1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
|
# coding: utf-8
from __future__ import print_function, division, unicode_literals, absolute_import
executable = "multibinit"
from abimkdocs.variables import ValueWithUnit, MultipleValue, Range
#from abipy.abio.abivar_database.variables import ValueWithUnit, MultipleValue, Range, ValueWithConditions
ValueWithConditions = dict
Variable = dict
variables = [
Variable(
abivarname="dipdip@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="DIPole-DIPole interaction",
added_in_version="before_v9",
text=r"""
* 0 --> Do not recompute the dipole-dipole interaction.
* 1 --> Recompute the dipole-dipole interaction based on ewald summation .
""",
),
Variable(
abivarname="dipdip_prt@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="DIPole-DIPole PRinT",
added_in_version="before_v9",
text=r"""
* 1 --> Print the dipole-dipole interaction into the XML.
* 0 --> Do not print the dipole-dipole interaction into the XML.
""",
),
Variable(
abivarname="dipdip_range@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_expert'],
dimensions=[3],
defaultval=0,
mnemonics="Dipole-Dipole range",
added_in_version="before_v9",
text=r"""
Depending of the cases, the range of the dipole-dipole interaction will be parameted by:
* dipdip_range if superior to ncell and superior to short-range interaction
* ncell if dipdip_range inferior to ncell
* short-range if dipdip_range inferior to short-range interaction
For example:
* if dipdip_range = 2 2 2 and the short range interaction if 3 3 3, the dipdip interaction will be set on 3 3 3
* if ncell = 15 15 15 and the dipdip_range is 6 6 6, the dipdip interaction will be set on 15 15 15
""",
),
Variable(
abivarname="energy_reference@multibinit",
varset="multibinit",
vartype="real",
topics=['LatticeModel_useful'],
dimensions="scalar",
defaultval=0.0,
mnemonics="Energy of the refences structure",
characteristics=['[[ENERGY]]'],
added_in_version="before_v9",
text=r"""
Set the energy of the reference structure (from the DFT calculation)
if the energy of the reference is not specified in the DDB,
(for example if the DDB file of the ground states is not merged),
or not specified in the XML file), (by default in Hartree).
""",
),
Variable(
abivarname="lwf_dynamics@multibinit",
varset="multibinit",
vartype="integer",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=0,
mnemonics="Lattice Wannier Function DYNAMICS",
added_in_version="9.8",
text=r"""
Kind of LWF dynamics to run. Currently there is only the option 3.
* 0: Do not run LWF dynamics.
* 3: Run NVT LWF dynamics with the Berendsen thermalstat.
""",
),
Variable(
abivarname="lwf_init_hist_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['LWFModel_basic'],
dimensions="scalar",
defaultval="",
mnemonics="LWF INITIAL state HISTory file name",
added_in_version="9.8",
text=r"""
Specify the initial state of the multibinit LWF dynamics calculation, which can be a lwf_hist netcdf file, usually generated from previous LWF dynamics calculations. It is used when [[multibinit:lwf_init_state]]=4 The string must be enclosed between quotation marks, for example:
lwf_init_hist_fname "last_step_lwf_hist.nc"
""",
),
Variable(
abivarname="lwf_init_state@multibinit",
varset="multibinit",
vartype="integer",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=1,
mnemonics="Lattice Wannier Function INITial STATE",
added_in_version="before_v9",
text=r"""
Flag to initialize spin state.
* 1 --> The LWF amplitudes are homogenous random numbers between -0.1 to 0.1 Bohr.
* 2 --> The LWF amplitudes are 0.
* 4 --> Restart from an input spin hist file, as specified in [[multibinit:lwf_init_hist_fname]].
""",
),
Variable(
abivarname="lwf_constraint@multibinit",
varset="multibinit",
vartype="integer",
topics=["LWFModel_expert"],
dimensions="scalar",
defaultval=0,
mnemonics="Lattice Wannier Function use CONSTRAINT",
added_in_version="9.8",
text=r"""
Whether to use constraint in Lattice Wannier function dynamics. The constraints are defined in a LWF initial state file by three parameters:
n_fixed_lwf: number of fixed LWF.
fixed_lwf_ids: indices of fixed LWFs.
fixed_lwf_values: values of fixed LWFs.
""",
),
Variable(
abivarname="lwf_dt@multibinit",
varset="multibinit",
vartype="real",
topics=['LWFModel_basic'],
dimensions="scalar",
defaultval=100,
mnemonics="Lattice Wannier Function Delta Time",
added_in_version="9.8",
text=r"""
Time step for lwf dynamics. Default value is 100.
Default unit is atomic unit (2.419e-17 s).
S, Sec or Second can be appended as unit. (e.g. 1e-16 Sec).
""",
),
Variable(
abivarname="lwf_nctime@multibinit",
varset="multibinit",
vartype="integer",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=0,
mnemonics="Lattice Wannier function dynamics NetCdf write per number of TIME steps",
added_in_version="before_v9",
text=r"""
Write LWF amplitude into netcdf file in every lwf_nctime of spin dynamics time steps.
""",
),
Variable(
abivarname="lwf_ntime@multibinit",
varset="multibinit",
vartype="integer",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=0,
mnemonics="Lattice Wannier function dynamics total Number of TIME steps",
added_in_version="9.8",
text=r"""
Total number of lattice Wannier function dynamics time steps.
""",
),
Variable(
abivarname="lwf_pot_fname@multibinit",
varset="multibinit",
vartype="string",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval="",
mnemonics="Lattice Wannier function POTential File NAME",
added_in_version="9.8",
text=r"""
Specify the LWF potential file name in the multibinit lwf dynamics calculation, which is a netcdf file. The string must be enclosed between quotation marks:
lwf_pot_fname "BaTiO3_lwf_pot.nc"
"""
),
Variable(
abivarname="lwf_taut@multibinit",
varset="multibinit",
vartype="integer",
topics=['LWFModel_basic'],
dimensions="scalar",
defaultval=1000,
mnemonics="Lattice Wannier function dynamics relaxation time TAUT",
added_in_version="9.8",
text=r"""
Parameter used in Berendsen lattice dynamics [[multibinit:lwf_dynamics]] = 3, in which the temperature is relaxed exponentially to the target temperature, with the characteristic time of lwf_taut.
The default unit is atomic unit. But it is possible to use the second as the unit by adding Second or S at the end of the line, for example:
lwf_taut 1d-15 S
""",
),
Variable(
abivarname="lwf_temperature_start@multibinit",
varset="multibinit",
vartype="real",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=0.0,
mnemonics="Lattice Wannier function TEMPERATURE START",
added_in_version="9.8",
text=r"""
Start point of variable temperature LWF dynamcis calculation (see [[multibinit:lwf_var_temperature]]) in lwf dynamics calculation.
""",
),
Variable(
abivarname="lwf_temperature_end@multibinit",
varset="multibinit",
vartype="real",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=0.0,
mnemonics="Lattice Wannier function TEMPERATURE END",
added_in_version="9.8",
text=r"""
End point of variable temperature LWF dynamics calculation (see [[multibinit:LWF_var_temperature]]) in LWF dynamics calculation.
""",
),
Variable(
abivarname="lwf_temperature_nstep@multibinit",
varset="multibinit",
vartype="integer",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=0,
mnemonics="Lattice Wannier function TEMPERATURE Number of STEPs",
added_in_version="9.8",
text=r"""
Number of steps in the variable temperature LWF dynamics calculation (see [[multibinit:lwf_var_temperature]]) in lwf dynamics calculation.
""",
),
Variable(
abivarname="lwf_var_temperature@multibinit",
varset="multibinit",
vartype="integer",
topics=["LWFModel_basic"],
dimensions="scalar",
defaultval=0,
mnemonics="Lattice Wannier function VARiable TEMPERATURE",
added_in_version="9.8",
text=r"""
Switch for variable temperature calculation in LWF dynamics. 0: off. 1: on.
If switched on, a series of LWF dynamics calculation with temperatures from
[[multibinit:lwf_temperature_start]] to [[multibinit:lwf_temperature_end]],
with number of steps [[multibinit:lwf_temperature_nstep]] will be done.
The corresponding _lwf_hist.nc file has the corresponding temperature in the filename.
""",
),
Variable(
abivarname="ncoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_useful'],
dimensions="scalar",
defaultval=0,
mnemonics="Number of anharmonic COEFFicients",
added_in_version="before_v9",
text=r"""
Set the number of anharmonic coefficients in the model. This number have to be in agreement with the number of coefficients present in the XML file.
If ncoeff /= 0, [[multibinit:coefficients]] have to be present in the input files
""",
),
Variable(
abivarname="coefficients@multibinit",
varset="multibinit",
vartype="real",
topics=['LatticeModel_useful'],
dimensions=['[[multibinit:ncoeff]]'],
defaultval=0.0,
mnemonics="values of the COEFFICIENTS",
added_in_version="before_v9",
text=r"""
Set the values of the coefficients present in the XML file
""",
),
Variable(
abivarname="ngqpt@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_useful'],
dimensions=[3],
defaultval="3*1",
mnemonics="Number of Grids points for Q PoinTs",
added_in_version="before_v9",
text=r"""
The Monkhorst-Pack grid linear dimensions, for the DDB (coarse grid).
""",
),
Variable(
abivarname="nqshft@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_useful'],
dimensions="scalar",
defaultval=1,
mnemonics="Number of Q SHiFTs",
added_in_version="before_v9",
text=r"""
The number of vector shifts of the simple Monkhorst and Pack grid, needed to
generate the coarse grid of q points (for the series of fine grids, the number
of shifts it is always taken to be 1). Usually, put it to 1. Use 2 if BCC
sampling (Warning: not BCC lattice, BCC *sampling*), and 4 for FCC sampling
(Warning: not FCC lattice, FCC *sampling*).
""",
),
Variable(
abivarname="prt_GF_csv@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="Print the Goal-Function values in a CSV file",
added_in_version="v9",
text=r"""
* 0 --> do nothing (Default)
* 1 --> Print the Goal-Function Values (GF) for all coefficients on a given processor
at a given fit iteration into a csv file. Each iteration each processor
prints a csv file. The colums are the GF on Energy, Force+Stresses, Forces, Stresses.
""",
),
Variable(
abivarname="prt_model@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="PRinT the MODEL",
added_in_version="before_v9",
text=r"""
* 0 --> do nothing (Default).
* 1 --> Generate the XML file with:
* The system definition and the model (Harmonic + Anharmonic) in _model.xml
* 2 --> Generate two XML files with:
* The system definition and the model (Harmonic) in _sys.XML
* The model (Anharmonic) in _coeffs.xml
* 3 --> Generate only one XML file with:
* The system definition and the model (Harmonic) in _sys.XML
* 4 --> Generate only one XML file with:
* The model (Anharmonic) in _coeffs.xml
""",
),
Variable(
abivarname="test_prt_ph@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="Prt test-set evaluation into file ph_test.nc",
added_in_version="before_v9",
text=r"""
Flag to activate the printing of the evaluation of the effective potential on to a test set into a seperate netcdf file called ph_test.nc.
Forces, Energies, Stresses and Atomic Positions are written in ph_test.nc.
""",
),
Variable(
abivarname="fit_coeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT anharmonic COEFFficients",
added_in_version="before_v9",
text=r"""
* 0 --> do not active the fit process
* 1 --> Activate the fit process. This option will first generate a set of coefficients if [[multibinit:fit_generateCoeff]] is set to one. This generation is mainly parametrized by [[multibinit:fit_rangePower]] and [[multibinit:fit_cutoff]]. You can also provided a list of coefficients with the model_anharmonic.MXL (see [[help:multibinit]]). Then the fit process will select the coefficients one by one up to [[multibinit:fit_ncoeff]] (see this [[cite:Escorihuela-Sayalero2017|paper]] for the details of the procedure).
* -1 --> **only for developers**, print the files for the scripts
""",
),
Variable(
abivarname="fit_EFS@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions=[3],
defaultval=[0,1,1],
mnemonics="FIT on Energy, Forces, and or, Stresses",
added_in_version="v9",
text=r"""
Specifies on which first-principles quantities the anharmonic coefficients will be fitted.
The first number flags the fitting on the energies, the second the fitting on the forces, and the third on the stressses.
Default value is 0 1 1, so anharmonic coefficients get fitted on Forces and Stresses but not on energies
""",
),
Variable(
abivarname="fit_factors@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions=[3],
defaultval=[1,1,1],
mnemonics="FIT FACTORS for Goal Function of Energy, Forces, and Stresses",
added_in_version="v9",
text=r"""
Specifies three factors for Energy, Forces and Stresses in the calcluation of the Goal Function which is to be minimized during the
fit process allowing to change the relative weight of the three quantities.
Default value is 1 1 1, equally balancing energy, forces and stresses.
""",
),
Variable(
abivarname="fit_ncoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT Number of COEFFicients",
added_in_version="before_v9",
text=r"""
Give the number of anharmonic coefficients to add in the model during the fit process
""",
),
Variable(
abivarname="fit_ncoeff_per_iatom@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT Number of COEFFicients per Irreducible ATOM",
added_in_version="before_v9",
text=r"""
Give the number of anharmonic coefficients per symmetric irreducible atom to add during fit process.
[[multibinit:fit_ncoeff]]/(nirred_atoms*fit_ncoeff_per_iatom) gives the number of fitting loops performed during the fit process, where in each loop fit_ncoeff_per_iatom coefficients for each irreducible atom will be added to the anharmonic potential.
""",
),
Variable(
abivarname="fit_generateCoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="FIT GENERATE anharmonic COEFFicient ",
added_in_version="before_v9",
text=r"""
Flag to activate the generation of the anharmonic coefficient for the fit process
**Related variables:** The power range of the coefficients ([[multibinit:fit_rangePower]]), the cut off of the interactions ([[multibinit:fit_cutoff]]), the flag to add anharmonic strain ([[multibinit:fit_anhaStrain]]), the flag to add phonon strain coupling ([[multibinit:fit_SPCoupling]])
""",
),
Variable(
abivarname="fit_iatom@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT anharmonic terms around ATOM I",
added_in_version="before_v9",
text=r"""Gives the index of the atom in the reference structure around which the anharmonic terms will be generated.
If 0 (default) a loop over all atoms in the reference structure will be perforemed and fit_ncoeff coefficienst will be fitted and selected per atom.
If -1 all possible cross terms will be generated (e.G. (A_x-B_x)^2*(C_y-D_y)^1. This options generates much more terms.
""",
),
Variable(
abivarname="fit_initializeData@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT INITIALIZE DATA for the fit",
added_in_version="before_v9",
text=r"""
Flag to de/activate the precomputing and storage of all the data for the fit, it will reduce the computation time but increase a lot the memory...
""",
),
Variable(
abivarname="fit_rangePower@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions=[2],
defaultval="3 4",
mnemonics="FIT RANGE POWER for the coefficients",
added_in_version="before_v9",
text=r"""
Set the range of the powers for the anharmonic coefficients
""",
),
Variable(
abivarname="fit_cutoff@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval="Unit cell",
mnemonics="FIT CUT-OFF of the anharmonic phonon interaction",
added_in_version="before_v9",
text=r"""
Cut-off for the anharmonic phonon interaction (in Bohr)
""",
),
Variable(
abivarname="fit_anhaStrain@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT ANHARmonic STRAIN coefficients",
added_in_version="before_v9",
text=r"""
Flag to activate the anharmonic strain. This option will add coefficients like (eta^4)
""",
),
Variable(
abivarname="fit_SPCoupling@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="FIT anharmonic Strain-Phonon COUPLING coefficients",
added_in_version="before_v9",
text=r"""
Flag to activate the strain phonon coupling. This option will add coefficients like (Sr-Ti)^1 (eta^4)
""",
),
Variable(
abivarname="fit_dispterms@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="FIT anharmonic Strain-Phonon COUPLING coefficients",
added_in_version="before_v9",
text=r"""
Flag to activate the generation of pure displacement coefficients. This option will generate coefficients like (Sr-Ti)^2*(Sr-O), where only atomic displacements occur.
Default value: 1 -> displacement terms are generated.
""",
),
Variable(
abivarname="fit_SPC_maxS@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="FIT Strain Phonon Coupling maximum Strain",
added_in_version="v9",
text=r"""
Set maximum power of strain body in strain-phonon coupling terms.
""",
),
Variable(
abivarname="fit_tolMSDE@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT TOLerance on Mean Standard Deviation of the Energy",
added_in_version="before_v9",
text=r"""
Tolerance of the fit based on the Mean Standard Deviation of the Energy in (meV/atm)
""",
),
Variable(
abivarname="fit_tolMSDS@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT TOLerance on Mean Standard Deviation of the Stresses",
added_in_version="before_v9",
text=r"""
Tolerance of the fit based on the Mean Standard Deviation of the Stresses in (eV^2/A^2)
""",
),
Variable(
abivarname="fit_tolMSDF@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT TOLerance on Mean Standard Deviation of the Forces",
added_in_version="before_v9",
text=r"""
Tolerance of the fit based on the Mean Standard Deviation of the Forces (eV^2/A^2)
""",
),
Variable(
abivarname="fit_tolMSDFS@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT TOLerance on Mean Standard Deviation of the Forces and Stresses",
added_in_version="before_v9",
text=r"""
Tolerance of the fit based on the Mean Standard Deviation of the Forces and Sressses (eV^2/A^2)
""",
),
Variable(
abivarname="fit_nfixcoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT Number of FIXed COEFFicients",
added_in_version="before_v9",
text=r"""
Number of imposed coefficients during the fit process for the model:
* -1 --> fix all the coefficients
* 0 --> do not fix coefficients
* n --> fix n coefficients (requires [[multibinit:fit_fixcoeff]] input variable)
""",
),
Variable(
abivarname="fit_fixcoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions=['[[multibinit:fit_nfixcoeff]]'],
defaultval=0,
mnemonics="FIT FIXed COEFFicients",
added_in_version="before_v9",
text=r"""
Indices of the imposed coefficients during the fit process for the model:
""",
),
Variable(
abivarname="fit_nimposecoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT Number of IMPOSEd COEFFicients",
added_in_version="before_v9",
text=r"""
Number of coefficients imposed with fixed value as in the input xml during the fit process for the model:
* -1 --> fix all the coefficients
* 0 --> do not fix coefficients
* n --> fix n coefficients (requires [[multibinit:fit_imposecoeff]] input variable)
""",
),
Variable(
abivarname="fit_imposecoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions=['[[multibinit:fit_nimposecoeff]]'],
defaultval=0,
mnemonics="FIT Number of IMPOSEd COEFFicients",
added_in_version="before_v9",
text=r"""
Indices of the imposed coefficients with fixed coefficient value during the fit process for the model.
""",
),
Variable(
abivarname="fit_nbancoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="FIT Number of BANed COEFFicients",
added_in_version="before_v9",
text=r"""
Number of imposed coefficients during the fit process of the model:
* 0 --> do not ban coefficients
* n --> ban n coefficients (requires [[multibinit:fit_bancoeff]] input variable)
""",
),
Variable(
abivarname="fit_bancoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions=['[[multibinit:fit_nbancoeff]]'],
defaultval=0,
mnemonics="FIT BANed COEFFicients",
added_in_version="before_v9",
text=r"""
Indices of the banned coefficients during the fit process of the model
""",
),
Variable(
abivarname="ts_option@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_useful'],
dimensions="scalar",
defaultval=0,
mnemonics="fit Training Set OPTION",
added_in_version="before_v9",
text=r"""
* 0 --> the Training is hist from ABINIT
* 1 --> the Training contains -1 * stress (usualy output from VASP)
""",
),
Variable(
abivarname="bound_factors@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions=[3],
defaultval=[1,1,1],
mnemonics="FACTORS for Goal Function of Energy, Forces, and Stresses during bounding process",
added_in_version="v9",
text=r"""
Specify three factors for Energy, Forces and Stresses in the calculation of the Goal Function which is to be minimized during the
bounding process, allowing to change the relative weights of the three quantities.
Default value is 1 1 1, equally balancing energy, forces and stresses.
""",
),
Variable(
abivarname="bound_model@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="BOUND MODEL",
added_in_version="before_v9",
text=r"""
Flag to activate the bound process:
* 0 --> Do not activate the bound process
* 1 --> This option will generate all the possible combinations of coefficients from 1 to [[multibinit:bound_maxCoeff]]. Some constrains are imposed during the generation and the fit of the coefficients, they have to be positive and with even power. Finaly, the code will try all the possible combinations and try to find a bounded model.
* 2 --> **new version** This option will generate a set of coefficients with a power range defined by [[multibinit:bound_rangePower]] and keep only the coefficients with even power. Then the procedure is similar to the fit process with the constrains to only keep positive coefficients. The bound process will select the coefficients one by one up to [[multibinit:bound_maxCoeff]] and try if the model is bound at each step of the process.
**Related variables:1 and 2** The number of maximum additional coefficient in the polynome ([[multibinit:bound_maxCoeff]]), the power range for the additional coefficients ([[multibinit:bound_rangePower]]), the cut off of the additional interactions ([[multibinit:bound_cutoff]])
*3 --> Check each anharmonic term in the effective potential. If the term contains has a negative coefficient and is even in its displacement or contains odd powers in the displacement generate high order bounding terms of the same combination of displacement within the range of powers defined by the user ([[multibinit:bound_rangePower]]). The coefficients of the added high-order terms are optimized until the precision of the original effective potential is retained.
""",
),
Variable(
abivarname="bound_maxCoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="BOUND MAX COEFFicient",
added_in_version="before_v9",
text=r"""
Number of maximum additional coefficients for the bound process
""",
),
Variable(
abivarname="bound_penalty@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions="scalar",
defaultval=1.001,
mnemonics="Goal Function penalty for determination of bounding coefficients",
added_in_version="v9",
text=r"""
Relative penalty for the determination of bounding coefficient values. The penalty defines the ration of the goal function before and after adding the coefficient. If the optimum value of the coefficient (-one that decreases the value of the goal function-) is negative a positive value that .
""",
),
Variable(
abivarname="bound_rangePower@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_basic'],
dimensions=[2],
defaultval="6,6",
mnemonics="BOUND RANGE POWER",
added_in_version="before_v9",
text=r"""
Range of the power for the additional coefficients in the bound process
""",
),
Variable(
abivarname="bound_cutoff@multibinit",
varset="multibinit",
vartype="real",
topics=['BoundingProcess_basic'],
dimensions="scalar",
defaultval="1 unit cell",
mnemonics="BOUND CUT OFF",
added_in_version="before_v9",
text=r"""
Cut-off for the anharmonic phonon interaction during the bound process (in Bohr)
""",
),
Variable(
abivarname="bound_anhaStrain@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="BOUND ANHArmonic STRAIN coefficients",
added_in_version="before_v9",
text=r"""
Flag to activate the anharmonic strain. When the bound process will generate the possible coefficients for the fit, if this input variable is set to 1, the generator will consider coefficients like eta^4
""",
),
Variable(
abivarname="bound_SPCoupling@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="BOUND Strain Phonon COUPLING coefficients",
added_in_version="before_v9",
text=r"""
Flag to activate the strain phonon coupling. When the bound process will generate the possible coefficients for the fit, if this input variable is set to 1, the generator will consider coefficients like (Sr-Ti)^2 eta^2
""",
),
Variable(
abivarname="bound_cell@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_expert'],
dimensions=[3],
defaultval="6,6,6",
mnemonics="BOUND superCELL size for the molecular dynamics",
added_in_version="before_v9",
text=r"""
When the process will try a given model, this input variable is used to set the size of the supercell for the molecular dynamics
""",
),
Variable(
abivarname="bound_temp@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_expert'],
dimensions="scalar",
defaultval=500,
mnemonics="BOUND TEMPerature for the molecular dynamics (in Kelvin)",
added_in_version="before_v9",
text=r"""
When the process will try a given model, this input variable is used to set the temperature for the molecular dynamics
""",
),
Variable(
abivarname="bound_step@multibinit",
varset="multibinit",
vartype="integer",
topics=['BoundingProcess_expert'],
dimensions="scalar",
defaultval=1000,
mnemonics="BOUND number of STEP for the molecular dynamics",
added_in_version="before_v9",
text=r"""
When the process will try a given model, this input variable is used to set the maximum number of molecular dynamics steps
""",
),
Variable(
abivarname="dynamics@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="Dynamics option for Multibinit",
added_in_version="before_v9",
text=r"""
Set the Dynamics option for Multibinit. This option is equivalent to [[abinit:ionmov]] for numbers < 100. For numbers >100, it uses algorithms implemented inside Multibinit:
* 0 --> do nothing
* 1 --> Move atoms using molecular dynamics with optional viscous damping (friction linearly proportional to velocity). The viscous damping is controlled by the parameter "[[vis]]". If actual undamped molecular dynamics is desired, set [[vis]] to 0. The implemented algorithm is the generalisation of the Numerov technique (6th order), but is NOT invariant upon time-reversal, so that the energy is not conserved. The value [[ionmov]] = 6 will usually be preferred, although the algorithm that is implemented is lower-order. The time step is governed by [[dtion]].
**Purpose:** Molecular dynamics (if [[vis]] = 0), Structural optimization (if
[[vis]] >0)
**Cell optimization:** No (Use [[optcell]] = 0 only)
**Related variables:** Viscous parameter [[vis]], time step [[dtion]], index
of atoms fixed [[iatfix]]
* 2 --> Conduct structural optimization using the Broyden-Fletcher-Goldfarb-Shanno minimization (BFGS). This is much more efficient for structural optimization than viscous damping, when there are less than about 10 degrees of freedom to optimize. Another version of the BFGS is available with [[ionmov]]==22, and is apparently more robust and efficient than [[ionmov]]==2.
**Purpose:** Structural optimization
**Cell optimization:** Yes (if [[optcell]]/=0)
**Related variables:**
* 6 --> Molecular dynamics using the Verlet algorithm, see [[cite:Allen1987a]] p 81]. The only related parameter is the time step ([[dtion]]).
**Purpose:** Molecular dynamics
**Cell optimization:** No (Use [[optcell]] = 0 only)
**Related variables:** time step [[dtion]], index of atoms fixed [[iatfix]]
* 7 --> Quenched Molecular dynamics using the Verlet algorithm, and stopping each atom for which the scalar product of velocity and force is negative. The only related parameter is the time step ([[dtion]]). The goal is not to produce a realistic dynamics, but to go as fast as possible to the minimum. For this purpose, it is advised to set all the masses to the same value (for example, use the Carbon mass, i.e. set [[amu]] to 12 for all type of atoms).
**Purpose:** Structural optimization
**Cell optimization:** No (Use [[optcell]] = 0 only)
**Related variables:** time step [[dtion]], index of atoms fixed [[iatfix]]
* 9 --> Langevin molecular dynamics.
**Purpose:** Molecular dynamics
**Cell optimization:** No (Use [[optcell]] = 0 only)
**Related variables:** time step ([[dtion]]), temperatures ([[mdtemp]]) and
friction coefficient ([[friction]]).
* 12 --> Isokinetic ensemble molecular dynamics. The equation of motion of the ions in contact with a thermostat are solved with the algorithm proposed by Zhang [J. Chem. Phys. 106, 6102 (1997)], as worked out by Minary et al [J. Chem. Phys. 188, 2510 (2003)]. The conservation of the kinetic energy is obtained within machine precision, at each step.
**Purpose:** Molecular dynamics
**Cell optimization:** No (Use [[optcell]]=0 only)
* 13 --> Isothermal/isenthalpic ensemble. The equation of motion of the ions in contact with a thermostat and a barostat are solved with the algorithm proposed by Martyna, Tuckermann Tobias and Klein [Mol. Phys., 1996, p. 1117].
If optcell=1 or 2, the mass of the barostat ([[bmass]]) must be given in
addition.
**Purpose:** Molecular dynamics
**Cell optimization:** Yes (if [[optcell]]/=0)
**Related variables:** The time step ([[dtion]]), the temperatures
([[mdtemp]]), the number of thermostats ([[nnos]]), and the masses of
thermostats ([[qmass]]).
* 22 --> Conduct structural optimization using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno minimization (L-BFGS) [[cite:Nocedal1980]]. The working routines were based on the original implementation of J. Nocedal available on netlib.org. This algorithm can be much better than the native implementation of BFGS in ABINIT ([[ionmov]] = 2) when one approaches convergence, perhaps because of better treatment of numerical details.
**Purpose:** Structural optimization
**Cell optimization:** Yes (if [[optcell]]/=0)
**Related variables:**
* 24 --> Simple constant energy molecular dynamics using the velocity Verlet symplectic algorithm (second order), see [[cite:Hairer2003]]. The only related parameter is the time step ([[dtion]]).
**Purpose:** Molecular dynamics
**Cell optimization:** No (Use [[optcell]] = 0 only)
**Related variables:** time step [[dtion]]
* 25 --> Hybrid Monte Carlo sampling of the ionic positions at fixed temperature and unit cell geometry (NVT ensemble). The underlying molecular dynamics corresponds to [[ionmov]]=24. The related parameters are the time step ([[dtion]]) and thermostat temperature ([[mdtemp]]).
Within the HMC algorithm [[cite:Duane1987]], the trial states are generated via short $NVE$ trajectories (ten [[ionmov]]=24 steps in current implementation).
The initial momenta for each trial are randomly sampled from Boltzmann distribution, and the final trajectory state is either accepted or rejected based on the Metropolis criterion.
Such strategy allows to simultaneously update all reduced coordinates, achieve higher acceptance ratio than classical Metropolis Monte Carlo and better sampling efficiency for shallow energy landscapes [[cite:Prokhorenko2018]].
**Purpose:** Monte Carlo sampling
**Cell optimization:** No (Use [[optcell]] = 0 only)
**Related variables:** time step [[dtion]], thermostat temperature [[mdtemp]],
* 101 --> NVE ensemble with velocity Verlet algorithm [[cite:Swope1982]] .
**Purpose:** Molecular dynamics
**Cell optimization:** No (Use [[optcell]]=0 only)
**Related variables:** The time step ([[dtion]]), the temperatures
([[multibinit:temperature]]). The time step should be small enough to make the energy conserved. The temperature is set to intialize the velocities of the atoms, which is in principle not preserved during the NVE run.
* 102 --> NVT ensemble with Langevin algorithm. [[cite:Vanden2006]] .
**Purpose:** Molecular dynamics
**Cell optimization:** No (Use [[optcell]]=0 only)
**Related variables:** The time step ([[dtion]]), the temperatures
([[multibinit:temperature]]), the friction [[multibinit:latt_friction]].
The atoms are coupled to the heat bath, which is represented by a gauss noise in the forces, whose amplitude is defined by the temperature, and a friction term.
* 103 --> NVT ensemble. The temperature is approached by scaling the velocity of atoms. The method is proposed by Berendsen et al. in J. Chem. Phys., 81 3684–3690 (1984) [[cite:Berendsen1984]]. Note that this method does NOT generate properly the thermostated ensemble. It does not have the correct distribution of the kinetic energy but have the correct average. However, it approches the target temperature exponentially without oscillation, for which the steps can be easily controlled.
**Purpose:** Molecular dynamics
**Cell optimization:** No (Use [[optcell]]=0 only)
**Related variables:** The time step ([[dtion]]), the temperatures
([[multibinit:temperature]]), the ion relaxation time [[multibinit:latt_taut]].
* 120 --> Dummy mover. Atoms does not move. For testing only.
""",
# Not yet fully implemented. Need to be properly documented and tested. Disactivated temporarily.
#* 104 --> NPT ensemble with method. Similar to option 103, except the pressure is also scaled.
#**Purpose:** Molecular dynamics
#**Cell optimization:** No (Use [[optcell]]=0 only)
#**Related variables:** The time step ([[dtion]]), the temperatures
#([[multibinit:temperature]]), the ion relaxation time [[multibinit:latt_taut]], the pressure relaxation time [[multibinit:latt_taup]].
),
Variable(
abivarname="dyn_chksym@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="DYNamics CHeK SYMmetry",
added_in_version="v9",
text=r"""
Flag to activate symmetry finder and imposition of symmetry of the restart structure before dynamics run, when restartxf is negativ.
Useful to do symmetry constrained relaxation with structural realxations algorithms.
Be cautious to use it with large number of atoms, symmetry detection might take a long time.
**Related variables:** Restart flag for multibinit dynamcis ([[multibinit:restartxf]]), symmetry on symmetry finder ([[multibinit:dyn_tolsym]]))
""",
),
Variable(
abivarname="dyn_tolsym@multibinit",
varset="multibinit",
vartype="real",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1e-10,
mnemonics="DYNamics TOLerance on SYMmetries",
added_in_version="v9",
text=r"""
Tolerance on symmetry finder.
**Related variables:** Activation flag for symmetry finder ([[multibinit:dyn_chksym]])
""",
),
Variable(
abivarname="dtion@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=100,
mnemonics="Delta Time for IONs",
added_in_version="before_v9",
text=r"""
See [[abinit:dtion]]
""",
),
Variable(
abivarname="latt_friction@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1e-4,
mnemonics="LATTice dynamics FRICTION parameter",
added_in_version="before_v9",
text=r"""
Parameter of the friction coefficient used in Langevin dynamics [[multibinit:dynamics]] =102. Typical value is 1e-4 to 1e-2.
""",
),
Variable(
abivarname="latt_anharm_pot_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="LATTice HARMornic POTential File NAME",
added_in_version="9.8",
text=r"""
Specify the input coefficients from fitted polynomial in multibinit lattice calculation, which can be a xml file. The string must be enclosed between quotation marks:
lat_anharm_pot_fname "BaTiO3_coeff.xml"
"""
),
Variable(
abivarname="latt_harm_pot_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="LATTice HARMonic POTential File NAME",
added_in_version="9.8",
text=r"""
Specify the input derivative database of reference structure in multibinit lattice calculation, which can be a DDB file or a xml file. The string must be enclosed between quotation marks:
latt_harm_pot_fname "BaTiO3.ddb"
"""
),
Variable(
abivarname="latt_training_set_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="LATTice potential TRAINING SET File NAME",
added_in_version="9.3.3",
text=r"""
Specify the training set file name for building multibinit lattice potential, which is usually a abinit molecular dynamics history netcdf file. The string must be enclosed between quotation marks:
latt_training_set_fname "BaTiO3_md_hist.nc"
"""
),
Variable(
abivarname="latt_test_set_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="LATTice potential TEST SET File NAME",
added_in_version="9.8",
text=r"""
Specify the test set file name for building multibinit lattice potential, which is usually a abinit molecular dynamics history netcdf file. The string must be enclosed between quotation marks:
latt_test_set_fname "BaTiO3_md_hist.nc"
"""
),
Variable(
abivarname="latt_pot_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="LATTice POTential FileNAME",
added_in_version="9.8",
text=r"""
Specify the lattice potential file name in the multibinit lattice dynamics calculation, which can be a netcdf file. This variable is only used in the harmonic-only lattice potential for testing only. The string must be enclosed between quotation marks:
latt_pot_fname "BaTiO3.nc"
"""
),
Variable(
abivarname="latt_taut@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1000,
mnemonics="LATTice dynamics relaxation time TAUT",
added_in_version="before_v9",
text=r"""
Parameter used in Berendsen lattice dynamics [[multibinit:dynamics]] =102 and 103, in which the temperature is relaxed exponentially to the target temperature, with the characteristic time of latt_taut.
The default unit is atomic unit. But it is possible to use the second as the unit by adding Second or S at the end of the line, for example:
latt_taut 1d-15 S
""",
),
Variable(
abivarname="latt_taup@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1000,
mnemonics="LATTice dynamics relaxation time TAUP",
added_in_version="before_v9",
text=r"""
Parameter used in Berendsen lattice dynamics [[multibinit:dynamics]] =103, in which the pressure is relaxed exponentially to the target temperature, with the characteristic time of latt_taup.
The default unit is atomic unit. But it is possible to use the second as the unit by adding Second or S at the end of the line, for example:
latt_taup 1d-15 S
""",
),
Variable(
abivarname="ntime@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=200,
mnemonics="Number of TIME step",
added_in_version="before_v9",
text=r"""
Number of step for the dynamics.
""",
),
Variable(
abivarname="nnos@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="Number of NOSe masses",
added_in_version="before_v9",
text=r"""
See [[abinit:nnos]]
""",
),
Variable(
abivarname="qmass@multibinit",
varset="multibinit",
vartype="real",
topics=['DynamicsMultibinit_basic'],
dimensions=['[[abinit:nnos]]'],
defaultval=0,
mnemonics="Q thermostat MASS",
added_in_version="before_v9",
text=r"""
See [[abinit:qmass]]
""",
),
Variable(
abivarname="nctime@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="NetCdf TIME between output of molecular dynamics informations ",
added_in_version="before_v9",
text=r"""
Set the number of step between output the molecular dynamics informations in the NetCDF file
""",
),
Variable(
abivarname="temperature@multibinit",
varset="multibinit",
vartype="real",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=325,
mnemonics="molecular dynamics TEMPERATURE (in Kelvin)",
added_in_version="before_v9",
text=r"""
Give the temperature of the dynamics in Kelvin
""",
),
Variable(
abivarname="ncell@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions=[3],
defaultval=[6,6,6],
mnemonics="Number of Cell",
added_in_version="before_v9",
text=r"""
Give the size of the supercell for the dynamics
""",
),
Variable(
abivarname="ncellmat@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions=[3, 3],
defaultval=[[1,0,0],[0,1,0], [0,0,1]],
mnemonics="Number of superCELL MATtrix",
added_in_version="9.5.0",
text=r"""
Give the size of the supercell for the dynamics in the format of a matrix.
Currently allowed in spin dynamics and spin and LWF dynamics.
It will override the [[multibinit:ncell]] if specified.
"""
),
Variable(
abivarname="outdata_prefix",
varset="multibinit",
vartype="string",
topics=['Control_useful'],
dimensions="scalar",
defaultval=None,
mnemonics="OUTput DATA PREFIX",
added_in_version="9.3.3",
text=r"""
Prefix for output files. Replaces the analogous entry in the obsolete *files_file* .
This variable is used when Abinit is executed with the new syntax:
multibinit run.abi > run.log 2> run.err &
If this option is not specified, a prefix is automatically constructed from the input file name
provided the filename ends with an extension, e.g. `.ext`. (`.abi` is recommended)
If the input filename does not have a file extension, a default is provided.
"""
),
Variable(
abivarname="strfact@multibinit",
varset="multibinit",
vartype="real",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=100.0,
mnemonics="STRess FACTor",
added_in_version="v9.1",
text=r"""
See [[abinit:strfact]]
""",
),
Variable(
abivarname="strtarget@multibinit",
varset="multibinit",
vartype="real",
topics=['DynamicsMultibinit_basic'],
dimensions=[6],
defaultval=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
mnemonics="STRess TARGET",
added_in_version="before_v9",
text=r"""
See [[abinit:strtarget]]
""",
),
Variable(
abivarname="bmass@multibinit",
varset="multibinit",
vartype="real",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=10,
mnemonics="Barostat MASS",
added_in_version="before_v9",
text=r"""
See [[abinit:bmass]]
""",
),
Variable(
abivarname="optcell@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="OPTimize the CELL shape and dimensions",
added_in_version="before_v9",
text=r"""
See [[abinit:optcell]]
""",
),
Variable(
abivarname="restartxf@multibinit",
varset="multibinit",
vartype="integer",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="RESTART from (X,F) history",
added_in_version="before_v9",
text=r"""
See [[abinit:restartxf]]
""",
),
Variable(
abivarname="sel_EFS@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_basic'],
dimensions=[3],
defaultval=[0,1,1],
added_in_version="v9",
mnemonics="Select on Energy, Forces, and or, Stresses",
text=r"""
Specifies on which goal function quantities the anharmonic coefficients will be selected.
The first number flags the selecting on the energies, the second the fitting on the forces, and the third on the stressses.
Default value is 0 1 1, so anharmonic coefficients get selected on Forces and Stresses but not on energies
""",
),
# The below are not yet functioning, comment out temporarily.
#Variable(
# abivarname="spin_calc_correlation_obs@multibinit",
# varset="multibinit",
# vartype="integer",
# topics=['SpinDynamicsMultibinit_basic'],
# dimensions="scalar",
# defaultval=0,
# mnemonics="SPIN CALCulate CORRELATION OBServables",
# added_in_version="before_v9",
# text=r"""
#Flag to calculate spin correlation function based observables.
#
#* 0 --> do not calculate.
#
#* 1 --> calculate.
#""",
#),
#
#
#Variable(
# abivarname="spin_calc_traj_obs@multibinit",
# varset="multibinit",
# vartype="integer",
# topics=['SpinDynamicsMultibinit_basic'],
# dimensions="scalar",
# defaultval=0,
# mnemonics="SPIN CALCulate TRAJectory based OBServables",
# added_in_version="before_v9",
# text=r"""
#Flag to calculate spin trajectory based observables. (Nothing included yet.)
#
#* 0 --> do not calculate.
#
#* 1 --> calculate.
#""",
#),
Variable(
abivarname="spin_calc_thermo_obs@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="SPIN CALCulate THERMO dynamics OBServables",
added_in_version="before_v9",
text=r"""
Flag to calculate spin thermo dynamics observables,
including the specific heat, magnetic susceptibility, Binder U4 value.
It's recommend to always calculate these observables.
* 0 --> do not calculate.
* 1 --> calculate.
""",
),
Variable(
abivarname="spin_damping@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=-1.0,
mnemonics="SPIN gilbert DAMPING factor",
added_in_version="before_v9",
text=r"""
Gilbert damping factor in LLG equation for spin dynamics.
* negative value --> use damping factor from spin xml file.
* positive value --> use as damping factor. The value should be between 0.0 and 1.0 (both included).
""",
),
#Variable(
# abivarname="spin_dipdip@multibinit",
# varset="multibinit",
# vartype="integer",
# topics=['SpinDynamicsMultibinit_basic'],
# dimensions="scalar",
# defaultval=0,
# mnemonics="SPIN DIPole DIPole interaction",
# added_in_version="before_v9",
# text=r"""
#* 0 --> Switch off spin dipole-dipole interaction.
#
#* 1 --> Switch on spin dipole-dipole interaction.
# (Not yet implemented.)
#""",
#),
Variable(
abivarname="spin_dt@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=100,
mnemonics="SPIN Delta Time",
added_in_version="before_v9",
text=r"""
Time step for spin dynamics. Default value is 100.
Default unit is atomic unit (2.419e-17 s).
S, Sec or Second can be appended as unit. (e.g. 1e-16 Sec).
""",
),
Variable(
abivarname="spin_dynamics@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SPIN DYNAMICS",
added_in_version="before_v9",
text=r"""
Flag to run spin dynamics.
* 0 --> Do not run spin dynamics.
* 1 --> Run spin dynamics with HeunP integration method.
* 2 --> Run spin dynamics with Depondt-Mertens method [[cite:Depondt2009]].
* 3 --> Run Monte Carlo.
* 20 --> Dummy mover. Spin will not rotate. For test only.
The HeunP method does less computation for each step,
whereas the Depondt-Mertens method allow larger time step.
For system with very simple interaction terms, HeunP could be faster.
Otherwise, use Depondt-Mertens method can be more efficient.
""",
),
Variable(
abivarname="spin_init_hist_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="SPIN INITIAL state HISTory file name",
added_in_version="9.3.3",
text=r"""
Specify the initial state of the multibinit spin dynamics calculation, which can be a spin_hist netcdf file, usually generated from previous spin dynamics calculations. It is used when [[multibinit:spin_init_state]]=4 The string must be enclosed between quotation marks, for example:
spin_init_hist_fname "last_step_spin_hist.nc"
"""
),
Variable(
abivarname="spin_init_state@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="SPIN INITial STATE",
added_in_version="before_v9",
text=r"""
Flag to initialize spin state.
* 1 --> Random spin state using uniform random numbers.
* 2 --> Reference spin state from potential file if present.
* 3 --> State with q-vector using [[multibinit:spin_init_qpoint]], [[multibinit:spin_init_rotate_axis]], and [[multibinit:spin_init_orientation]]. Please check default values for those variables.
* 4 --> Restart from last step of input spin hist file, as specified in [[multibinit:spin_init_hist_fname]].
""",
),
Variable(
abivarname="spin_mag_field@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions=[3],
defaultval=[0,0,0],
mnemonics="SPIN Magnetic Field",
added_in_version="before_v9",
text=r"""
External magnetic field. Unit: Tesla.
""",
),
Variable(
abivarname="spin_nctime@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SPIN NetCdf write per number of TIME steps",
added_in_version="before_v9",
text=r"""
Write spin into netcdf file in every spin_nctime of spin dynamics time steps.
""",
),
Variable(
abivarname="spin_ntime@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SPIN dynamics total Number of TIME steps",
added_in_version="before_v9",
text=r"""
Total number of spin dynamics time steps.
""",
),
Variable(
abivarname="spin_ntime_pre@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SPIN dynamics total Number of TIME steps for PREparing",
added_in_version="before_v9",
text=r"""
Total number of spin dynamics time steps for preparing the system.
The results of these time step are not written to trajectory spinhist.nc file,
And they are not used for calculating the observables.
""",
),
Variable(
abivarname="spin_init_orientation@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions=[3],
defaultval=[0,0,1],
mnemonics="SPIN INITial ORIENTATION",
added_in_version="before_v9",
text=r"""
Spin initial orientation. It is used for setting the initial spin in a supercell.
For a spin in a cell labeled with R, the rotation angle is $2\pi Q\cdot R$
from the initial orientation along the rotate axis.
Default is along z(0,0,1) direction.
""",
),
Variable(
abivarname="spin_init_qpoint@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions=[3],
defaultval=[0,0,0],
mnemonics="SPIN INITial QPOINT",
added_in_version="before_v9",
text=r"""
Spin wave vector. It is used for setting the initial spin in a supercell.
For a spin in a cell labeled with R, the rotation angle is $2\pi Q\cdot R$
from the initial orientation along the rotate axis.
Default is Gamma (0, 0, 0).
""",
),
Variable(
abivarname="spin_init_rotate_axis@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions=[3],
defaultval=[1,0,0],
mnemonics="SPIN INITial ROTATE AXIS",
added_in_version="before_v9",
text=r"""
Spin initial rotate axis. It is used for setting the initial spin in a supercell.
For a spin in a cell labeled with R, the rotation angle is $2\pi Q\cdot R$
from the initial orientation along the rotate axis.
Default is along x axis (1,0,0).
""",
),
Variable(
abivarname="spin_pot_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="SPIN POTential File NAME",
added_in_version="9.3.3",
text=r"""
Specify the spin potential file name in the multibinit spin dynamics calculation, which can be either a xml or a netcdf file. The string must be enclosed between quotation marks:
spin_pot_fname "Fe.xml"
"""
),
Variable(
abivarname="spin_projection_qpoint@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions=[3],
defaultval=[0,0,0],
mnemonics="SPIN PROJECTION QPOINT",
added_in_version="before_v9",
text=r"""
Spin wave vector. It is used for getting the total spin. $M_{tot}=\sum_i M_i exp(i q \cdot R_i)$. The unit is the reciprocal lattice vectors of the unitcell.
Default is Gamma. (0, 0, 0)
""",
),
Variable(
abivarname="spin_sia_add@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SPIN Single Ion Anistropy ADD",
added_in_version="before_v9",
text=r"""
Add single ion anisotropy term to the spin model hamiltonian.
with user defined values (see [[multibinit:spin_sia_k1amp]] and [[multibinit:spin_sia_k1dir]].
* 0 --> Do not add, use the term defined in the spin model xml file.
* 1 --> Override the term in spin model xml file.
* 2 --> Add to the value defined in spin model xml file.
Default value: 0.
""",
),
Variable(
abivarname="spin_sia_k1amp@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0.0,
mnemonics="SPIN Single Ion Anistropy K1 AMPtitude",
added_in_version="before_v9",
text=r"""
User defined amplitude of single ion anistropy. Only used when [[multibinit:spin_sia_add]] is not 0.
The direction is defined with [[multibinit:spin_sia_k1dir]]. The unit is Ha. To use eV or Ry as unit,
put eV or Ry at the end.
""",
),
Variable(
abivarname="spin_sia_k1dir@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions=[3],
defaultval=[0.0,0.0,1.0],
mnemonics="SPIN Single Ion Anistropy K1 DIRection",
added_in_version="before_v9",
text=r"""
User defined direction of single ion anistropy. Only used when [[multibinit:spin_sia_add]] is not 0.
It will be automatically normalized to 1.0. The amplitude is defined with [[multibinit:spin_sia_k1amp]].
Default value: [0.0, 0.0,1.0].
""",
),
Variable(
abivarname="spin_temperature@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=325,
mnemonics="SPIN TEMPERATURE",
added_in_version="before_v9",
text=r"""
Temperature of spin for spin dynamics. Unit: Kelvin.
Default value: 325.
""",
),
Variable(
abivarname="spin_var_temperature@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SPIN VARiable TEMPERATURE",
added_in_version="before_v9",
text=r"""
Switch for variable temperature calculation. 0: off. 1: on.
If switched on, a series of spin dynamics calculation with temperatures from
[[multibinit:spin_temperature_start]] to [[multibinit:spin_temperature_end]],
with number of steps [[multibinit:spin_temperature_nstep]] will be done.
The corresponding _spinhist.nc file has the corresponding temperature in the filename.
""",
),
Variable(
abivarname="spin_write_traj@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=1,
mnemonics="SPIN WRITE TRAJectory to spinhist.nc file",
added_in_version="before_v9",
text="""
Switch for writting of spin trajectory file. 0: off. 1 on.
The trajectory is needed for postprocessing of correlation functions.
""",
),
Variable(
abivarname="spin_temperature_start@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0.0,
mnemonics="SPIN TEMPERATURE START",
added_in_version="before_v9",
text=r"""
Start point of variable temperature spin dynamcis calculation (see [[multibinit:spin_var_temperature]]) in spin dynamics calculation.
""",
),
Variable(
abivarname="spin_temperature_end@multibinit",
varset="multibinit",
vartype="real",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0.0,
mnemonics="SPIN TEMPERATURE END",
added_in_version="before_v9",
text=r"""
End point of variable temperature spin dynamics calculation (see [[multibinit:spin_var_temperature]]) in spin dynamics calculation.
""",
),
Variable(
abivarname="spin_temperature_nstep@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SPIN TEMPERATURE Number of STEPs",
added_in_version="before_v9",
text=r"""
Number of steps in the variable temperature spin dynamics calculation (see [[multibinit:spin_var_temperature]]) in spin dynamics calculation.
""",
),
Variable(
abivarname="test_effpot@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="TEST EFFective POTential",
added_in_version="before_v9",
text=r"""
* 0 --> nothing.
* 1 --> Evaluate the effective potential with respect to given test-set and calculate mean square differences between ab-initio energy/forces and model energy/forces
""",
),
Variable(
abivarname="tolmxf@multibinit",
varset="multibinit",
vartype="real",
topics=['DynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=2e-5,
mnemonics="TOLerance on the MaXimal Force",
added_in_version="v9",
text=r"""
Sets a maximal absolute force tolerance (in hartree/Bohr) below which BFGS structural relaxation iterations will stop. Corresponds to [[tolmxf]] of Abinit.
""",
),
Variable(
abivarname="analyze_anh_pot@multibinit",
varset="multibinit",
vartype="integer",
topics=['LatticeModel_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="ANALYZE ANHarmonic POTential",
added_in_version="before_v9",
text=r"""
* 0 --> Nothing.
* 1 --> Print energy contribution of each anharmonic term in the effective Potential.
If it is a Molecular Dynamics (MD) run, the contribution of each term is printed for each MD-step into MD_anharmonic_terms_energy.dat .
If the effective potential is tested against a test set the contribution of each term for each configuration in the test set is printed in TES_anharmonic_terms_energy.dat .
If the effective potential is fitted, the contribution of each selected term for each configuration in the training set is printed in TRS_anharmonic_terms_energy.dat
""",
),
Variable(
abivarname="opt_effpot@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="OPTimize EFFective POTential",
added_in_version="before_v9",
text=r"""
* 0 --> Nothing.
* 1 --> Turn on reading of optimization of effective potential keywords (opt_).
The optimization process gives the user the ability to refit the coefficients of specified terms with respect to the training set while keeping the rest fixed.
**Related variables:** The number of coefficients to refit ([[multibinit:opt_ncoeff]]), the indices of the coefficients to optimize ([[multibinit:opt_coeff]]).
""",
),
Variable(
abivarname="opt_factors@multibinit",
varset="multibinit",
vartype="real",
topics=['FitProcess_basic'],
dimensions=[3],
defaultval=[1,1,1],
mnemonics="FACTORS for Goal Function of Energy, Forces, and Stresses during optimization of coefficients",
added_in_version="v9",
text=r"""
Specifies three factors for Energy, Forces and Stresses in the calcluation of the Goal Function which is to be minimized during the
optimization process allowing to change the relative weight of the three quantities.
Default value is 1 1 1, equally balancing energy, forces and stresses.
""",
),
Variable(
abivarname="opt_ncoeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions="scalar",
defaultval=0,
mnemonics="OPTimize NUMBER of COEFFicients",
added_in_version="before_v9",
text=r"""
* Number of anharmonic terms to refit in the effective potential.
**Related variables:** [[multibinit:opt_coeff]]
""",
),
Variable(
abivarname="opt_coeff@multibinit",
varset="multibinit",
vartype="integer",
topics=['FitProcess_expert'],
dimensions=['[[multibinit:opt_ncoeff]]'],
defaultval=0,
mnemonics="OPTimize Cofficients",
added_in_version="before_v9",
text=r"""
Indices of the terms to refit in the effective potential.
""",
),
Variable(
abivarname="randomseed@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_expert'],
dimensions='scalar',
defaultval=0,
mnemonics="RANDOM SEED",
added_in_version="9.8",
text=r"""
Random seed to be used in Multibinit spin/LWF dynamics.
It should be 0, or a large positive integer.
The default value 0 means it will use the current clock time.
DO NOT set this number unless you want to repeat the previous result. If a series
of dynamics is done with the same seed, the results could be wrong due to the
artificial periodicity of the random number that is generated. Even [[randomseed@multibinit]] is set, it is not guranteed
that the previous result can be recovered, as the generation of numbers is also affected by the number of
processors, type of type of CPU, compiler, and version of MULTIBINIT.
""",
),
Variable(
abivarname="slc_coupling@multibinit",
varset="multibinit",
vartype="integer",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval=0,
mnemonics="SpinLatticeCoupling_Coupling",
added_in_version="9.0.0",
text=r"""
Which spin-lattice coupling terms are used in the calculation, different terms can be combined in a binary fashion, i.e. 1010 turns on all terms quadratic in spin.
* 0 --> No coupling.
* 0001 --> Coupling term linear in spin and lattice coordinate
* 0010 --> Coupling term quadratic in spin and linear in lattice coordinate
* 0100 --> Coupling term linear in spin and quadratic in lattice coordinate
* 1000 --> Coupling term quadratic in spin and lattice coordinate
""",
),
Variable(
abivarname="slc_pot_fname@multibinit",
varset="multibinit",
vartype="string",
topics=['SpinDynamicsMultibinit_basic'],
dimensions="scalar",
defaultval="",
mnemonics="SLC POTential FileNAME",
added_in_version="9.3.3",
text=r"""
Specify the spin-lattice-coupling potential file name in the coupled spin-lattice multibinit dynamics calculation, which can be a netcdf file. The string must be enclosed between quotation marks:
slc_pot_fname "BaTiO3_slc.nc"
"""
),
Variable(
abivarname="outdata_prefix@multibinit",
varset="multibinit",
vartype="string",
topics=['Control_useful'],
dimensions="scalar",
defaultval=None,
mnemonics="OUTput DATA PREFIX",
added_in_version="9.8.0",
text=r"""
Prefix for output files. Replaces the analogous entry in the obsolete *files_file* .
This variable is used when MULTIBINIT is executed with the new syntax:
multibinit run.abi > run.log 2> run.err &
If this option is not specified, a prefix is automatically constructed from the input file name
provided the filename ends with an extension, e.g. `.ext`. (`.abi` is recommended)
If the input filename does not have a file extension, a default is provided.
Example:
outdata_prefix = "t01_o"
See also [[outdata_prefix@abinit]] and [[outdata_prefix@anaddb]]
"""
),
]
|