1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
<!--1--><SECTION sectiontitle='Calculation' tag='1'>
<!--2--><MOUSEENTRY instruction='Choose your functional:' tag='2'>
<!--3--><OPTION description='0. No exchange-correlation' variablename='ixc' variablevalue='0' tag='3'/>
<!--4--><OPTION description='1. LDA or LSD, Tater Pade parametrization' variablename='ixc' variablevalue='1' tag='4'/>
<!--5--><OPTION description='2. LDA, Perdew-Zunger-Ceperley-Alder(no spin)' variablename='ixc' variablevalue='2' tag='5'/>
<!--6--><OPTION description='3. LDA, old Teter rational polynomial parametrization (no spin)' variablename='ixc' variablevalue='3' tag='6'/>
<!--7--><OPTION description='4. LDA, Wigner functional (no spin)' variablename='ixc' variablevalue='4' tag='7'/>
<!--8--><OPTION description='5. LDA, Hedin-Lundqvist functional (no spin)' variablename='ixc' variablevalue='5' tag='8'/>
<!--9--><OPTION description='6. LDA, "X-alpha" functional (no spin)' variablename='ixc' variablevalue='6' tag='9'/>
<!--10--><OPTION description='7. LDA or LSD, Perdew-Wang 92 functional' variablename='ixc' variablevalue='7' tag='10'/>
<!--11--><OPTION description='8. LDA or LSD, x-only part of the Perdew-Wang 92 functional' variablename='ixc' variablevalue='8' tag='11'/>
<!--12--><OPTION description='9. LDA or LSD, x- and RPA correlation part of the Perdew-Wang 92 functional' variablename='ixc' variablevalue='9' tag='12'/>
<!--13--><OPTION description='10. GGA, Perdew-Burke-Ernzerhof GGA functional' variablename='ixc' variablevalue='11' tag='13'/>
<!--14--><OPTION description='11. GGA, x-only part of Perdew-Burke-Ernzerhof GGA functional' variablename='ixc' variablevalue='12' tag='14'/>
<!--15--><OPTION description='12. GGA potential of van Leeuwen-Baerends, while for energy, Perdew-Wang 92 functional' variablename='ixc' variablevalue='13' tag='15'/>
<!--16--><OPTION description='13. GGA, revPBE of Y. Zhang and W. Yang' variablename='ixc' variablevalue='14' tag='16'/>
<!--17--><OPTION description='14. GGA, RPBE of B. Hammer, L.B. Hansen and J.K. Norskov' variablename='ixc' variablevalue='15' tag='17'/>
<!--18--><OPTION description='15. GGA, HTCH of F.A. Hamprecht, A.J. Cohen, D.J. Tozer, N.C. Handy' variablename='ixc' variablevalue='16' tag='18'/>
<!--19--><OPTION description='16. Fermi-Amaldi xc (Hartree energy), for TDDFT tests. No spin-pol. Does not work for RF' variablename='ixc' variablevalue='20' tag='19'/>
<!--20--><OPTION description='17. same as 20, except that the xc-kernel is the LDA (ixc=1) one' variablename='ixc' variablevalue='21' tag='20'/>
<!--21--><OPTION description='18. same as 20, except that the xc-kernel is the Burke-Petersilka-Gross hybrid' variablename='ixc' variablevalue='22' tag='21'/>
</MOUSEENTRY>
<!--22--><KEYBOARDENTRY instruction='Energy cutoff of basis (specify units: Ha, Ry, eV, K)' variablename='ecut' textlen='1' tag='22'/>
<!--23--><KEYBOARDENTRY instruction='Number of bands to include:' variablename='nband' textlen='1' tag='23'/>
<!--24--><CHOICE instruction='Is the system semiconducting or metallic:' tag='24'>
<!--25--><DECISION description='Semiconducting' tag='25'>
<!--26--><CHOICE instruction='How do you want to specify occupation:' tag='26'>
<!--27--><DECISION description='By manually entering the occupation of the bands' tag='27'>
<!--28--><CHOICE instruction='Choose the method of generation' tag='28'>
<!--29--><DECISION description="All K points have the same number of bands and the same occupancies of bands" tag='29'>
<!--30--><DIRECTENTRY variablename='occopt' variablevalue='0' tag='30'/>
<!--31--><KEYBOARDENTRY instruction='Specify the occupation of the bands' variablename='occ' textlen='1' tag='31'/>
</DECISION>
<!--32--><DECISION description='k points may optionally have different numbers of bands and different occupancies' tag='32'>
<!--33--><DIRECTENTRY variablename='occopt' variablevalue='2' tag='33'/>
<!--34--><KEYBOARDENTRY instruction='Specify the occupation for EACH bands, for EACH k point and EACH spin' variablename='occ' textlen='1' tag='34'/>
</DECISION>
</CHOICE>
</DECISION>
<!--35--><DECISION description='By allowing the code to specify automatically the occupation for a semiconductor' tag='35'>
<!--36--><DIRECTENTRY variablename='occopt' variablevalue='1' tag='36'/>
</DECISION>
</CHOICE>
</DECISION>
<!--37--><DECISION description='Metallic' tag='37'>
<!--38--><MOUSEENTRY instruction='Choose the smearing type used for the occupation' tag='38'>
<!--39--><OPTION description='Fermi-Dirac smearing (finite-temperature metal)' variablename='occopt' variablevalue='3' tag='39'/>
<!--40--><OPTION description='"Cold smearing" of N. Marzari with a=-.5634 (minimization of the bump)' variablename='occopt' variablevalue='4' tag='40'/>
<!--41--><OPTION description='"Cold smearing" of N. Marzari with a=-.8165 (monotonic function in the tail)' variablename='occopt' variablevalue='5' tag='41'/>
<!--42--><OPTION description='Smearing of Methfessel and Paxton ' variablename='occopt' variablevalue='6' tag='42'/>
<!--43--><OPTION description='Gaussian smearing' variablename='occopt' variablevalue='7' tag='43'/>
</MOUSEENTRY>
<!--44--><KEYBOARDENTRY instruction='Specify the temperature of the smearing (give units: Ha, Ry, eV, K)' variablename='tsmear' textlen='1' tag='44'/>
</DECISION>
</CHOICE>
<!--45--><KEYBOARDENTRY instruction='Preconditioning of the residual potential to be transferred in the SCF (Default 1.0)' variablename='diemix' textlen='1' tag='45'/>
<!--46--><KEYBOARDENTRY instruction='Give model for the Dielectric Macroscopic constant (speed up SCF procedure, Default 1d6)' variablename='diemac' textlen='1' tag='46'/>
<!--47--><MOUSEENTRY instruction='Control the self consistency' tag='47'>
<!--48--><OPTION description='1. Get the largest eigenvalue of the SCF cycle (developper option)' variablename='iscf' variablevalue='1' tag='48'/>
<!--49--><OPTION description='2. SCF cycle, simple mixing of the potential' variablename='iscf' variablevalue='2' tag='49'/>
<!--50--><OPTION description='3. SCF cycle, Anderson mixing of the potential' variablename='iscf' variablevalue='3' tag='50'/>
<!--51--><OPTION description='4. SCF cycle, Anderson mixing of the potential based on the two previous iterations' variablename='iscf' variablevalue='4' tag='51'/>
<!--52--><OPTION description='5. SCF cycle, CG based on the minim. of the energy with respect to the potential(DEFAULT)' variablename='iscf' variablevalue='5' tag='52'/>
<!--53--><OPTION description='6. SCF cycle, Pulay mixing of the potential based on the npulayit previous iterations' variablename='iscf' variablevalue='7' tag='53'/>
<!--54--><OPTION description='7. SCF cycle, simple mixing of the density' variablename='iscf' variablevalue='12' tag='54'/>
<!--55--><OPTION description='8. SCF cycle, Anderson mixing of the density' variablename='iscf' variablevalue='13' tag='55'/>
<!--56--><OPTION description='9. SCF cycle, Anderson mixing of the density based on the two previous iterations (DEFAULT PAW)' variablename='iscf' variablevalue='14' tag='56'/>
<!--57--><OPTION description='10. SCF cycle, CG based on the minim. of the energy with respect to the density' variablename='iscf' variablevalue='15' tag='57'/>
<!--58--><OPTION description='11. SCF cycle, Pulay mixing of the density based on the npulayit previous iterations' variablename='iscf' variablevalue='17' tag='58'/>
<!--59--><OPTION description='12. Non-self-consistent calculation is to be done (see documentation)' variablename='iscf' variablevalue='-2' tag='59'/>
<!--60--><OPTION description='13. Like 12, but initialize occ and wtk (see documentation)' variablename='iscf' variablevalue='-3' tag='60'/>
<!--61--><OPTION description='14. Like 12, but followed by the determination of excited states within TDDFT' variablename='iscf' variablevalue='-1' tag='61'/>
</MOUSEENTRY>
<!--62--><KEYBOARDENTRY instruction='Maximum number of SCF iterations' variablename='nstep' textlen='1' tag='62'/>
<!--63--><CHOICE instruction='Choose the SCF cycle convergence criteria' tag='63'>
<!--64--><DECISION description='Converge on the difference on the energy' tag='64'>
<!--65--><KEYBOARDENTRY instruction='Minimum difference of energy (specify units: Ha, Ry, eV, K)' variablename='toldfe' textlen='1' tag='65'/>
</DECISION>
<!--66--><DECISION description='Converge on the difference on the force' tag='66'>
<!--67--><KEYBOARDENTRY instruction='Minimum difference of the force (no units)' variablename='toldff' textlen='1' tag='67'/>
</DECISION>
<!--68--><DECISION description='Converge on the difference of the wavefunction' tag='68'>
<!--69--><KEYBOARDENTRY instruction='Minimum difference of the wavefunction (no units)' variablename='tolwfr' textlen='1' tag='69'/>
</DECISION>
<!--70--><DECISION description='Converge on the difference of the potential' tag='70'>
<!--71--><KEYBOARDENTRY instruction='Minimum difference of the potential (no units)' variablename='tolvrs' textlen='1' tag='71'/>
</DECISION>
</CHOICE>
</SECTION>
|