1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
# -*- coding: utf-8 -*-
"""
Created: Nov 12, 2016
Author : Nicholas Pike
Email : Nicholas.pike@ulg.ac.be
Purpose: To calculate the Raman spectrum, at a user defined orientation and angle,
by reading in data from an abinit calculation. This program will read
the anaddb output file "anaddb.out" or from a user specified file,
extract the needed data, and output the result for plotting with your
favorite program.
To run: To run this script simply execute the following code
python Raman_spec.py "name of input file"
Version: 0.0 - Initial building of program
0.1 - Additional for angle dependent calculation
0.2 - Additional user input required and number of output files reduced
0.3 - Moved all user prompted input to an input file
Input: Input variables : filename, temp, laser_freq, spread,
calctype, outname, relative_intensity, freq_unit,
keep_file, n_freq, min_freq, max_freq.
See a minimal input file at the end of the tutorial nlo.
Output: Program will output a text file containing the raman spectrum vs frequency
and an outfile which outlines what happens in the calculation.
Bugs: If you find a bug with this program or wish to see a feature added to
this script please let me know at Nicholas.pike@ulg.ac.be
Happy Hunting!
"""
#begin main program
"""
Start of definations and other useful information
"""
def GET_UNIT(string):
if string == 'Ha':
return 0
if string == 'Hz':
return 1
return 2
def READ_INPUT(user_filein):
"""
Author: Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
Purpose: Reads the input file and determines if the user's input is acceptable.
Output: array of input information used by program
"""
#declare array of default values
vararray = [0,0,[0,2],[0,2],0,0,False,2,False,1000,[-1.0,2],[-1.0,2]]
#check if file exists
check = CHECK_FILE(user_filein)
if check == False:
print('')
print('The input file was not found in the directory. \n Please correct this.')
print('\n Remember the input file should be formated as follows:\n\n '\
'filename "name of file"\n outname "name of outfile"\n temp "temperature in Kelvin"\n'
' frequency "frequency in cm^-1"\n spread "spread of lorentz in cm^-1"\n '\
'calctype "type of calculation 0- abort, 1- powder, 2-ij polarization, 3- angle"\n')
sys.exit()
else:
for line in open(user_filein):
li=line.strip('\n') #Removes any newline command
if not li.startswith("#"): #Checks if the line does not start with a #
#character
l = li.split()
if len(l)>0:
if l[0] == 'filename': # name of the anaddb output file
vararray[0] = str(l[1])
elif l[0] == 'temp': # temperature
vararray[1] = float(l[1])
elif l[0] == 'laser_freq': # laser frequency
vararray[2][0] = float(l[1])
if len(l)>2:
vararray[2][1] = GET_UNIT(l[2])
elif l[0] == 'spread': # spread of lorentz
vararray[3][0] = float(l[1])
if len(l)>2:
vararray[3][1] = GET_UNIT(l[2])
elif l[0] == 'calctype': # calculation type
vararray[4] = int(l[1])
elif l[0] == 'outname': # output file name
vararray[5] = str(l[1])
elif l[0] == 'relative_intensity': # relative intensities or not
vararray[6] = True
elif l[0] == 'freq_unit': # unit for output frequencies
vararray[7] = GET_UNIT(l[1])
elif l[0] == 'keep_file':
vararray[8] = True
elif l[0] == 'n_freq':
vararray[9] = int(l[1])
elif l[0] == 'min_freq':
vararray[10][0] = float(l[1])
if len(l)>2:
vararray[10][1] = GET_UNIT(l[2])
elif l[0] == 'max_freq':
vararray[11][0] = float(l[1])
if len(l)>2:
vararray[11][1] = GET_UNIT(l[2])
#set output file name
global outname
#check for output file
outname = vararray[5]
delete = vararray[8]
outname = CHECK_REPEAT(outname,delete)
vararray[5] = outname
printout('Input file located and read in.\n')
#Now check that the user put a valid name in for the anaddb output file
# Sanity check...
if vararray[0] == '' : # no file name given
print('WARNING: No input file name given. Please try again.')
sys.exit()
elif vararray[0].endswith('.nc'):
print('WARNING: This program uses the output file and not a NetCDF file.')
sys.exit()
else:
check = CHECK_FILE(vararray[0])
if not check:
printout('')
printout('The anaddb output file was not found in the directory.\n Please correct this.')
sys.exit()
else:
printout('The anaddb output file was found in the directory.')
return vararray
def CHECK_FILE(filename):
"""
Author: Nicholas Pike
Email : Nicholas.pike@ulg.ac.be
Purpose: Checks if the file "filename" exists in the current directory and outputs
a boolean value indicating whether or not the file is found.
"""
if os.path.isfile(filename):
logic = True
else:
logic = False
return logic
def PRINT_HEADER():
"""
Author: Nicholas Pike
Email : Nicholas.pike@ulg.ac.be
Purpose: Prints a header to the output file and terminal when the user
starts to run the program.
"""
#Header for output file
printout('')
printout('++++++++++++++++++++++++ Version %s ++++++++++++++++++++++++\n'%__version__)
printout('')
printout('This program generates a Raman Spectrum after an anaddb '\
'calculation.\n')
printout('In this version, the program reads an the output file of an '\
'anaddb\n calculation, finds the information it needs, and outputs '\
'that\n information to a file.')
printout('')
printout('Author: Nicholas Pike')
printout('Email: Nicholas.pike@ulg.ac.be')
printout('')
return
def printout(to_output):
"""
Author: Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
Purpose: This defintion should print to an output file, known as the output,
in which all comments, warnings, and results are printed too.
"""
#print to file
f1= open(outname,'a')
f1.write(to_output+'\n')
f1.close()
return
def printoutfile(output,outfile):
"""
Author: Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
Purpose: Print raman spectrum as a function of frequency to the output file.
"""
f1= open(outfile,'a')
f1.write(output+'\n')
f1.close()
return
def CHECK_REPEAT(filename,delete):
"""
Author: Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
In order to create a new output file a file the name must not be used. If
this file already exists then we rename the file until it no longer exists.
"""
c = 1
out = CHECK_FILE(filename)
newfilename = filename #If the file does not exist
if out and delete:
os.remove(filename)
else:
while out:
if out == True:
string = filename+ str(c)
c += 1
newfilename = string
out = CHECK_FILE(newfilename)
else:
newfilename = filename
break
return newfilename
def UNIT_TO_HA(val,unit):
if not (unit in [0,1,2]):
return -1
if unit==0:# val in Ha
return val
if unit==1:# val in Hz
return val*Hz_to_Ha
if unit==2:# val in cm1
return val*cm1_to_hartree
def HA_TO_UNIT(val,unit):
if not (unit in [0,1,2]):
return -1
if unit==0:# val in Ha
return val
if unit==1:# val in Hz
return val/Hz_to_Ha
if unit==2:# val in cm1
return val/cm1_to_hartree
def CALL_RAMAN_MENU(output,keywords,vararray):
"""
Author:Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
Purpose: To call and activate the raman spectrum part of this calculation.
"""
T = vararray[1]
[laser,laser_unit] = vararray[2]
[width,width_unit] = vararray[3]
relative = vararray[6]
freq_unit = vararray[7]
delete = vararray[8]
freqsteps = vararray[9]
[min_freq,min_unit] = vararray[10]
[max_freq,max_unit] = vararray[11]
# Compute spectra or not
with_spreading = True
if width<=0:
with_spreading = False
else:
width = UNIT_TO_HA(width,width_unit)
#Convert frequencies in Ha
laser = UNIT_TO_HA(laser,laser_unit)
#Convert min/max frequencies in freq_unit (after a conversion in Ha)
min_freq = UNIT_TO_HA(min_freq,min_unit)
min_freq = HA_TO_UNIT(min_freq,freq_unit)
max_freq = UNIT_TO_HA(max_freq,max_unit)
max_freq = HA_TO_UNIT(max_freq,freq_unit)
#Get some data
modeenergy = output[1]
modedata = output[2]
qdirs = output[4]
n_modes = len(modeenergy[0])
#remainder of printing goes to log file only
printout('')
printout('Anaddb created with Abinit Version: %s' %keywords[0])
printout('')
# Print header of output file
if not with_spreading:
outfile_base = outname+'_intensity'
else:
outfile_base = outname+'_spec'
# Start loop on q directions
for idir,qdir in enumerate(qdirs):
# LO modes or not?
LO = False
if np.sqrt(qdir[0]**2+qdir[1]**2+qdir[2]**2)>10**(-10):
LO = True
printout('************************************************************************')
if LO:
printout('*** LO modes, in the q direction (cartesian coordinates) : %s %s %s '%(qdir[0],qdir[1],qdir[2]))
outfile = outfile_base + '_%04.0f_%04.0f_%04.0f'%(qdir[0]*1000,qdir[1]*1000,qdir[2]*1000)
else:
printout('*** TO modes')
outfile = outfile_base
printout('************************************************************************')
printout('')
#Remove existing file
out = CHECK_FILE(outfile)
if out and delete:
os.remove(outfile)
#Modify the input data silently.
menergy = GET_MODEENERGY(modeenergy[idir])
rarray = GET_RAMANMATRIX(modedata[idir])
# Compute all intensities
printout('Calculating the raman intensities.')
I_powder,I_powder_rel = RAMAN_INTENSITIES(menergy,rarray,laser,T,'POWDER')
I_xx,I_xx_rel = RAMAN_INTENSITIES(menergy,rarray,laser,T,'XX')
I_xy,I_xy_rel = RAMAN_INTENSITIES(menergy,rarray,laser,T,'XY')
I_xz,I_xz_rel = RAMAN_INTENSITIES(menergy,rarray,laser,T,'XZ')
I_yy,I_yy_rel = RAMAN_INTENSITIES(menergy,rarray,laser,T,'YY')
I_yz,I_yz_rel = RAMAN_INTENSITIES(menergy,rarray,laser,T,'YZ')
I_zz,I_zz_rel = RAMAN_INTENSITIES(menergy,rarray,laser,T,'ZZ')
# Print header in the output file for this q direction
if LO:
printoutfile('#*** LO modes : %s %s %s '%(qdir[0],qdir[1],qdir[2]),outfile)
else:
printoutfile('#*** TO modes',outfile)
string_freq = ' freq (Ha)'
if freq_unit == 1:
string_freq = ' freq (Hz)'
if freq_unit == 2:
string_freq = ' freq (cm1)'
if not relative:
printoutfile('#'+string_freq+' abs Ipowder abs I(XX) abs I(XY) abs I(XZ) abs I(YY) abs I(YZ) abs I(ZZ)',outfile)
else:
printoutfile('#'+string_freq+' rel Ipowder rel I(XX) rel I(XY) rel I(XZ) rel I(YY) rel I(YZ) rel I(ZZ)',outfile)
if with_spreading:
minf = np.inf # infinity
maxf = 0.0
# If required by the user : set the minimum and/or maximum values
if min_freq >= 0.0:
minf = min_freq
if max_freq >= 0.0:
maxf = max_freq
max_rarray = max(abs(np.ravel(rarray)))
# Loop on modes
for j in range(n_modes):
rmatj = rarray[j]
max_rmatj = max(abs(np.ravel(rmatj)))
if max_rmatj < 10**(-3) * max_rarray:
printout(' -- Mode %i: %10.2f (cm-1) : Raman tensor is negligible'%(j+1,menergy[j][2]))
if max_rmatj < 10**(-3) * max_rarray:
printout(' -- Mode %i: %10.2f (cm-1) : Raman tensor is negligible'%(j+1,menergy[j][2]))
else:
printout(' -- Mode %i: %10.2f (cm-1)'%(j+1,menergy[j][2]))
printout(' -- Raman tensor :')
printout(' %17.9f %17.9f %17.9f' %(rmatj[0][0],rmatj[0][1],rmatj[0][2]))
printout(' %17.9f %17.9f %17.9f' %(rmatj[1][0],rmatj[1][1],rmatj[1][2]))
printout(' %17.9f %17.9f %17.9f' %(rmatj[2][0],rmatj[2][1],rmatj[2][2]))
printout(' -- Raman intensities :')
printout(' | powder | (XX) | (XY) | (XZ) | (YY) | (YZ) | (ZZ)')
l_I = [I_powder[j],I_xx[j],I_xy[j],I_xz[j],I_yy[j],I_yz[j],I_zz[j]]
l_I_rel = [I_powder_rel[j],I_xx_rel[j],I_xy_rel[j],I_xz_rel[j],I_yy_rel[j],I_yz_rel[j],I_zz_rel[j]]
printout(' abs | %10.5e|%10.5e|%10.5e|%10.5e|%10.5e|%10.5e|%10.5e'%(l_I[0],
l_I[1],l_I[2],l_I[3],l_I[4],l_I[5],l_I[6]))
printout(' rel | %11.2f|%11.5f|%11.5f|%11.5f|%11.5f|%11.5f|%11.5f'%(l_I_rel[0],
l_I_rel[1],l_I_rel[2],l_I_rel[3],l_I_rel[4],l_I_rel[5],l_I_rel[6]))
printout('')
# if width <=0 : write information to the output file with a simple format
if not with_spreading:
# printout('Printing results to an output file named %s' %outfile)
if relative:
printoutfile(' %11.2f %11.5f %11.5f %11.5f %11.5f %11.5f %11.5f %11.5f' %(menergy[j][freq_unit],
l_I_rel[0],l_I_rel[1],l_I_rel[2],l_I_rel[3],l_I_rel[4],l_I_rel[5],l_I_rel[6]),outfile)
else:
printoutfile(' %10.5e %10.5e %10.5e %10.5e %10.5e %10.5e %10.5e %10.5e' %(menergy[j][freq_unit],
l_I[0],l_I[1],l_I[2],l_I[3],l_I[4],l_I[5],l_I[6]),outfile)
# For accumulation of intensities
else:
freq = menergy[j][freq_unit]
if min_freq < 0.0 and minf >= freq:
minf = freq*0.95
if max_freq < 0.0 and maxf <= freq:
maxf = freq*1.05
#Compute Raman Spectra
if with_spreading:
maxval = np.zeros(7)
ramanplot = np.zeros([8,freqsteps])
# For each freqstep : accumulate all modes and store maximum values
for i in range(freqsteps):
freq = minf+i*(maxf-minf)/freqsteps
freq_Ha = UNIT_TO_HA(freq,freq_unit)
intstep = np.zeros(7)
for j in range(n_modes):
rmatj = rarray[j]
norm_rmatj = sum(abs(np.ravel(rmatj)))
if norm_rmatj > 10**(-10):
l_I = [I_powder[j],I_xx[j],I_xy[j],I_xz[j],I_yy[j],I_yz[j],I_zz[j]]
spread = width/((freq_Ha-menergy[j][0])**2+width**2)
for iint in range(7):
intstep[iint] += spread*l_I[iint]
for iint in range(7):
if maxval[iint] < intstep[iint]:
maxval[iint] = intstep[iint]
ramanplot[iint][i] = intstep[iint]
# For each freqstep : write the output intensity
for i in range(freqsteps):
freq = minf+i*(maxf-minf)/freqsteps # Frequency in cm1
if relative:
for iint in range(7):
if maxval[iint] > 0.0:
ramanplot[iint][i] = ramanplot[iint][i] / maxval[iint]
printoutfile('%10.5e %10.5e %10.5e %10.5e %10.5e %10.5e %10.5e %10.5e' %(freq,
ramanplot[0][i],ramanplot[1][i],ramanplot[2][i],ramanplot[3][i],
ramanplot[4][i],ramanplot[5][i],ramanplot[6][i]),outfile)
return
def LOAD_ANADDB(infile):
"""
Author: Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
Loads abinit data by reading the output file and storing necessary information
in the correct arrays. This is done by reading the file twice. First to
find keywords, and the second time to extract dat
"""
keywords =['', #Abinit version
False, #dieflag - frequency dependent dielectric constant
False, #nfreq - number of frequency steps
False, #nlflag - Raman tensor and nonlinear optical tensor
False, #elaflag - elastic tensor flag
False, #piezoflag - Piezoelectric tensor
]
#First, read the output file and determine if any of the keywords are present
with open(infile,'r') as f:
for num,line in enumerate(f,1):
if line.startswith( '.Version'):
l = line.strip('\n').split()
keywords[0] = str(l[1])
elif line.startswith( ' dieflag'):
l = line.strip('\n').split()
dieflag = int(l[len(l)-1])
if dieflag > 0 and dieflag != 2:
keywords[1] = True
else:
keywords[1] = False
elif line.startswith( ' nfreq'):
l = line.strip('\n').split()
nfreq = int(l[len(l)-1])
if nfreq > 10:
keywords[2] = nfreq
else:
keywords[2] = 0
keywords[1] = False
elif line.startswith( ' nlflag'):
l = line.strip('\n').split()
if int(l[len(l)-1])> 0:
keywords[3] = True
else:
keywords[3] = False
#Now that keywords are read in and stored. We can read the file again and
#figure out what information needs to be stored
#declare storage arrays
outinfo= [0,0,0,0,0]
qdirs = []
modeenergy = []
modedata = []
diedata = []
if keywords[1]: #dielectric tensor as a function of frequency
#Do something
printout('Starting extraction of the dielectric Tensor as a function of frequency.')
diedata=np.zeros(shape=(keywords[2],7))
with open(infile,'r') as f:
for num,line in enumerate(f,1):
if line.startswith(' Frequency(Hartree) Dielectric constant Reflectivity'):
c=2
for c in range(2,keywords[2]+2):
data = linecache.getline(infile,num+c)
l=data.strip('\n').split()
diedata[c-2][0]= l[0]
diedata[c-2][1]= l[1]
diedata[c-2][2]= l[2]
diedata[c-2][3]= l[3]
diedata[c-2][4]= l[4]
diedata[c-2][5]= l[5]
diedata[c-2][6]= l[6]
outinfo[3] = diedata
printout('Finished extraction of the dielectric Tensor as a function of frequency.')
if keywords[3]: #Raman tensor and modes
printout('Starting extraction of the raman tensor.')
with open(infile,'r') as f:
iqdir = 0
for num,line in enumerate(f,1):
if ' Raman susceptibilit' in line:
modeenergy.append([])
modedata.append([])
iqdir += 1
if 'transverse' in line : # TO mode
qdir = np.array([0.0,0.0,0.0])
if 'non-analyticity' in line : # LO mode
data = linecache.getline(infile,num+1)
l = data.strip('\n').split()
qdir = np.zeros(3)
for ii in range(3):
qdir[ii] = float(l[ii+3])
qdirs.append(qdir)
if line.startswith(' Mod') and 'cm-1)' in line:
l = line.strip('\n').split('(')
onemode_energy = float(l[1].split()[0])
onemode_raman = np.zeros([3,3])
for ii in range(3):
data = linecache.getline(infile,num+ii+1)
l = data.strip('\n').split()
for jj in range(3):
onemode_raman[ii][jj] =l[jj+1]
modeenergy[iqdir-1].append(onemode_energy)
modedata[iqdir-1].append(onemode_raman)
outinfo[1] = modeenergy
outinfo[2] = modedata
outinfo[4] = qdirs
printout('Finished extraction of the raman tensor.')
printout('')
return keywords,outinfo
def GET_MODEENERGY(modeenergy):
"""
Author: Nicholas Pike
Email: Nicholas.Pike@ulg.ac.be
Purpose: Convert the Mode energies from cm-1 to Ha for later calculations
"""
nmode = int(len(modeenergy))
energy = np.zeros(shape=(nmode,3))
for j in range(nmode):
energy[j][0] = float(modeenergy[j])*cm1_to_hartree
energy[j][1] = float(modeenergy[j])*cm1_to_hz
energy[j][2] = float(modeenergy[j])
return energy
def GET_RAMANMATRIX(modedata):
"""
Author: Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
Purpose: Convert the long list of matrix elements to 3x3 arrays for each
mode index
"""
nmode = len(modedata)
for imode in range(nmode):
for ii in range(3):
for jj in range(3):
value = modedata[imode][ii][jj]
if abs(value)<10**(-10):
modedata[imode][ii][jj] = 0.0
return modedata
def GET_NORM(m):
norm = 0
for ii in range(3):
for jj in range(3):
norm += m[ii][jj]**2
return norm
def GET_G012(m):
m_I = np.zeros([3,3],dtype=np.float64)
m_A = np.zeros([3,3],dtype=np.float64)
m_S = np.zeros([3,3],dtype=np.float64)
trace_m = m[0][0] + m[1][1] + m[2][2]
for ii in range(3):
m_I[ii][ii] = 1.0/3.0*trace_m
m_S[ii][ii] = -1.0/3.0*trace_m
for jj in range(3):
m_A[ii][jj] = (m[ii][jj] - m[jj][ii])/2.0
m_S[ii][jj] += (m[ii][jj] + m[jj][ii])/2.0
m_sum = m_I + m_S + m_A
if sum(abs(np.ravel(m_sum-m))) > 1e-14:
print("ERROR in GET_G012 : m_sum is not m!")
sys.exit()
G0 = GET_NORM(m_I)
G1 = GET_NORM(m_A)
G2 = GET_NORM(m_S)
# G0 = 1.0/3.0*(m[0][0]+m[1][1]+m[2][2])**2
# G1 = 1.0/2.0*((m[0][1]-m[1][0])**2+(m[0][2]-m[2][0])**2+(m[1][2]-m[2][1])**2)
# G2 = 1.0/2.0*((m[0][1]+m[1][0])**2+(m[0][2]+m[2][0])**2+(m[1][2]+m[2][1])**2)
# G2+= 1.0/3.0*((m[0][0]-m[1][1])**2+(m[1][1]-m[2][2])**2+(m[2][2]-m[0][0])**2)
return G0,G1,G2
def RAMAN_INTENSITIES(menergy,rarray,laser,T,option):
"""
Author: Nicholas Pike
Email: Nicholas.pike@ulg.ac.be
Purpose: To compute the intensities of each modes
"""
nmode = len(menergy)
Intensities = np.zeros(nmode)
Intensities_rel = np.zeros(nmode)
# if option == 'POWDER':
# printout(" hbar/kT = {:12.5e}".format(hplank/(kb*T)))
for j in range(nmode):
if menergy[j][2] > 1: # in cm1
mbose = 1.0/(np.exp(hplank*menergy[j][1]/(kb*T))-1.0)
pref = 1.0/(2.0*menergy[j][0])*(menergy[j][0] - laser)**4/clight**4*(mbose+1.0)
if option == 'POWDER':
# printout("mode {:d} : {:12.5e} mbose = {:8.5f}".format(j+1,menergy[j][1],mbose+1.0))
# for ii in range(3):
# printout(" {:12.5e} {:12.5e} {:12.5e} ".format(rarray[j][ii][0],rarray[j][ii][1],rarray[j][ii][2]))
G0,G1,G2 = GET_G012(rarray[j])
# printout("G1 = {:12.5e} G1 = {:12.5e} G2 = {:12.5e}".format(G0,G1,G2))
pref = (2*np.pi)*pref
Ipar = pref*(10.0*G0+4.0*G2)
Iperp = pref*( 5.0*G1+3.0*G2)
Intensities[j] = Ipar + Iperp
else:
Inpol = []
Outpol = []
if option == 'XX':
Inpol = np.array([1,0,0])
Outpol = np.array([1,0,0])
elif option == 'XY':
Inpol = np.array([1,0,0])
Outpol = np.array([0,1,0])
elif option == 'XZ':
Inpol = np.array([1,0,0])
Outpol = np.array([0,0,1])
elif option == 'YY':
Inpol = np.array([0,1,0])
Outpol = np.array([0,1,0])
elif option == 'YZ':
Inpol = np.array([0,1,0])
Outpol = np.array([0,0,1])
elif option == 'ZZ':
Inpol = np.array([0,0,1])
Outpol = np.array([0,0,1])
rj1 = [rarray[j][0][0],rarray[j][0][1],rarray[j][0][2]]
rj2 = [rarray[j][1][0],rarray[j][1][1],rarray[j][1][2]]
rj3 = [rarray[j][2][0],rarray[j][2][1],rarray[j][2][2]]
modearray = np.array([rj1,rj2,rj3])
alpha_ij = np.dot(Outpol,np.dot(modearray,Inpol))
Intensities[j] = alpha_ij**2*pref
max_int = max(Intensities)
if max_int > 0.0:
Intensities_rel = Intensities/max_int
return Intensities,Intensities_rel
def DETER_MENU(var_array):
"""
Author: Nicholas Pike
Email : Nicholas.pike@ulg.ac.be
Determine what calculation to ask the user about depending on what anaddb
calculation was done. This is done by reading the file and looking for
specific flags in the output file
Args: infile - name of input file (assumed to be anaddb.out)
"""
infile = var_array[0]
keywords,output = LOAD_ANADDB(infile)
if keywords[1]:
#run module to print Dielectric tensor as a function of frequency
outfile = outname+'_dielectric_freq'
printoutfile('# Freq dielectric Reflectivity',outfile)
printoutfile('# x y z x y z ',outfile)
for j in range(int(keywords[2])):
o3j=output[3][j]
printoutfile('%e %e %e %e %e %e %e' %(o3j[0],o3j[1],o3j[2],o3j[3],o3j[4],o3j[5],o3j[6]),outfile)
if keywords[3]:
#Choose to identify the modes characteristics or make a Raman Spectrum
printout('Entering Raman Spectrum Calculation.')
printout('')
CALL_RAMAN_MENU(output,keywords,var_array) #Calls the menu for the Raman calculation
printout('Thank you for using this program.')
return
"""
Execution Code below this line
"""
#Program runs via this if statement (needed for windows computers):
if __name__ == '__main__':
#declare important information
__author__ = 'Nicholas Pike'
__copyright__ = 'none'
__credits__ = 'none'
__license__ = 'none'
__version__ = '0.3'
__maintainer__ = 'Nicholas Pike'
__email__ = 'Nicholas.pike@ulg.ac.be'
__status__ = 'production'
__date__ = 'November 2016'
#Import useful python programs
import os
import sys
import numpy as np
import linecache
systemversion = sys.version_info
#Declare global variables
global outname
global cm1_to_hartree
global cm1_to_hz
global Hz_to_Ha
global hplank
global kb
global T
global clight
global width
cm1_to_hartree = 4.55633E-6 # conversion factor between cm-1 and Hartree
cm1_to_hz = 2.99793E10 # conversion factor between cm-1 and Hz
Hz_to_Ha = 1.519828500716E-16 # conversion factor between Hz and Hartree
kb = 8.6173324E-5 # Boltzmann constant in eV/K
T = 0 # Default Temperature (user input variable)
hplank = 6.58211928E-16 # h in eVs
clight = 137.0359997566 # Speed of light in atomic units
width = 0.0 # spread of lorentian (user input variable)
if any('SPYDER' in name for name in os.environ):
user_inputfile = 'input_raman'
else:
#Determines what the program is to do if it is run from command line
user_inputfile = sys.argv[1] #input should be python program_name tfile
#Name of default input file
vararray = READ_INPUT(user_inputfile) #The program will look for the specified input file
#Print header file and start the calculation
PRINT_HEADER()
#Read anaddb.out file and determine what type of calculation to run
DETER_MENU(vararray)
#Ends program
|