in!). Do not try to have the
  same position of the H atom as one of the H2 atoms in the optimized geometry.
<p>The input file ~abinit/tests/tutorial/Input/tbase2_1.in</a> is an example
  of file that will do the job, while ~abinit/tests/tutorial/Refs/tbase2_1.out</a>
  is an example of output file.
  You might use ~abinit/tests/tutorial/Input/tbase2_x.files</a>
  as "files" file (do not forget to modify it, like in lesson 1), although it does not differ from
  ~abinit/tests/tutorial/Input/tbase1_x.files. The run should take less than one minute.
<p>You should obtain the values:
<pre>
    etotal1  -1.1058360644E+00
    etotal2  -4.7010531489E-01
</pre>
and
<pre>
    xcart1  -7.6091015760E-01  0.0000000000E+00  0.0000000000E+00
             7.6091015760E-01  0.0000000000E+00  0.0000000000E+00
</pre>
<p>These are similar to those determined in <a href="lesson_base1.html">lesson 1</a>,
  although they have been obtained in one run. You can also check that the residual
  forces are lower than <code>5.0d-4</code>.
  Convergence issues are discussed in
  <a href="../users/abinit_help.html#7" target="helpsimg">section 7</a>
  of the abinit_help file.<a name="ref11"></a><br>
  You should read it. By the way, you have read many parts of the abinit_help
  file! You are missing the sections
  <a href="../users/abinit_help.html#2" target="helpsimg">2</a>,
  <a href="../users/abinit_help.html#5" target="helpsimg">5</a>,
  <a href="../users/abinit_help.html#8" target="helpsimg">8</a>. You are also missing the
  description of many input variables. We suggest that you finish reading
  entirely the abinit_help file now, while the knowledge of the input variables will
  come in the long run. </p>
<p><b>2.1.b</b> Many convergence parameters have already been identified. We will
  focus only on <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a> and <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a>.
  This is because
<ul>
  <li> the convergence of the SCF cycle and geometry determination are well under
    control thanks to <a href="../input_variables/varbas.html#toldfe" target="kwimg">toldfe</a>,
    <a href="../input_variables/varbas.html#toldff" target="kwimg">toldff</a> and <a href="../input_variables/varrlx.html#tolmxf" target="kwimg">tolmxf</a>
    (this might not be the case for other physical properties)</li>
  <li> there is no k point convergence study to be done for an isolated system
    in a big box: no additional information is gained by adding a k-point beyond one</li>
  <li> the boxcut value is automatically chosen larger than 2 by ABINIT, see the
    determination of the input variable "<a href="../input_variables/vargs.html#ngfft" target="kwimg">ngfft</a>"
    by preprocessing</li>
  <li> we are using <a href="../input_variables/varrlx.html#ionmov" target="kwimg">ionmov</a>=3
    for the determination of the geometry.</li>
</ul>

For the check of convergence with respect to <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a>,
you have the choice between doing different runs of the tbase2_1.in
file with different values of <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a>, or doing
a double loop of datasets, as proposed in ~abinit/tests/tutorial/Input/tbase2_2.in .
The values of <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a> have been
chosen between 10Ha and 35Ha, by step of 5 Ha. If you want to make a double loop,
you might benefit of reading again the
<a href="../users/abinit_help.html#loop" target="helpsimg">double-loop section</a>
of the abinit_help file.

<p><b>2.2.a</b>
You have likely seen a big increase of the CPU time needed to do the
calculation. You should also look at the increase of the memory
needed to do the calculation (go back to the beginning of the output file).
The output data are as follows:
<pre>
    etotal11 -1.1058360644E+00
    etotal12 -4.7010531489E-01
    etotal21 -1.1218716100E+00
    etotal22 -4.7529731401E-01
    etotal31 -1.1291943792E+00
    etotal32 -4.7773586424E-01
    etotal41 -1.1326879404E+00
    etotal42 -4.7899908214E-01
    etotal51 -1.1346739190E+00
    etotal52 -4.7972721653E-01
    etotal61 -1.1359660026E+00
    etotal62 -4.8022016459E-01

     xcart11 -7.6091015760E-01  0.0000000000E+00  0.0000000000E+00
              7.6091015760E-01  0.0000000000E+00  0.0000000000E+00
     xcart12  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart21 -7.5104912643E-01  0.0000000000E+00  0.0000000000E+00
              7.5104912643E-01  0.0000000000E+00  0.0000000000E+00
     xcart22  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart31 -7.3977108831E-01  0.0000000000E+00  0.0000000000E+00
              7.3977108831E-01  0.0000000000E+00  0.0000000000E+00
     xcart32  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart41 -7.3304273322E-01  0.0000000000E+00  0.0000000000E+00
              7.3304273322E-01  0.0000000000E+00  0.0000000000E+00
     xcart42  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart51 -7.3001570260E-01  0.0000000000E+00  0.0000000000E+00
              7.3001570260E-01  0.0000000000E+00  0.0000000000E+00
     xcart52  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart61 -7.2955902118E-01  0.0000000000E+00  0.0000000000E+00
              7.2955902118E-01  0.0000000000E+00  0.0000000000E+00
     xcart62  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
</pre>
The corresponding atomisation energies and interatomic distances are:
<pre>
ecut    atomisation   interatomic distance
(Ha)    energy (Ha)      (Bohr)

10       .1656          1.522
15       .1713          1.502
20       .1737          1.480
25       .1747          1.466
30       .1753          1.460
35       .1756          1.459
</pre>
In order to obtain 0.2% relative accuracy on the bond length
or atomisation energy, one should use a kinetic cut-off energy
of 30 Ha. We will keep in mind this value for the final run.

<p>Well, 30 Ha is a large kinetic energy cut-off! The pseudopotential
that we are using for Hydrogen is rather "hard" ...

<p>
<hr>


<h3><p><b><a name="23">2.3</a>
The convergence in acell</b></h3>

<p>The same technique as for <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a>
  should be now used for the convergence in <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a>.
  We will explore <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a> starting
  from <code>8 8 8</code> to <code>18 18 18</code>, by step of <code>2 2 2</code>.
  We keep <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a> 10 for this study.
  Indeed, it is a rather general rule that there is little cross-influence between
  the convergence of <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a> and the
  convergence of <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a>. The file
  ~abinit/tests/tutorial/Input/tbase2_3.in can be used as an example. 
  The output data (~abinit/tests/tutorial/Refs/tbase2_3.out) are as follows:
<pre>
    etotal11 -1.1188128741E+00
    etotal12 -4.8074164402E-01
    etotal21 -1.1058360644E+00
    etotal22 -4.7010531489E-01
    etotal31 -1.1039109441E+00
    etotal32 -4.6767804802E-01
    etotal41 -1.1039012761E+00
    etotal42 -4.6743724199E-01
    etotal51 -1.1041439319E+00
    etotal52 -4.6735895176E-01
    etotal61 -1.1042058195E+00
    etotal62 -4.6736729718E-01

     xcart11 -7.8427127284E-01  0.0000000000E+00  0.0000000000E+00
              7.8427127284E-01  0.0000000000E+00  0.0000000000E+00
     xcart12  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart21 -7.6091015760E-01  0.0000000000E+00  0.0000000000E+00
              7.6091015760E-01  0.0000000000E+00  0.0000000000E+00
     xcart22  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart31 -7.5472588642E-01  0.0000000000E+00  0.0000000000E+00
              7.5472588642E-01  0.0000000000E+00  0.0000000000E+00
     xcart32  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart41 -7.5491961064E-01  0.0000000000E+00  0.0000000000E+00
              7.5491961064E-01  0.0000000000E+00  0.0000000000E+00
     xcart42  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart51 -7.5427730675E-01  0.0000000000E+00  0.0000000000E+00
              7.5427730675E-01  0.0000000000E+00  0.0000000000E+00
     xcart52  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
     xcart61 -7.5415348434E-01  0.0000000000E+00  0.0000000000E+00
              7.5415348434E-01  0.0000000000E+00  0.0000000000E+00
     xcart62  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00

</pre>
The corresponding atomisation energies and interatomic distances are:
<table width="687" height="84" cellspacing="2" cellpadding="2" border="1">
  <tr>
    <td width="82">
      <div align="center">acell<br>
        (Bohr)</div>
    </td>
    <td width="168">
      <div align="center">atomisation<br>
        energy (Ha)</div>
    </td>
    <td width="82">
      <div align="center">interatomic distance<br>
        (Bohr)</div>
    </td>
  </tr>
  <tr>
    <td width="82">
      <div align="center">8 </div>
    </td>
    <td width="168">
      <div align="center">.1574</div>
    </td>
    <td width="82">
      <div align="center">1.568</div>
    </td>
  </tr>
  <tr>
    <td width="82">
      <div align="center">10</div>
    </td>
    <td width="168">
      <div align="center">.1656</div>
    </td>
    <td width="82">
      <div align="center">1.522</div>
    </td>
  </tr>
  <tr>
    <td width="82">
      <div align="center">12</div>
    </td>
    <td width="168">
      <div align="center">.1686</div>
    </td>
    <td width="82">
      <div align="center">1.509</div>
    </td>
  </tr>
  <tr>
    <td width="82">
      <div align="center">14</div>
    </td>
    <td width="168">
      <div align="center">.1691</div>
    </td>
    <td width="82">
      <div align="center">1.510</div>
    </td>
  </tr>
  <tr>
    <td width="82">
      <div align="center">16</div>
    </td>
    <td width="168">
      <div align="center">.1694</div>
    </td>
    <td width="82">
      <div align="center">1.508</div>
    </td>
  </tr>
  <tr>
    <td width="82">
      <div align="center">18</div>
    </td>
    <td width="168">
      <div align="center">.1695</div>
    </td>
    <td width="82">
      <div align="center">1.508</div>
    </td>
  </tr>
</table>
<p> In order to reach 0.2% convergence on the interatomic distance, one needs
  <code> acell 12 12 12</code>.
  The atomisation energy needs <code>acell 14 14 14</code> to be converged at that level.
  At <code>12 12 12</code>, the difference is <code>.0009 Ha=0.024eV</code>, which
  is sufficiently small for practical purposes.
  We will use <code>acell 12 12 12</code> for the final run.
<p>For most solids the size of the unit cell will be smaller than that.
We are treating a lot of vacuum in this supercell!
So, the H2 study, with this pseudopotential, turns out to be not
really easy. Of course, the number of states to be treated is
minimal! This allows to have reasonable CPU time still.

<p>

<hr>

<p><h3><b><a name="24">2.4</a>
The final calculation in Local (Spin) Density Approximation.</b></h3>

<p>We now use the correct values of both <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a>
  and <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a>. Well, you should
  modify the tbase2_3.in file to make a calculation
  with <code>acell 12 12 12</code>
  and <code>ecut 30</code>.
  You can still use the double loop feature with
  <code><a href="../input_variables/varbas.html#udtset" target="kwimg">udtset</a>
  1 2</code> (which reduces to a single loop), to minimize the modifications to
  the file. The file ~abinit/tests/tutorial/Input/tbase2_4.in can be taken as an example of input
  file, and ~abinit/tests/tutorial/Refs/tbase2_4.out as an example of output file.
<p>Since we are doing the calculation at a single
  (<a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a>,
  <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a>) pair, the total CPU time
  is not as much as for the previous determinations of optimal values through
  series calculations. However, the memory needs have still increased a bit.
<p>The output data are:
<pre>
    etotal11 -1.1329372051E+00
    etotal12 -4.7765320721E-01

     xcart11 -7.2662135225E-01  0.0000000000E+00  0.0000000000E+00
              7.2662135225E-01  0.0000000000E+00  0.0000000000E+00
     xcart12  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
</pre>

<ul>
<li>The corresponding atomisation energy is <code>0.1776 Ha =  4.833 eV</code>
<li>The interatomic distance is 1.4532 Bohr.
<li>These are our final data for the local (spin) density approximation.
</ul>

We have used <code><a href="../input_variables/varbas.html#ixc" target="kwimg">ixc</a>=1</code>
. Other expressions for the local (spin) density approximation <code><a href="../input_variables/varbas.html#ixc" target="kwimg">ixc</a>=2,
3 .. 7</code> are possible. The values 1, 2, 3 and 7 should give about the same
results, since they all start from the XC energy of the homogeneous electron gas,
as determined by Quantum Monte Carlo calculations. <br>
Other possibilities <code><a href="../input_variables/varbas.html#ixc" target="kwimg">ixc</a>=4,
5, 6</code> are older local density functionals, that could not rely on these
data.

<p>

<hr>

<p><h3><b><a name="25">2.5</a>
The use of the Generalized Gradient Approximation.</b></h3>

<p>We will use the Perdew-Burke-Ernzerhof functional, proposed in
<cite>Phys. Rev. Lett. 77, 3865 (1996)</cite>.

<p>In principle, for GGA, one should use another pseudopotential than for LDA.
However, for the special case of Hydrogen, and in general pseudopotentials
with a very small core (including only the 1s orbital), pseudopotentials
issued from the LDA and from the GGA are very similar.

<p>So, we will not change our pseudopotential. This will save us lot of time,
  as we should not redo an <a href="../input_variables/varbas.html#ecut" target="kwimg">ecut</a>
  convergence test (ecut is often characteristic of the pseudopotentials that
  are used in a calculation).
<p>Independently of the pseudopotential, an <a href="../input_variables/varbas.html#acell" target="kwimg">acell</a>
  convergence test should not be done again, since the vacuum is treated similarly
  in LDA or GGA.
<p>So, our final values within GGA will be easily obtained, by setting <a href="../input_variables/varbas.html#ixc" target="kwimg">ixc</a>
  to 11 in the input file tbase2_4.in. See ~abinit/tests/tutorial/Input/tbase2_5.in
  for an example.
<pre>
    etotal11 -1.1621428502E+00
    etotal12 -4.9869631917E-01

     xcart11 -7.1204535408E-01  0.0000000000E+00  0.0000000000E+00
              7.1204535408E-01  0.0000000000E+00  0.0000000000E+00
     xcart12  0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
</pre>
<ul>
<li>The corresponding atomisation energy is <code>0.1647 Ha =  4.482 eV</code>
  <li>The interatomic distance is <code>1.4241 Bohr</code>.
  <li>These are our final data for the generalized gradient approximation.
</ul>
Once more, here are the experimental data:
<ul>
<li>bond length: 1.401 Bohr
<li>atomisation energy: 4.747 eV
</ul>
In GGA, we are within 2% of the experimental bond length,
but 5% of the experimental atomisation energy. In LDA, we were
within 4% of the experimental bond length, and within
2% of the experimental atomisation energy.

<p><i>Do not forget that the typical accuracy of LDA and GGA varies
with the class of materials studied...</i>

<script type="text/javascript" src="list_internal_links.js"> </script>

</body>
</html>