File: Calculation_tag.xml

package info (click to toggle)
abinit 9.10.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 518,712 kB
  • sloc: xml: 877,568; f90: 577,240; python: 80,760; perl: 7,019; ansic: 4,585; sh: 1,925; javascript: 601; fortran: 557; cpp: 454; objc: 323; makefile: 77; csh: 42; pascal: 31
file content (89 lines) | stat: -rwxr-xr-x 9,122 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 <!--1--><SECTION sectiontitle='Calculation' tag='1'>
 <!--2--><MOUSEENTRY instruction='Choose your functional:' tag='2'>
 <!--3--><OPTION description='0. No exchange-correlation' variablename='ixc' variablevalue='0' tag='3'/>
 <!--4--><OPTION description='1.  LDA or LSD, Tater Pade parametrization' variablename='ixc' variablevalue='1' tag='4'/>
 <!--5--><OPTION description='2.  LDA, Perdew-Zunger-Ceperley-Alder(no spin)' variablename='ixc' variablevalue='2' tag='5'/>
 <!--6--><OPTION description='3.  LDA, old Teter rational polynomial parametrization (no spin)' variablename='ixc' variablevalue='3' tag='6'/>
 <!--7--><OPTION description='4.  LDA, Wigner functional (no spin)' variablename='ixc' variablevalue='4' tag='7'/>
 <!--8--><OPTION description='5.  LDA, Hedin-Lundqvist functional (no spin)' variablename='ixc' variablevalue='5' tag='8'/>
 <!--9--><OPTION description='6.  LDA, "X-alpha" functional (no spin)' variablename='ixc' variablevalue='6' tag='9'/>
<!--10--><OPTION description='7.  LDA or LSD, Perdew-Wang 92 functional' variablename='ixc' variablevalue='7' tag='10'/>
<!--11--><OPTION description='8.  LDA or LSD, x-only part of the Perdew-Wang 92 functional' variablename='ixc' variablevalue='8' tag='11'/>
<!--12--><OPTION description='9.  LDA or LSD, x- and RPA correlation part of the Perdew-Wang 92 functional' variablename='ixc' variablevalue='9' tag='12'/>
<!--13--><OPTION description='10. GGA, Perdew-Burke-Ernzerhof GGA functional' variablename='ixc' variablevalue='11' tag='13'/>
<!--14--><OPTION description='11. GGA, x-only part of Perdew-Burke-Ernzerhof GGA functional' variablename='ixc' variablevalue='12' tag='14'/>
<!--15--><OPTION description='12. GGA potential of van Leeuwen-Baerends, while for energy, Perdew-Wang 92 functional' variablename='ixc' variablevalue='13' tag='15'/>
<!--16--><OPTION description='13. GGA, revPBE of Y. Zhang and W. Yang' variablename='ixc' variablevalue='14' tag='16'/>
<!--17--><OPTION description='14. GGA, RPBE of B. Hammer, L.B. Hansen and J.K. Norskov' variablename='ixc' variablevalue='15' tag='17'/>
<!--18--><OPTION description='15. GGA, HTCH of F.A. Hamprecht, A.J. Cohen, D.J. Tozer, N.C. Handy' variablename='ixc' variablevalue='16' tag='18'/>
<!--19--><OPTION description='16. Fermi-Amaldi xc (Hartree energy), for TDDFT tests. No spin-pol. Does not work for RF' variablename='ixc' variablevalue='20' tag='19'/>
<!--20--><OPTION description='17. same as 20, except that the xc-kernel is the LDA (ixc=1) one' variablename='ixc' variablevalue='21' tag='20'/>
<!--21--><OPTION description='18. same as 20, except that the xc-kernel is the Burke-Petersilka-Gross hybrid' variablename='ixc' variablevalue='22' tag='21'/>
         </MOUSEENTRY>
<!--22--><KEYBOARDENTRY instruction='Energy cutoff of basis (specify units: Ha, Ry, eV, K)' variablename='ecut' textlen='1' tag='22'/>
<!--23--><KEYBOARDENTRY instruction='Number of bands to include:' variablename='nband' textlen='1' tag='23'/>
<!--24--><CHOICE instruction='Is the system semiconducting or metallic:' tag='24'>
<!--25--><DECISION description='Semiconducting' tag='25'>
<!--26--><CHOICE instruction='How do you want to specify occupation:' tag='26'>
<!--27--><DECISION description='By manually entering the occupation of the bands' tag='27'>
<!--28--><CHOICE instruction='Choose the method of generation' tag='28'>
<!--29--><DECISION description="All K points have the same number of bands and the same occupancies of bands" tag='29'>
<!--30--><DIRECTENTRY variablename='occopt' variablevalue='0' tag='30'/>
<!--31--><KEYBOARDENTRY instruction='Specify the occupation of the bands' variablename='occ' textlen='1'  tag='31'/>
         </DECISION>
<!--32--><DECISION description='k points may optionally have different numbers of bands and different occupancies' tag='32'>
<!--33--><DIRECTENTRY variablename='occopt' variablevalue='2' tag='33'/>
<!--34--><KEYBOARDENTRY instruction='Specify the occupation for EACH bands, for EACH k point and EACH spin' variablename='occ' textlen='1' tag='34'/>
         </DECISION>
         </CHOICE>
         </DECISION>
<!--35--><DECISION description='By allowing the code to specify automatically the occupation for a semiconductor' tag='35'>
<!--36--><DIRECTENTRY variablename='occopt' variablevalue='1' tag='36'/>
         </DECISION>
         </CHOICE>
         </DECISION>
<!--37--><DECISION description='Metallic' tag='37'>
<!--38--><MOUSEENTRY instruction='Choose the smearing type used for the occupation' tag='38'>
<!--39--><OPTION description='Fermi-Dirac smearing (finite-temperature metal)' variablename='occopt' variablevalue='3' tag='39'/>
<!--40--><OPTION description='"Cold smearing" of N. Marzari with a=-.5634 (minimization of the bump)' variablename='occopt' variablevalue='4' tag='40'/>
<!--41--><OPTION description='"Cold smearing" of N. Marzari with a=-.8165 (monotonic function in the tail)' variablename='occopt' variablevalue='5' tag='41'/>
<!--42--><OPTION description='Smearing of Methfessel and Paxton ' variablename='occopt' variablevalue='6' tag='42'/>
<!--43--><OPTION description='Gaussian smearing' variablename='occopt' variablevalue='7' tag='43'/>
         </MOUSEENTRY>
<!--44--><KEYBOARDENTRY instruction='Specify the temperature of the smearing (give units: Ha, Ry, eV, K)' variablename='tsmear' textlen='1' tag='44'/>
         </DECISION>
         </CHOICE>
<!--45--><KEYBOARDENTRY instruction='Preconditioning of the residual potential to be transferred in the SCF (Default 1.0)' variablename='diemix' textlen='1' tag='45'/>
<!--46--><KEYBOARDENTRY instruction='Give model for the Dielectric Macroscopic constant (speed up SCF procedure, Default 1d6)' variablename='diemac' textlen='1' tag='46'/>
<!--47--><MOUSEENTRY instruction='Control the self consistency' tag='47'>
<!--48--><OPTION description='1.  Get the largest eigenvalue of the SCF cycle (developper option)' variablename='iscf' variablevalue='1' tag='48'/>
<!--49--><OPTION description='2.  SCF cycle, simple mixing of the potential' variablename='iscf' variablevalue='2' tag='49'/>
<!--50--><OPTION description='3.  SCF cycle, Anderson mixing of the potential' variablename='iscf' variablevalue='3' tag='50'/>
<!--51--><OPTION description='4.  SCF cycle, Anderson mixing of the potential based on the two previous iterations' variablename='iscf' variablevalue='4' tag='51'/>
<!--52--><OPTION description='5.  SCF cycle, CG based on the minim. of the energy with respect to the potential(DEFAULT)' variablename='iscf' variablevalue='5' tag='52'/>
<!--53--><OPTION description='6.  SCF cycle, Pulay mixing of the potential based on the npulayit previous iterations' variablename='iscf' variablevalue='7' tag='53'/>
<!--54--><OPTION description='7.  SCF cycle, simple mixing of the density' variablename='iscf' variablevalue='12' tag='54'/>
<!--55--><OPTION description='8.  SCF cycle, Anderson mixing of the density' variablename='iscf' variablevalue='13' tag='55'/>
<!--56--><OPTION description='9.  SCF cycle, Anderson mixing of the density based on the two previous iterations (DEFAULT PAW)' variablename='iscf' variablevalue='14' tag='56'/>
<!--57--><OPTION description='10. SCF cycle, CG based on the minim. of the energy with respect to the density' variablename='iscf' variablevalue='15' tag='57'/>
<!--58--><OPTION description='11. SCF cycle, Pulay mixing of the density based on the npulayit previous iterations' variablename='iscf' variablevalue='17' tag='58'/>
<!--59--><OPTION description='12. Non-self-consistent calculation is to be done (see documentation)' variablename='iscf' variablevalue='-2' tag='59'/>
<!--60--><OPTION description='13. Like 12, but initialize occ and wtk (see documentation)' variablename='iscf' variablevalue='-3' tag='60'/>
<!--61--><OPTION description='14. Like 12, but followed by the determination of excited states within TDDFT' variablename='iscf' variablevalue='-1' tag='61'/>
         </MOUSEENTRY>
<!--62--><KEYBOARDENTRY instruction='Maximum number of SCF iterations' variablename='nstep' textlen='1' tag='62'/>
<!--63--><CHOICE instruction='Choose the SCF cycle convergence criteria' tag='63'>
<!--64--><DECISION description='Converge on the difference on the energy' tag='64'>
<!--65--><KEYBOARDENTRY instruction='Minimum difference of energy (specify units: Ha, Ry, eV, K)' variablename='toldfe' textlen='1' tag='65'/>
         </DECISION>
<!--66--><DECISION description='Converge on the difference on the force' tag='66'>
<!--67--><KEYBOARDENTRY instruction='Minimum difference of the force (no units)' variablename='toldff' textlen='1' tag='67'/>
         </DECISION>
<!--68--><DECISION description='Converge on the difference of the wavefunction' tag='68'>
<!--69--><KEYBOARDENTRY instruction='Minimum difference of the wavefunction (no units)' variablename='tolwfr' textlen='1' tag='69'/>
         </DECISION>
<!--70--><DECISION description='Converge on the difference of the potential' tag='70'>
<!--71--><KEYBOARDENTRY instruction='Minimum difference of the potential (no units)' variablename='tolvrs' textlen='1' tag='71'/>
         </DECISION>
         </CHOICE>
         </SECTION>