1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
---
authors: SP
---
# Tutorial EPH Temperature-Dependence (Legacy)
## Electron-phonon Temperature-DEPendence of the Electronic Structure.
This tutorial aims at showing how to get the following physical properties, for periodic solids:
* The zero-point-motion renormalization (ZPR) of eigenenergies
* The temperature-dependence of eigenenergies
* The lifetime/broadening of eigenenergies
It should take about 1 hour.
WARNING : This tutorial concerns an old procedure to obtain the temperature-dependence of the electronic structure, that is why it is labelled "legacy".
For the theory related to the temperature-dependent calculations, please read
the following papers: [[cite:Ponce2015]], [[cite:Ponce2014]] and [[cite:Ponce2014a]].
There are three ways to compute the temperature dependence with Abinit:
* **Using Anaddb**: historically the first implementation.
* **Using post-processing python scripts**: This way provides more options and is more efficient (less disk space, less memory demanding).
This option **requires Netcdf** (both in Abinit and python). In this tutorial, we only focus on this approach.
* **Using an interpolation of the perturbed potential**: This new way is covered
in the [ZPR and T-dependent band structures](/tutorial/eph4zpr) tutorial.
!!! important
In order to run the python script you need:
* python 2.7.6 or higher, python3 is not supported
* numpy 1.7.1 or higher
* netCDF4 and netCDF4 for python
* scipy 0.12.0 or higher
This can be done with:
sudo apt-get install netcdf-bin
sudo apt-get install python-dev
pip install numpy
pip install scipy
pip install netcdf4
A list of configuration files for clusters is available in the
[abiconfig repository](https://github.com/abinit/abiconfig)
If you have a prebuilt abinit executable, use:
./abinit -b
to get the list of libraries/options activated in the build.
You should see netcdf in the `TRIO flavor` section:
=== Connectors / Fallbacks ===
LINALG flavor : netlib
FFT flavor : goedecker
HDF5 : yes
NetCDF : yes
NetCDF Fortran : yes
LibXC : yes
Wannier90 : no
[TUTORIAL_README]
Visualisation tools are NOT covered in this tutorial.
Powerful visualisation procedures have been developed in the Abipy context,
relying on matplotlib. See the README of [Abipy](https://github.com/abinit/abipy)
and the [Abipy tutorials](https://github.com/abinit/abitutorials).
## 1 Calculation of the ZPR of eigenenergies at q=Γ.
The reference input files for this tutorial are located in
~abinit/tests/tutorespfn/Input and the corresponding reference output files
are in ~abinit/tests/tutorespfn/Refs.
The prefix for files is **teph_tdep_legacy**. As usual, we use the shorthand `~abinit` to indicate
the root directory where the abinit package has been deployed, but most often
consider the paths relative to this directory.
First, examine the [[tests/tutorespfn/Input/teph_tdep_legacy_1.abi]] input file.
{% dialog tests/tutorespfn/Input/teph_tdep_legacy_1.abi %}
Note that there are three datasets ([[ndtset]]=3). The first dataset corresponds to a standard
self-consistent calculation, with an unshifted eight k-point grid,
producing e.g. the ground-state eigenvalue file teph_tdep_legacy_1o_DS1_EIG.nc ,
as well as the density file teph_tdep_legacy_1o_DS1_DEN. The latter is read ([[getden]]2=1)
to initiate the second dataset calculation,
which is a non-self-consistent run, specifically at the Gamma point only (there is no real recomputation
with respect to the dataset 1, it only extract a subset of the eight k-point grid).
This second dataset produces the wavefunction file teph_tdep_legacy_1o_DS2_WFQ, that is read by the third dataset ([[getwfq]]3=2),
as well as the teph_tdep_legacy_1o_DS1_WFK file from the first dataset ([[getwfk]]3=1).
The third dataset corresponds to a DFPT phonon calculation ([[rfphon]]3=1)
with displacement of all atoms ([[rfatpol]]3= 1 2) in all directions ([[rfdir]]3= 1 1 1), which are the default values.
This induces the creation of the Derivative DataBase file teph_tdep_legacy_1o_DS3_DDB.
The electron-phonon matrix elements are produced because of [[ieig2rf]]3=5 ,
this option generating the needed netCDF files teph_tdep_legacy_1o_DS3_EIGR2D.nc and teph_tdep_legacy_1o_DS3_GKK.nc .
In order to run abinit, we suggest that you create a working directory, why not call it `Work`,
as subdirectory of ~abinit/tests/tutorespfn/Input, then
copy/modify the relevant files. Explicitly:
cd ~abinit/tests/tutorespfn/Input
mkdir Work
cd Work
cp ../teph_tdep_legacy*in .
Finally, issue
abinit teph_tdep_legacy_1.abi
The calculation will produce several _EIG.nc, _DDB, EIGR2D.nc and EIGI2D.nc files,
that contain respectively the eigenvalues (GS or perturbed),
the second-order derivative of the total energy with respect to
two atomic displacements, the electron-phonon matrix elements used to compute
the renormalization of the eigenenergies and the electron-phonon matrix
elements used to compute the lifetime of the electronic states.
You can now copy three post-processing python files from
~abinit/scripts/post_processing/temperature-dependence .
Make sure you are in the directory containing the output files produced by the code and issue:
cp ~abinit/scripts/post_processing/temperature-dependence/temperature_final.py .
cp ~abinit/scripts/post_processing/temperature-dependence/rf_final.py .
cp ~abinit/scripts/post_processing/plot_bs.py .
in which ~abinit has been replaced by the proper path.
<!--
as well as the python file
containing the required classes from ~abinit/scripts/post_processing/mrgeignc.py
into the directory where you did the calculations.
-->
You can then simply run the python script with the following command:
python temperature_final.py
and enter the information asked by the script, typically the following
(data contained in ~abinit/tests/tutorespfn/Input/teph_tdep_legacy_1_temperature.in):
```
1 # Number of cpus
2 # Static ZPR computed in the Allen-Heine-Cardona theory
temperature_1 # Prefix for output files
0.1 # Value of the smearing parameter for AHC (in eV)
0.1 # Gaussian broadening for the Eliashberg function and PDOS (in eV)
0 0.5 # Energy range for the PDOS and Eliashberg calculations (in eV)
0 1000 50 # min, max temperature and temperature step
1 # Number of Q-points we have (here we only computed $\Gamma$)
teph_tdep_legacy_1o_DS3_DDB # Name of the response-funtion (RF) DDB file
teph_tdep_legacy_1o_DS2_EIG.nc # Eigenvalues at $\mathbf{k+q}$
teph_tdep_legacy_1o_DS3_EIGR2D.nc # Second-order electron-phonon matrix element
teph_tdep_legacy_1o_DS3_GKK.nc # Name of the 0 GKK file
teph_tdep_legacy_1o_DS1_EIG.nc # Name of the unperturbed EIG.nc file with Eigenvalues at $k$
```
Alternatively, copy this example file in the Work directory if not yet done, and then run
python temperature_final.py < teph_tdep_legacy_1_temperature.in
{% dialog tests/tutorespfn/Input/teph_tdep_legacy_1_temperature.in %}
!!! warning
Remember to install the libraries required by the script before running.
For pip, use:
pip install netcdf4
or:
conda install netcdf4
if you are using [conda](https://docs.conda.io/en/latest/miniconda.html)
You should see on the screen an output similar to:
```shell
Start on 21/12/2020 at 15h21
____ ____ _ _
| _ \| _ \ | |_ ___ _ __ ___ _ __ ___ _ __ __ _| |_ _ _ _ __ ___
| |_) | |_) |____| __/ _ \ '_ ` _ \| '_ \ / _ \ '__/ _` | __| | | | '__/ _ \
| __/| __/_____| || __/ | | | | | |_) | __/ | | (_| | |_| |_| | | | __/
|_| |_| \__\___|_| |_| |_| .__/ \___|_| \__,_|\__|\__,_|_| \___|
|_| Version 1.5
This script compute the static/dynamic zero-point motion
and the temperature dependence of eigenenergies due to electron-phonon interaction.
The electronic lifetime can also be computed.
WARNING: The first Q-point MUST be the Gamma point.
Enter the number of cpu on which you want to multi-thread
Define the type of calculation you want to perform. Type:
1 if you want to run a non-adiabatic AHC calculation
2 if you want to run a static AHC calculation
3 if you want to run a static AHC calculation without control on active space (not recommended !)
Note that for 1 & 2 you need _EIGR2D.nc and _GKK.nc files obtained through ABINIT option "ieig2rf 5"
Enter name of the output file
Enter value of the smearing parameter for AHC (in eV)
Enter value of the Gaussian broadening for the Eliashberg function and PDOS (in eV)
Enter the energy range for the PDOS and Eliashberg calculations (in eV): [e.g. 0 0.5]
Introduce the min temperature, the max temperature and the temperature steps. e.g. 0 200 50 for (0,50,100,150)
Enter the number of Q-points you have
Enter the name of the 0 DDB file
Enter the name of the 0 eigq file
Enter the name of the 0 EIGR2D file
Enter the name of the 0 GKK file
Enter the name of the unperturbed EIG.nc file at Gamma
Inside the dynamic_zpm_temp def
Q-point: 0 with wtq = 1.0 and reduced coord. [0. 0. 0.]
WARNING: An eigenvalue is negative with value: -2.8630004909173537e-10 ... but proceed with value 0.0
Now compute active space ...
Now compute generalized g2F Eliashberg electron-phonon spectral function ...
End on 21/12/2020 at 15 h 21
Runtime: 0 seconds (or 0.0 minutes)
```
The python code has generated the following files:
**temperature_1.txt**
: This text file contains the zero-point motion renormalization (ZPR) at each k-point for each band.
It also contain the evolution of each band with temperature at k=$\Gamma$.
At the end of the file, the Fan/DDW contribution is also reported.
**temperature_1_EP.nc**
: This netcdf file contains a number for each k-point,
for each band and each temperature. The real part of this number is the ZPR correction
and the imaginary part is the lifetime.
<!--
**temperature_BRD.txt**
: This text file contains the lifetime of the electronic states
at each k-point for each band. It also contains the evolution of each band with temperature at k=$\Gamma$.
-->
We can for example visualize the temperature dependence at k=$\Gamma$ of the LUMO bands
(`Band: 4` section in the **temperature_1.txt** file, that you can examine)
with the contribution of only q=$\Gamma$.

As you can see, the LUMO correction goes down with temperature.
If the calculations were converged, the HOMO eigenenergies correction should go up with temperature.
In general, the ZPR correction as well as their temperature dependence usually closes the gap
of semiconductors.
As usual, checking whether the input parameters give converged values is of course important.
<!-- OBSOLETE
### If Abinit is **not** compiled with Netcdf ...
In this case, we should first use [[help:mrgddb|mrgddb]] to merge the _DDB and _EIGR2D/_EIGI2D
but since we only have one q-point we do not have to perform this step.
The static temperature dependence and the G2F can be computed thanks to anaddb
with the files file teph_tdep_legacy_2.files and the input
file [[tests/tutorespfn/Input/teph_tdep_legacy_2.abi]].
The information contained in the files file can be understood by looking at the echo
if its reading in the standard output:
```
Give name for formatted input file:
- teph_tdep_legacy_2.abi
Give name for formatted output file:
- teph_tdep_legacy_2.out
Give name for input derivative database:
- teph_tdep_legacy_1o_DS3_DDB
Give name for output molecular dynamics:
- dummyo.md
Give name for input elphon matrix elements (GKK file):
- teph_tdep_legacy_1o_DS3_EIGR2D
Give root name for elphon output files:
- teph_tdep_legacy_1_ana
Give name for file containing ddk filenames for elphon/transport:
- dummy.ddk
```
{% dialog tests/tutorespfn/Input/teph_tdep_legacy_2.abi %}
As concern the anaddb input file, note that the electron-phonon analysis is triggered by
[[anaddb:thmflag]] 3, as well as [[anaddb:telphint]] 1 .
Launch anaddb by the command
anaddb teph_tdep_legacy_2.abi
(where `anaddb` might have to be replaced by the proper location of the anaddb executable).
The run will generate 3 files:
**teph_tdep_legacy_2.out_ep_G2F**
: This g2F spectral function represents the contribution of the phononic modes of energy E
to the change of electronic eigenenergies according to the equation
**teph_tdep_legacy_2.out_ep_PDS**
: This file contains the phonon density of states
**teph_tdep_legacy_2.out_ep_TBS**
: This file contains the eigenenergy corrections as well
as the temperature dependence one.
You can check that the results are the same as with the python script approach here above.
END OF OBSOLETE
-->
## 2 Converging the calculation with respect to the grid of phonon wavevectors
Convergence studies with respect to most of the parameters will rely on obvious modifications
of the input file detailed in the previous section. However, using more than one
q-point phonon wavevector needs a non-trivial generalisation of this procedure.
This is because each q-point needs to be treated in a different dataset in the current version of ABINIT.
<!--
From now on we will only describe the approach with Abinit **compiled with Netcdf support**.
The approach with Anaddb is similar to what we described in the previous sections.
Note, however, that Anaddb only supports integration with homogenous q-point grids.
-->
The code can perform the q-wavevector integration either with random q-points or
homogenous Monkhorst-Pack meshes.
Both grids have been used in the Ref. [[cite:Ponce2014]], see e.g. Fig. 3 of this paper.
For the random integration method you
should create a script that generates random q-points, perform the Abinit
calculations at these points, gather the results and analyze them.
The temperature_final.py script will detect that you used random
integration thanks to the weight of the q-point stored in the _EIGR2D.nc file
and perform the integration accordingly.
The random integration converges slowly but in a smooth manner.
However, since this method is a little bit less user-friendly than the one based on homogeneous grids,
we will focus on this homogenous integration.
In this case, the user must specify in the ABINIT input file the homogeneous q-point grid,
using input variables like
[[ngqpt]], [[qptopt]], [[shiftq]], [[nshiftq]], ..., i.e. variables whose names
are similar to those used to specify the k-point grid (for electrons).
There are several difficulties here.
First, since we focus on the k=$\Gamma$ point, we expect to be able to use symmetries to decrease the computational
load, as $\Gamma$ is invariant under all symmetry operations of the crystal. The symmetry operations of the crystal will be used
to decrease the number of q-wavevectors, but they cannot be used as well to decrease the k-point grid during the corresponding
self-consistent phonon computation.
How this different behaviour of k-grids and q-grids can be handled by ABINIT ?
By convention, in such case, with [[nsym]]=1 the k-point grid will be generated in the Full Brillouin zone,
without use of symmetries, while the q-point grid with [[qptopt]]=1 with be generated in the irreducible Brillouin Zone,
despite [[nsym]]=1. In order to generate q-point grids that are not folded in the irreducible Brillouin Zone, one need to use another value of [[qptopt]].
In particular [[qptopt]]=3 has to be used to generate q points in the full Brillouin zone.
Second, the number of ABINIT datasets is expected to be given in the input file, by the user,
but not determined on-the-flight by ABINIT. Still, this number of datasets is determined by the number of q points.
Thus, the user will have to compute it before being able to launch the real q-point calculations, since it determines [[ndtset]].
How to determine the number of irreducible q points ?
Well, the easiest procedure is to compute it for an equivalent k-point grid, by a quick run.
An example will clarify this.
Suppose that one is looking for the number of q-points corresponding to
ngqpt 4 4 4
qptopt 1
nshiftq 1
shiftq 0.0 0.0 0.0
One make a quick ABINIT run with [[tests/tutorespfn/Input/teph_tdep_legacy_2.abi]].
Note that several input variables have been changed with respect to [[tests/tutorespfn/Input/teph_tdep_legacy_1.abi]]:
ndtset 1
nstep 0
prtebands 0
ngkpt 4 4 4
nshiftk 1
shiftk 0.0 0.0 0.0
nsym 0
In this example, the new values of [[ndtset]] and [[nstep]], and the definition of [[prtebands]]
allow a fast run ([[nline]]==0 might be specified as well,
or even, the run might be interrupted after a few seconds, since the number of k points is very quickly available).
Then, the k-point grid is
specified thanks to [[ngkpt]], [[nshiftk]], [[shiftk]], replacing the corresponding input variables for the q-point
grid. The use of symmetries has been reenabled thanks to [[nsym]]=0.
To run it, issue:
abinit teph_tdep_legacy_2.abi
Now, the number of points can be seen in the output file :
```
nkpt 8
```
the list of these eight k-points being given in
```
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
2.50000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 2.50000000E-01 0.00000000E+00
-2.50000000E-01 2.50000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 5.00000000E-01 2.50000000E-01
```
We are now ready to launch the determination of the
_EIG.nc, _DDB, EIGR2D.nc and EIGI2D.nc files, with 8 q-points.
As for the $\Gamma$ calculation of the previous section, we will rely on three
datasets for each q-point. This permits a well-structured set of calculations,
although there is some redundancy. Indeed, the first of these datasets will correspond
to an unperturbed ground-state calculation identical for all q. It is done very quickly because
the converged wavefunctions are already available. The second dataset will correspond to
a non-self-consistent ground-state calculation at k+q (it is also quick thanks to previously available wavefunctions),
and the third dataset will correspond to the DFPT calculations at k+q (this is the CPU intensive part) .
So, compared to the first run in this tutorial, we have to replace
ndtset 3 by ndtset 24 udtset 8 3
in the input file [[tests/tutorespfn/Input/teph_tdep_legacy_3.abi]], and adjusted accordingly all input variables that were dataset-dependent.
{% dialog tests/tutorespfn/Input/teph_tdep_legacy_3.abi %}
Please, refer to the
[[help:abinit#35-defining-a-double-loop-dataset|explanation of the usage of a double-loop of datasets]]
if you are confused about the meaning of [[udtset]], and the usage of the corresponding metacharacters.
We have indeed also introduced
iqpt:? 1
iqpt+? 1
that translates into
iqpt11 1
iqpt12 1
iqpt13 1
iqpt21 2
iqpt22 2
iqpt23 2
iqpt31 3
...
allowing to perform calculations for three datasets at each q-point.
Then issue:
abinit teph_tdep_legacy_3.abi
This is a significantly longer ABINIT run (still less than two minutes), also producing many files.
When the run is finished, copy the file [[tests/tutorespfn/Input/teph_tdep_legacy_3_temperature.in]] in the
working directory (if not yet done) and launch the python script with:
./temperature_final.py < teph_tdep_legacy_3_temperature.in
{% dialog tests/tutorespfn/Input/teph_tdep_legacy_3_temperature.in %}
Examination of the same HOMO and LUMO bands at k=$\Gamma$ for a 4x4x4 q-point grid gives a very different result
than previously.
The zero-point renormalization (ZPR) is the change of the bandgap at 0 K and was (band 4 - band 3):
-0.012507 - 0.017727 = -0.030234 eV
and is now:
-0.351528 - 0.095900 = -0.447428 eV
This means that the bandgap was closing by 30 meV at 0 K and is now closing by 447 meV at 0 K.
For comparison, the converged direct bandgap ZPR of diamond is 438.6 meV from Ref. [[cite:Ponce2015]].
As a matter of fact, diamond requires an extremely dense q-point grid (40x40x40) to be converged.
On the bright side, each q-point calculation is independent and thus the parallel scaling is ideal.
Running separate jobs for different q-points is quite easy thanks to the dtset approach.
## 3 Calculation of the eigenenergy corrections along high-symmetry lines
The calculation of the electronic eigenvalue correction due to electron-phonon
coupling along high-symmetry lines requires the use of 6 datasets per q-point.
Moreover, the choice of an arbitrary k-wavevector breaks all symmetries of the crystal.
Different datasets are required to compute the following quantites:
$\Psi^{(0)}_{kHom}$ : The ground-state wavefunctions on the Homogeneous k-point sampling.
$\Psi^{(0)}_{kBS}$ : The ground-state wavefunctions computed along the bandstructure k-point sampling.
$\Psi^{(0)}_{kHom+q}$ : The ground-state wavefunctions on the shifted Homogeneous k+q-point sampling.
$n^{(1)}$ : The perturbed density integrated over the homogeneous k+q grid.
$\Psi^{(0)}_{kBS+q}$ : The ground-state wavefunctions obtained from reading the perturbed density of the previous dataset.
Reading the previous quantity we obtain the el-ph matrix elements along the bandstructure with all physical
quantities integrated over a homogeneous grid.
We will use the [[tests/tutorespfn/Input/teph_tdep_legacy_4.abi]] input file
{% dialog tests/tutorespfn/Input/teph_tdep_legacy_4.abi %}
Note the use of the usual input variables to define a path in the Brillouin Zone to build an electronic band structure:
[[kptbounds]], [[kptopt]], and [[ndivsm]]. Note also that we have defined [[qptopt]]=3. The number of q-points
is thus very easy to determine, as being the product of [[ngqpt]] values times [[nshiftq]]. Here a very rough 2*2*2 grid has been chosen,
even less dense than the one for section 2.
Then issue:
abinit teph_tdep_legacy_4.abi
This is a significantly longer ABINIT run (5-10 minutes), also producing many files.
then use [[tests/tutorespfn/Input/teph_tdep_legacy_4_temperature.in]] for the python script.
{% dialog tests/tutorespfn/Input/teph_tdep_legacy_4_temperature.in %}
with the usual syntax:
./temperature_final.py < teph_tdep_legacy_4_temperature.in
<!-- THIS SECTION DOES NOT SEEM CORRECT : there is no other k point computed in section 2 ...
Of course, the high symmetry points computed in section 2 have the same value here.
It is a good idea to check it by running the script with the file teph_tdep_legacy_3bis.files.
-->
You can now copy the plotting script (Plot-EP-BS) python file from
~abinit/scripts/post_processing/plot_bs.py into the directory where you did all the calculations.
Now run the script:
./plot_bs.py
with the following input data:
```
temperature_4_EP.nc
L \Gamma X W K L W X K \Gamma
-20 30
0
```
or more directly
./plot_bs.py < teph_tdep_legacy_4_plot_bs.abi
This should give the following bandstructure

where the solid black lines are the traditional electronic bandstructure, the
dashed lines are the electronic eigenenergies with electron-phonon
renormalization at a defined temperature (here 0K). Finally the area around
the dashed line is the lifetime of the electronic eigenstates.
Notice all the spikes in the electron-phonon case. This
is because we did a completely under-converged calculation
with respect to the q-point sampling.
It is possible to converge the calculations using [[ecut]]=30 Ha, a [[ngkpt]]
grid of 6x6x6 and an increasing [[ngqpt]] grid to get converged results:
| Convergence study ZPR and inverse lifetime(1/τ) [eV] at 0K |
| q-grid | Nb qpt | Γ25' | Γ15 | Min Γ-X |
| | in IBZ | ZPR | 1/τ | ZPR | 1/τ | ZPR | 1/τ |
| 4x4x4 | 8 | 0.1175 | 0.0701 | -0.3178 | 0.1916 | -0.1570 | 0.0250 |
| 10x10x10 | 47 | 0.1390 | 0.0580 | -0.3288 | 0.1847 | -0.1605 | 0.0308 |
| 20x20x20 | 256 | 0.1446 | 0.0574 | -0.2691 | 0.1823 | -0.1592 | 0.0298 |
| 26x26x26 | 511 | 0.1448 | 0.0573 | -0.2736 | 0.1823 | -0.1592 | 0.0297 |
| 34x34x34 | 1059 | 0.1446 | 0.0573 | -0.2699 | 0.1821 | -0.1591 | 0.0297 |
| 43x43x43 | 2024 | 0.1447 | 0.0572 | -0.2650 | 0.1821 | -0.1592 | 0.0297 |
As you can see the limiting factor for the convergence study is the
convergence of the LUMO band at $\Gamma$. This band is not the lowest in energy (the
lowest is on the line between $\Gamma$ and X) and therefore this band is rather
unstable. This can also be seen by the fact that it has a large electronic
broadening, meaning that this state will decay quickly into another state.
Using the relatively dense q-grid of 43x43x43 we can obtain the following
converged bandstructure, at a high temperature (1900K):

Here we show the renormalization at a very high temperature of 1900K in order
to highlight more the broadening and renormalization that occurs. If you want
accurate values of the ZPR at 0K you can look at the table above.
!!! Important
If you use an extremely fine q-point grid, the acoustic phonon frequencies for
q-points close to $\Gamma$ will be wrongly determined by Abinit. Indeed in order to
have correct phonon frequencies close to $\Gamma$, one has to impose the acousting sum rule
with anaddb and [[asr@anaddb]].
However, this feature is not available in the python script. Instead, the script reject the
contribution of the acoustic phonon close to $\Gamma$ if their phonon frequency is
lower than 1E-6 Ha. Otherwise one gets unphysically large contribution.
One can tune this parameter by editing the variable "tol6 = 1E-6" in the beginning of the script.
For example, for the last 43x43x43 calculation, it was set to 1E-4.
!!! important
It is possible to speed up the convergence with respect to increasing q-point density by noticing
that the renormalization behaves analytically with increasing q-point grid and smaller broadening.
It is therefore possible to extrapolate the results. Different analytical behavior extists depending
if the material is polar and if the state we are considering is a band extrema or not.
More information can be found in Ref. [[cite:Ponce2015]]
|