File: 1-4-zp-spectral-function.py

package info (click to toggle)
abinit 9.10.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 518,712 kB
  • sloc: xml: 877,568; f90: 577,240; python: 80,760; perl: 7,019; ansic: 4,585; sh: 1,925; javascript: 601; fortran: 557; cpp: 454; objc: 323; makefile: 77; csh: 42; pascal: 31
file content (132 lines) | stat: -rw-r--r-- 3,709 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
Compute the self-energy and the spectral function at zero temperature.
(ieig2rf=5)
"""

from ElectronPhononCoupling import compute


# Lists of files used
# ===================

ddb_fnames = """
Calculations/01-LiF-dynamical/odat_calc_DS5_DDB.nc
Calculations/01-LiF-dynamical/odat_calc_DS9_DDB.nc
Calculations/01-LiF-dynamical/odat_calc_DS13_DDB.nc
""".split()

eigq_fnames = """
Calculations/01-LiF-dynamical/odat_calc_DS6_EIG.nc
Calculations/01-LiF-dynamical/odat_calc_DS10_EIG.nc
Calculations/01-LiF-dynamical/odat_calc_DS14_EIG.nc
""".split()

eigr2d_fnames = """
Calculations/01-LiF-dynamical/odat_calc_DS7_EIGR2D.nc
Calculations/01-LiF-dynamical/odat_calc_DS11_EIGR2D.nc
Calculations/01-LiF-dynamical/odat_calc_DS15_EIGR2D.nc
""".split()

gkk_fnames = """
Calculations/01-LiF-dynamical/odat_calc_DS7_GKK.nc
Calculations/01-LiF-dynamical/odat_calc_DS11_GKK.nc
Calculations/01-LiF-dynamical/odat_calc_DS15_GKK.nc
""".split()

eigk_fname = 'Calculations/01-LiF-dynamical/odat_calc_DS3_EIG.nc'


# Computation of the self-energy and spectral function
# ====================================================

epc = compute(

    renormalization=False,     # Do not compute the eigenvalues renormalization
    broadening = False,          # Do compute broadening
    self_energy = True,        # Compute frequency-dep. self-energy
    spectral_function = True,  # Compute frequency-dep. self-energy
    temperature = False,       # Compute only at T=0

    write = True,           # Do write the results
    rootname = 'Out/1-4',   # Rootname for the output
    
    smearing_eV = 0.05,               # Imaginary parameter for broadening.
    omega_range = [-0.1, 0.1, 0.001], # Frequency range in Ha (min, max, step)

    nqpt = 3,                   # Number of q-points (2x2x2 qpt grid)
    wtq = [0.125, 0.5, 0.375],  # Weights of the q-points.
                                # These can be obtained by running Abinit
                                # with the corresponding k-point grid.
    
    eigk_fname = eigk_fname,        # All the files needed for
    eigq_fnames = eigq_fnames,      # this calculation.
    ddb_fnames = ddb_fnames,        #
    eigr2d_fnames = eigr2d_fnames,  #
    gkk_fnames = gkk_fnames,        #
    )


# Plotting functions
# ==================

import netCDF4 as nc
import matplotlib.pyplot as plt

def plot_zp_self_energy(fname, ikpt=0, ieig=0):
    """Plot the self-energy computed at T=0."""

    with nc.Dataset(fname, 'r') as ds:
    
        # nomega
        omega = ds.variables['omegase'][...]
    
        # nspin, nkpt, nband, nomega
        self_energy = ds.variables['self_energy'][...]
    
    # Select one state
    re = self_energy[0,ikpt,ieig,:,0]
    im = self_energy[0,ikpt,ieig,:,1]
    
    plt.plot(omega, re, label='Real', linestyle='-')
    plt.plot(omega, im, label='Imag', linestyle='--')
    plt.legend(loc='upper right')

    fig = plt.gcf()
    plt.close()

    return fig


def plot_zp_spectral_function(fname, ikpt=0, ieig=0):
    """Plot the spectral function computed at T=0."""

    with nc.Dataset(fname, 'r') as ds:
    
        # nomega
        omega = ds.variables['omegase'][...]
    
        # nspin, nkpt, nband, nomega
        spectral_function = ds.variables['spectral_function'][...]
    
    # Select one state
    sf = spectral_function[0,ikpt,ieig,:]
    
    plt.plot(omega, sf)
    plt.ylim(0, 10)

    fig = plt.gcf()
    plt.close()

    return fig


# Do the plotting
# ================

fig_se = plot_zp_self_energy(epc.nc_output, ikpt=0, ieig=3)
fig_se.savefig('Out/1-4-plot-self-energy.eps')

fig_sf = plot_zp_spectral_function(epc.nc_output, ikpt=0, ieig=3)
fig_sf.savefig('Out/1-4-plot-spectral-function.eps')