File: Elastic_debye.py

package info (click to toggle)
abinit 9.10.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 518,712 kB
  • sloc: xml: 877,568; f90: 577,240; python: 80,760; perl: 7,019; ansic: 4,585; sh: 1,925; javascript: 601; fortran: 557; cpp: 454; objc: 323; makefile: 77; csh: 42; pascal: 31
file content (572 lines) | stat: -rw-r--r-- 20,499 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
author: Nicholas Pike
Email : Nicholas.pike@smn.uio.no

Purpose: Use the extracted elastic tensor to calculate the Debye temperature 
         and other thermodynamic properties that can be derived from the elastic
         properties.
         
Reference: Phys. Rev. B 95, 155206 (2017) and (more importantly) 
           J. Phys. Chem. Solids 24, 909 (1963)
           
"""
#import useful modules
import os
import sys
import linecache
import numpy as np

#user defined variables
amu_to_kg    = 1.66054E-27
ang_to_meter = 1E-10
h            = 6.626070040E-34
kb           = 1.38064852E-23
Na           = 6.0221409E23
kbar_to_GPa  = 0.01
m_to_cm      = 100.0
kgm3_to_cm3  = 1000.0


def find_file(filetype):
    """ 
    Author: Nicholas Pike
    Email : Nicholas.Pike@smn.uio.no
    
    Purpose: Determine if the files from your calculation is found in 
             the directory. It does this by looking for a specific set of data 
             in the file
    """
    _filename = ''
    
    if filetype == 'OUTCAR':
        #look for the file in the directory by first listing the files
        files = [f for f in os.listdir('.') if os.path.isfile(f) and not f.endswith(".png") and not f.endswith('.py') and not f.endswith('~') and not f.endswith('.nc') and not f == 'derived_elastic' ]
        
        #now loop through the files and search for keywords
        found_vasp    = False
        found_elastic = False
        
        for f in files:
            with open(f,'r') as d:
                for i, line in enumerate(d):
                    if 'vasp' in line:
                        found_vasp = True
                        _filename = f
                    elif 'ELASTIC MODULI  (kBar)' in line:
                        found_elastic = True
                        
        if found_elastic == False and found_vasp == True:
            print('ERROR: While a VASP output file was found, it did not contain the Elastic tensor.'
                  '\n Check calculation before trying again.')
            sys.exit()
        elif found_elastic == False and found_vasp == False:
            print('ERROR: No VASP OUTCAR file was found in the directory.'
                  '\n Check the directory before trying again')
            sys.exit()
    
    elif filetype == 'ANADDB':  
        #look for the file in the directory by first listing the files
        files = [f for f in os.listdir('.') if os.path.isfile(f) and not f.endswith(".png") and not f.endswith('.py') and not f.endswith('~') and not f.endswith('.nc') and not f == 'derived_elastic' ]
        #now loop through the files and search for keywords
        found_anaddb  = False
        found_elastic = False
        found_ddb     = False
        file_output   = ''
        file_ddb      = ''
        
        for f in files:
            with open(f,'r') as d:
                for i, line in enumerate(d):
                    if ' ANADDB comes with ABSOLUTELY NO WARRANTY.' in line:
                        found_anaddb = True
                        file_output = f
                    elif 'Elastic Tensor (relaxed ion) (unit:10^2GP)' in line:
                        found_elastic = True
                    elif ' **** DERIVATIVE DATABASE ****' in line:
                        found_ddb  = True
                        file_ddb = f
                        
        if found_elastic == False and found_anaddb == True:
            print('ERROR: While a ANADDB output file was found, it did not contain the Elastic tensor.'
                  '\n Check calculation before trying again.')
            sys.exit()
        elif found_elastic == False and found_anaddb == False:
            print('ERROR: No ANADDB output file was found in the directory.'
                  '\n Check the directory before trying again')
            sys.exit()   
        elif found_ddb == False:
            print('ERROR: No DDB file was found in the director.'
                  '\n Check the directory before trying again.')
            sys.exit()
        
        _filename = [file_output,file_ddb]      

    return _filename

def gather_from_OUTCAR(filename):
    """
    Author: Nicholas Pike
    Email : Nicholas.pike@smn.uio.no
    
    Purpose: Gather data from the output of a VASP calculation for the elastic tensor
    
    OUTPUT: Returns the system name, elastic tensor, ion mass, volume in (m^3), 
            and the nultiplicity of each atom in the unit cell
    
    """
    system_name = ''
    elasten     = np.empty(shape=(6,6))
    ionmass     = []
    vol         = 0.0
    #open file and extract data
    with open(filename,'r') as d:
       for i, line in enumerate(d):
          if 'POSCAR =' in line:
              data = linecache.getline(filename,i+1).split()
              system_name = data[2:] 
          elif 'SYMMETRIZED ELASTIC MODULI (kBar)' in line:
              for j in range(6):
                  data = linecache.getline(filename,i+j+4).split()
                  elasten[j][:] = data[1:]
          elif 'Mass of Ions in am' in line:
              data = linecache.getline(filename,i+2).split()
              for j in range(2,len(data)):
                  ionmass = np.append(float(data[j]),ionmass)
          elif 'volume of cell :' in line:
              data = linecache.getline(filename,i+1).split()
              vol  = float(data[4]) 
          
    atommult = []
    for i in range(len(system_name)):
        namelist = list(system_name[i])
        number   = namelist[len(namelist)-1]
        atommult = np.append(float(number),atommult)
         
    data_array = [system_name,elasten,ionmass,vol*ang_to_meter**3,atommult]
    
    return data_array

def gather_from_ANADDB(fileout,fileddb):
    """
    Author: Nicholas Pike
    Email : Nicholas.pike@smn.uio.no
    
    Purpose: Gather data from the output of an ANADDB calculation for the elastic tensor
    
    OUTPUT: Returns the system name, elastic tensor, ion mass, volume in (m^3), 
            and the nultiplicity of each atom in the unit cell
    
    """
    elasten     = np.empty(shape=(6,6))
    ionmass     = []
    vol         = 0.0
    ntypat      = 0.0
    typat       = []
    
    #open file and extract data
    with open(fileout,'r') as d:
       for i, line in enumerate(d):
          if 'Elastic Tensor (relaxed ion) (unit:10^2GP):' in line:
              for j in range(6):
                  data = linecache.getline(fileout,i+j+4).split()
                  elasten[j][:] = data[:]
          elif ' Unit cell volume ucvol= ' in line:
              data = linecache.getline(fileout,i+1).split()
              vol  = float(data[4]) 
                       
    with open(fileddb,'r') as d:
        for i, line in enumerate(d):
            if 'amu' in line:
               data = linecache.getline(fileddb,i+1).split()
               ionmass = data[1:]
            elif 'ntypat' in line:
                data = linecache.getline(fileddb,i+1).split()
                ntypat = data[1]   
            elif 'typat' in line:
                data = linecache.getline(fileddb,i+1).split()
                typat = data[1:]                   
    
    #replace D with E
    for i in range(len(ionmass)):
        ionmass[i]=float(ionmass[i].replace('D','E'))
              
    atommult = []
    u,numtyat = np.unique(typat, return_counts= True)
    for i in range(int(ntypat)):
        atommult = np.append(numtyat[i],atommult)
             
    data_array = ['',elasten*1000.0,ionmass,vol*ang_to_meter**3,atommult]
    return data_array

def sound_velocities(data):
    """
    Author: Nicholas Pike
    Email : Nicholas.pike@smn.uio.no
    
    Purpose: Calculate the longitudional, shear and average sound velocities
    """
    #declare variables
    vl      = 0
    vs      = 0
    va      = 0
    density = 0
    B       = 0
    BR      = 0
    G       = 0
    GR      = 0
    YXX     = 0
    YYY     = 0
    YZZ     = 0
    nuxy    = 0
    nuyz    = 0
    nuxz    = 0
    
    #calculate compliance tensor
    s = np.linalg.inv(data[1])
    
    #calculate density
    masstot = 0
    for i in range(len(data[2])):
        masstot +=data[2][i]*data[4][i] #data[2] is the mass data[4] is the multiplicity
    density = masstot*amu_to_kg/data[3]/kgm3_to_cm3 #data[3] is the volume in g/cm3
    
    #Calculate bulk modulus and shear modulus
    #note: data[1] is the elastic tensor
    B  = 1.0/9.0*((data[1][0][0]+data[1][1][1]+data[1][2][2])+2.0*(data[1][0][1]+data[1][0][2]+data[1][1][2]))
    BR = 1.0/((s[0,0]+s[1,1]+s[2,2])+2.0*(s[0,1]+s[1,2]+s[0,2]))
    
    G  = 1.0/15.0*((data[1][0][0]+data[1][1][1]+data[1][2][2])-(data[1][0][1]+data[1][0][2]+data[1][1][2])+3.0*(data[1][3][3]+data[1][4][4]+data[1][5][5]))
    GR = 15.0/(4.0*(s[0,0]+s[1,1]+s[3,3])-4.0*(s[0,1]+s[1,2]-s[0,2])+3.0*(s[3,3]+s[4,4]+s[5,5])) 
    
    #calculate Youngs modulus
    YXX = 1.0/s[0,0]
    YYY = 1.0/s[1,1]
    YZZ = 1.0/s[2,2]
    
    #calculate vl
    if B + 4.0/3.0*G <= 0:
        vl = 0
    else:  
    	vl  = np.sqrt((B+4.0/3.0*G)*kbar_to_GPa/(density/kgm3_to_cm3))*m_to_cm # convert kbar to GPa and then g/cm3 to kg /m3
    
    #calculate vs
    if G <= 0:
	G = 0
    else:
        vs = np.sqrt(G*kbar_to_GPa/(density/kgm3_to_cm3))*m_to_cm # convert kbar to GPa and then g/cm3 to kg /m3
    
    #calculate va
    va = (1.0/3.0*((1.0/vl**3)+(2.0/vs**3)))**(-1.0/3.0)
    
    #calculate poisson ratio
    nuxy = -s[0,1]*YXX
    nuyz = -s[1,2]*YYY
    nuxz = -s[0,2]*YZZ
    
    #print results 
    f1 = open('derived_elastic','a')
    f1.write('Elastic Tensor\n')
    f1.write('Direction XX\t  YY\t   ZZ\t    XY\t     YZ\t      ZX\n' )
    f1.write('XX \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(data[1][0][0],data[1][0][1],data[1][0][2],data[1][0][3],data[1][0][4],data[1][0][5] ))
    f1.write('YY \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(data[1][1][0],data[1][1][1],data[1][1][2],data[1][1][3],data[1][1][4],data[1][1][5] ))
    f1.write('ZZ \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(data[1][2][0],data[1][2][1],data[1][2][2],data[1][2][3],data[1][2][4],data[1][2][5] ))
    f1.write('XY \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(data[1][3][0],data[1][3][1],data[1][3][2],data[1][3][3],data[1][3][4],data[1][3][5] ))
    f1.write('YZ \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(data[1][4][0],data[1][4][1],data[1][4][2],data[1][4][3],data[1][4][4],data[1][4][5] ))
    f1.write('ZX \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(data[1][5][0],data[1][5][1],data[1][5][2],data[1][5][3],data[1][5][4],data[1][5][5] ))
    f1.write('\n')
    f1.write('Compliance Tensor\n')
    f1.write('Direction XX\t  YY\t   ZZ\t    XY\t     YZ\t      ZX\n' )
    f1.write('XX \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(s[0][0],s[0][1],s[0][2],s[0][3],s[0][4],s[0][5] ))
    f1.write('YY \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(s[1][0],s[1][1],s[1][2],s[1][3],s[1][4],s[1][5] ))
    f1.write('ZZ \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(s[2][0],s[2][1],s[2][2],s[2][3],s[2][4],s[2][5] ))
    f1.write('XY \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(s[3][0],s[3][1],s[3][2],s[3][3],s[3][4],s[3][5] ))
    f1.write('YZ \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(s[4][0],s[4][1],s[4][2],s[4][3],s[4][4],s[4][5] ))
    f1.write('ZX \t %1.4e %1.4e %1.4e %1.4e %1.4e %1.4e\n'%(s[5][0],s[5][1],s[5][2],s[5][3],s[5][4],s[5][5] ))
    f1.write('\n')
    f1.write('Voigt Approximation:\n')
    f1.write(' Bulk Modulus (kbar):    %4.2f\n'%B)
    f1.write(' Shear Modulus (kbar):   %4.2f\n'%G)
    f1.write(' Long Velocity (cm/s):   %4.2f\n'%vl)
    f1.write(' Shear Velocity (cm/s):  %4.2f\n'%vs)
    f1.write(' Avg. Velocity (cm/s):   %4.2f\n'%va)
    f1.write('\n')
    f1.write('Reuss Approximation:\n')
    f1.write(' Bulk Modulus (kbar):    %4.2f\n'%BR)
    f1.write(' Shear Modulus (kbar):   %4.2f\n'%GR)
    f1.write('\n')
    f1.write("Young's Modulus:\n")
    f1.write(' Y_xx (kbar):           %4.2f\n' %YXX)
    f1.write(' Y_yy (kbar):           %4.2f\n' %YYY)
    f1.write(' Y_zz (kbar):           %4.2f\n' %YZZ)
    f1.write('\n')
    f1.write("Poisson's Ratio (from elastic tensor)\n")
    f1.write(' nu_xy:                 %0.2f\n' %nuxy)
    f1.write(' nu_yz:                 %0.2f\n' %nuyz)
    f1.write(' nu_xz:                 %0.2f\n' %nuxz)
    f1.write('\n')
    f1.write('Additional information:\n')
    f1.write(' Density (g/cm**3):      %4.4f\n'%density)
    f1.write('\n')
    f1.close()
    
    return vl, vs, va

def Debye_temperature(va,data):
    """
    Author: Nicholas Pike
    Email : Nicholas.pike@smn.uio.no
    
    Purpose: Calculate the Debye Temperature
    """
    #declare variables
    thetaD        = 0
    natom         = 0
    density       = 0
    masstot       = 0
    molarmass     = 0
    atom_molecule = 0

    #calculate density
    for i in range(len(data[2])):
        masstot +=data[2][i]*data[4][i] #data[2] is the mass data[4] is the multiplicity
    density = masstot*amu_to_kg/data[3]/kgm3_to_cm3 #data[3] is the volume in g/cm3
    
    #number of unit cells 
    uc_count = 0
    for i in range(len(data[4])):
        uc_count = find_gcd(uc_count,data[4][i])
    
    #calculate molar mass
    for i in range(len(data[2])):
        molarmass += data[2][i]
       
    #calculate number of atoms 
    for i in range(len(data[4])):
        natom +=data[4][i]   
    
    #calculate number of atoms per molecule
    atom_molecule = natom/uc_count

    #Calculate Debye temperature
    thetaD = h/kb*((3.0*atom_molecule*Na*density)/(4.0*np.pi*molarmass))**(1.0/3.0)*va*natom**(-1.0/3.0)*m_to_cm
    
    #print results 
    f1 = open('derived_elastic','a')
    f1.write(' Debye Temp (K):         %4.2f\n'%thetaD)
    f1.write('\n')
    f1.close()
    
    return thetaD

#Hack to get gcd of an array
def find_gcd(x, y):
    """
    Determines the gcd for an array of values.
    """
    while(y):
        x, y = y, x % y
    return x

def gruneisen(vs,vl):
    """
    Author: Nicholas Pike
    Email : Nicholas.pike@smn.uio.no
    
    Purpose: Calculate the gruneisen parameter using poissons ratio
    """
    #declare variables
    poisson = 0
    grun    = 0
    
    #calculate poissons ratio
    poisson = (1.0-2.0*(vs/vl)**2)/(2.0-2.0*(vs/vl)**2)
    
    #calculate gruneisen parameter
    grun = 3.0/2.0*((1.0+poisson)/(2.0-3.0*poisson))
    
    #print results
    f1 = open('derived_elastic','a')
    f1.write(' Poisson Ratio (from sound) %0.4f\n'%poisson)
    f1.write(' Gruneisen Param:           %4.4f\n'%grun)    
    f1.write('\n')
    f1.close()
    
    return grun

def thermal_cond(data,thetaD,grun):
    """    
    Author: Nicholas Pike
    Email : Nicholas.pike@smn.uio.no
    
    Purpose: Calculate the thermal conductivity using Slack 
             J. Phys. Chem. Solids 34, 321 (1973)
    
    """
    #declare variables
    kappa   = 0.0
    A       = 0
    massav  = 0
    natom   = 0
    masstot = 0
    temp    = 300.0
        
    #calculate A
    A = 2.43E-8/(1.0-(0.514/grun)+(0.228/grun**2))
    
    #calculate the number of atoms
    for i in range(len(data[4])):
        natom +=data[4][i]
    
    #Calculate average atomic mass
    for i in range(len(data[2])):
        masstot += data[2][i]*data[4][i] #data[2] is the mass data[4] is the multiplicity
    massav = masstot/natom
    
    #calculate kappa
    kappa = A*massav*(data[3]/ang_to_meter**3)**(1.0/3.0)*thetaD**3/(grun**2*temp)
    
    #print results
    f1 = open('derived_elastic','a')
    f1.write(' Kappa @300K (W/cmK):    %2.4f\n'%kappa)
    f1.close() 
    
    return kappa

"""
Start main program
"""
#starts main program for windows machines... has no effect for other machine types
if __name__ == '__main__':
    __author__     = 'Nicholas Pike'
    __copyright__  = 'none'
    __credits__    = 'none'
    __license__    = 'none'
    __version__    = '0.0'
    __maintainer__ = 'Nicholas Pike'
    __email__      = 'Nicholas.pike@smn.uio.no'
    __status__     = 'experimental'
    __date__       = 'April 2018'
    
#determine name of input file which will be read
if len(sys.argv) < 2: 
    print('Use python Elastic_debye.py --help to view the help menu and \nto learn how to run the program.')
    sys.exit()
if sys.argv[1].startswith('--'):
    if sys.argv[1] == '--help':
        print('--help\t\t Prints this help menu.\n') 
        print('--usage\t\t Allows the user to determine how to use this program.')
        print('--VASP\t\t Determines the derived properties using vasp output.')
        print('--HT\t\t Returns thee Debye Temperature using vasp output data.')
        print('--ANADDB\t Determines the derived properties using anaddb output.')
        print('\n')
        sys.exit()
    elif sys.argv[1] == '--usage':
        print('--usage\t To use this program use the following in the command line.\n python Elastic_debye.py --KEY')
        sys.exit()
    elif sys.argv[1] == '--VASP':
        print('Calculation of the derived elastic properties will begin after\n'
          ' reading the output file.')
        #find outcar file
        filename = find_file('OUTCAR')
        
        #gather data from OUTCAR file
        data     = gather_from_OUTCAR(filename)
        
        #Calculate sound velocities
        vl,vs,va = sound_velocities(data)
        
        #calculate Debye Temperature
        thetaD = Debye_temperature(va,data)
        
        #calculate Gruneisen parameter
        grun = gruneisen(vs,vl)
        
        #calculate thermal conductivity
        kappa = thermal_cond(data,thetaD,grun)
        
        #print references
        f1 = open('derived_elastic','a')
        f1.write('\nReferences:\n')
        f1.write('Derived Elastic properties from:\n')
        f1.write('Phys. Rev. B 95, 155206 (2017)\n')
        f1.write('Pike et al. Unpublished (2018)\n\n')
        f1.write('Slack Model for Thermal Conductivity from:\n')
        f1.write('Slack J. Phys. Chem. Solids 34, 321 (1973)\n')
        f1.close() 
        
        #calculation complete
        print('Calculation complete.  Thank you for using this program.')
        
    elif sys.argv[1] == '--HT':
        #find outcar file
        filename = find_file('OUTCAR')
        
        #gather data from OUTCAR file
        data     = gather_from_OUTCAR(filename)
        
        #Calculate sound velocities
        vl,vs,va = sound_velocities(data)
        
        #calculate Debye Temperature
        thetaD = Debye_temperature(va,data)
        print(thetaD) #prints debye temperature for high-throughput calculations
        
        #calculate Gruneisen parameter
        grun = gruneisen(vs,vl)
        
        #calculate thermal conductivity
        kappa = thermal_cond(data,thetaD,grun)
        
        #print references
        f1 = open('derived_elastic','a')
        f1.write('\nReferences:\n')
        f1.write('Derived Elastic properties from:\n')
        f1.write('Phys. Rev. B 95, 155206 (2017)\n')
        f1.write('Pike et al. Unpublished (2018)\n\n')
        f1.write('Slack Model for Thermal Conductivity from:\n')
        f1.write('Slack J. Phys. Chem. Solids 34, 321 (1973)\n')
        f1.close() 
        
    elif sys.argv[1] == '--ANADDB':
        print('Calculation of the derived elastic properties will begin after\n'
          ' reading the output file.')
        #find anaddb output file
        filename = find_file('ANADDB')
        
        #gather data from OUTCAR file
        data     = gather_from_ANADDB(filename[0],filename[1])
        
        #Calculate sound velocities
        vl,vs,va = sound_velocities(data)
        
        #calculate Debye Temperature
        thetaD = Debye_temperature(va,data)
        
        #calculate Gruneisen parameter
        grun = gruneisen(vs,vl)
        
        #calculate thermal conductivity
        kappa = thermal_cond(data,thetaD,grun)
        
        #print references
        f1 = open('derived_elastic','a')
        f1.write('\nReferences:\n')
        f1.write('Derived Elastic properties from:\n')
        f1.write('Phys. Rev. B 95, 155206 (2017)\n')
        f1.write('Pike et al. Phys. Rev. Mat. 2, 063608 (2018)\n\n')
        f1.write('Slack Model for Thermal Conductivity from:\n')
        f1.write('Slack J. Phys. Chem. Solids 34, 321 (1973)\n')
        f1.close() 
        
        #calculation complete
        print('Calculation complete. Thank you for using this program.')
    else:
        print('ERROR: This tag is unknown.')
else:
    print('Please run program with the --help tag')
    sys.exit()