1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
|
#!/usr/bin/python
#====================================================================#
# Script to get the eigenvalues from an abinit _EIG.nc netcdf file #
#====================================================================#
#########
#IMPORTS#
#########
import numpy as N
import matplotlib.pyplot as P
import netCDF4 as nc
import sys
import os
import argparse
import time
#############
##VARIABLES##
#############
class VariableContainer:pass
#Constants
csts = VariableContainer()
csts.hartree2ev = N.float(27.211396132)
csts.ev2hartree = N.float(1/csts.hartree2ev)
csts.sqrtpi = N.float(N.sqrt(N.pi))
csts.invsqrtpi = N.float(1/csts.sqrtpi)
csts.TOLKPTS = N.float(0.00001)
csts.fig_width = 8
csts.fig_height = 6
csts.markersize = 10
csts.markeredgewidth = 2
###########
##METHODS##
###########
#Get the coefficients of the line going through 2 points of xi,yi and xj,yj. By default, begin and end points
#If the indices are given (2 integers), the line must go through these two points
def line_ab(x,y,indices=None):
if len(N.shape(x)) != 1 or len(N.shape(y)) != 1:
print 'ERROR: the array x and/or y is not 1D ... exit'
sys.exit()
if len(x) != len(y):
print 'ERROR: x and y arrays have different lengths ... exit'
sys.exit()
if indices == None:
indices = N.array([0,len(x)-1])
else:
if indices[0] < 0 or indices[1] >= len(x) or indices[0] == indices[1]:
print 'ERROR: indices (0 <= indices[0]=%s < indices[1]=%s < len(x)=%s) are wrong ... exit' %(indices[0],indices[1],len(x))
sys.exit()
a = (y[indices[0]]-y[indices[1]])/(x[indices[0]]-x[indices[1]])
b = (y[indices[0]]*x[indices[1]]-x[indices[0]]*y[indices[1]])/(x[indices[1]]-x[indices[0]])
return N.array([a,b],N.float)
#Get the coefficients of the polynom of degree 2 going through 2 points xi,yi and xj,yj and using a least squares procedure for the other points
#If the indices are given (2 integers), the polynom must go through these two points
def poly2d_ab(x,y,indices=None):
if len(N.shape(x)) != 1 or len(N.shape(y)) != 1:
print 'ERROR: the array x and/or y is not 1D ... exit'
sys.exit()
if len(x) != len(y):
print 'ERROR: x and y arrays have different lengths ... exit'
sys.exit()
if indices == None:
indices = N.array([0,len(x)-1])
else:
if indices[0] < 0 or indices[1] >= len(x) or indices[0] == indices[1]:
print 'ERROR: indices (0 <= indices[0]=%s < indices[1]=%s < len(x)=%s) are wrong ... exit' %(indices[0],indices[1],len(x))
sys.exit()
x1 = x[indices[0]]
x2 = x[indices[1]]
y1 = y[indices[0]]
y2 = y[indices[1]]
x3 = (x1+x2)/2
newy = y - y1*(x-x2)*(x-x3)/((x1-x2)*(x1-x3)) - y2*(x-x1)*(x-x3)/((x2-x1)*(x2-x3))
A = N.vstack([4*(x*x-(x1+x2)*x+x1*x2)/(2*x1*x2-x2*x2-x1*x1)]).T
y3 = N.linalg.lstsq(A,newy)[0]
pp = N.polyfit(N.array([x1,x2,x3]),N.array([y1,y2,y3]),2)
return pp
#Get the coefficients of the polynom of degree "degree" going through 2 points xi,yi and xj,yj and using a least squares procedure for the other points
#If the indices are given (2 integers), the polynom must go through these two points
def polynd_ab(x,y,degree,indices=None):
if degree < 1:
print 'ERROR: cannot find a polynomial going through two points with this degree (%s) ... exit' %degree
sys.exit()
if len(N.shape(x)) != 1 or len(N.shape(y)) != 1:
print 'ERROR: the array x and/or y is not 1D ... exit'
sys.exit()
if len(x) != len(y):
print 'ERROR: x and y arrays have different lengths ... exit'
sys.exit()
if indices == None:
indices = N.array([0,len(x)-1])
else:
if indices[0] < 0 or indices[1] >= len(x) or indices[0] == indices[1]:
print 'ERROR: indices (0 <= indices[0]=%s < indices[1]=%s < len(x)=%s) are wrong ... exit' %(indices[0],indices[1],len(x))
sys.exit()
if degree == 1:
pp = N.polyfit(N.array([x[indices[0]],x[indices[1]]]),N.array([y[indices[0]],y[indices[1]]]),degree)
return pp
x1 = x[indices[0]]
x2 = x[indices[1]]
y1 = y[indices[0]]
y2 = y[indices[1]]
xm = N.linspace(N.min(x),N.max(x),degree,endpoint=False)[1:]
prod1 = (x-x2)/(x1-x2)*y1
prod2 = (x-x1)/(x2-x1)*y2
coeff_list = list()
for ii in range(len(xm)):
prod1 = prod1*(x-xm[ii])/(x1-xm[ii])
prod2 = prod2*(x-xm[ii])/(x2-xm[ii])
prod_ii = (x-x2)*(x-x1)/((xm[ii]-x2)*(xm[ii]-x1))
for jj in range(len(xm)):
if ii != jj:
prod_ii = prod_ii*(x-xm[jj])/(xm[ii]-xm[jj])
coeff_list.append(prod_ii)
p1 = prod1 + prod2
newy = y - p1
A = N.vstack(N.array(coeff_list)).T
ym = N.linalg.lstsq(A,newy)[0]
xx = N.array([x1])
yy = N.array([y1])
for ii in range(len(xm)):
xx = N.append(xx,[xm[ii]])
yy = N.append(yy,[ym[ii]])
xx = N.append(xx,[x2])
yy = N.append(yy,[y2])
pp = N.polyfit(xx,yy,degree)
return pp
#Get the coefficients of the polynom of degree "degree" going through 1 point xi,yi and using a least squares procedure for the other points
#If the indice is given (1 integer), the polynom must go through this point, otherwise, it takes the first point in the list by default
def polynd_a(x,y,degree,indices=None):
if degree < 1:
print 'ERROR: cannot find a polynomial going through one points with this degree (%s) ... exit' %degree
sys.exit()
if len(N.shape(x)) != 1 or len(N.shape(y)) != 1:
print 'ERROR: the array x and/or y is not 1D ... exit'
sys.exit()
if len(x) != len(y):
print 'ERROR: x and y arrays have different lengths ... exit'
sys.exit()
if indices == None:
indices = N.array([0])
elif len(indices) != 1:
print 'ERROR: there should be only one index of a point through which the polynom has to go through ... exit'
sys.exit()
else:
if indices[0] < 0 or indices[0] >= len(x):
print 'ERROR: index (0 <= indices[0]=%s < len(x)=%s) is wrong ... exit' %(indices[0],len(x))
sys.exit()
x1 = x[indices[0]]
y1 = y[indices[0]]
xm = N.linspace(N.min(x),N.max(x),degree+1,endpoint=True)[1:]
prod1 = y1
coeff_list = list()
for ii in range(len(xm)):
prod1 = prod1*(x-xm[ii])/(x1-xm[ii])
prod_ii = (x-x1)/(xm[ii]-x1)
for jj in range(len(xm)):
if ii != jj:
prod_ii = prod_ii*(x-xm[jj])/(xm[ii]-xm[jj])
coeff_list.append(prod_ii)
newy = y - prod1
A = N.vstack(N.array(coeff_list)).T
ym = N.linalg.lstsq(A,newy)[0]
xx = N.array([x1])
yy = N.array([y1])
for ii in range(len(xm)):
xx = N.append(xx,[xm[ii]])
yy = N.append(yy,[ym[ii]])
pp = N.polyfit(xx,yy,degree)
return pp
#Given the polyfit_list and energy_pivots, finds the 2nd degree that goes to a zero slope (where the value will be separated by delta_energy)
#starting from a given energy (derivative is the same at this point). Returns the polynom and the values of the vertex of the polynom (maximum or minimum)
def smoothend(energy_pivots,polyfit_list,energy,delta_energy_ev=None):
method = 2
if delta_energy_ev == None:
if method == 1:
delta_energy_ev = 0.05
elif method == 2:
delta_energy_ev = 1.00
if method == 1:
xi = energy
if xi < energy_pivots[0]:
print 'Error: energy should be larger than the first energy pivot ...'
sys.exit()
if xi > energy_pivots[-1]:
ii = len(energy_pivots)
else:
ii = N.argwhere(energy_pivots>xi)[0]
fpi = N.polyval(N.polyder(polyfit_list[ii]),xi)
fi = N.polyval(polyfit_list[ii],xi)
if fpi == 0:
print 'TODO, the derivative is 0 ... easy but lazy :-)'
return
elif fpi > 0:
fv = fi + delta_energy_ev
elif fpi < 0:
fv = fi - delta_energy_ev
aa = fpi**2/(4*(fi-fv))
bb = fpi - 2*aa*xi
cc = fi - aa*xi**2 - bb*xi
xv = -bb/(2*aa)
new_energy_pivots = N.zeros(ii+2,N.float)
for jj in N.arange(ii):
new_energy_pivots[jj] = energy_pivots[jj]
new_energy_pivots[-2] = energy
new_energy_pivots[-1] = xv
new_polyfit_list = list()
for jj in N.arange(ii+1):
new_polyfit_list.append(polyfit_list[jj])
new_polyfit_list.append([aa,bb,cc])
new_polyfit_list.append([fv])
return new_energy_pivots,new_polyfit_list
if method == 2:
xi = energy
if xi < energy_pivots[0]:
print 'Error: energy should be larger than the first energy pivot ...'
sys.exit()
if xi > energy_pivots[-1]:
ii = len(energy_pivots)
else:
ii = N.argwhere(energy_pivots>xi)[0]
fpi = N.polyval(N.polyder(polyfit_list[ii]),xi)
fi = N.polyval(polyfit_list[ii],xi)
if fpi == 0:
new_energy_pivots = N.zeros(ii+1,N.float)
for jj in N.arange(ii):
new_energy_pivots[jj] = energy_pivots[jj]
new_energy_pivots[-1] = energy
new_polyfit_list = list()
for jj in N.arange(ii+1):
new_polyfit_list.append(polyfit_list[jj])
new_polyfit_list.append([fi])
return new_energy_pivots,new_polyfit_list
else:
xv = xi + delta_energy_ev
bb = fpi/(1.0-xi/xv)
aa = -bb/(2.0*xv)
cc = fi - aa*xi**2 - bb*xi
pp = [aa,bb,cc]
fv = N.polyval(pp,xv)
new_energy_pivots = N.zeros(ii+2,N.float)
for jj in N.arange(ii):
new_energy_pivots[jj] = energy_pivots[jj]
new_energy_pivots[-2] = xi
new_energy_pivots[-1] = xv
new_polyfit_list = list()
for jj in N.arange(ii+1):
new_polyfit_list.append(polyfit_list[jj])
new_polyfit_list.append(pp)
new_polyfit_list.append([fv])
if N.abs(fv-fi) > 0.05:
print 'WARNING : the last energy pivot is more than 0.05 eV from the constant correction'
else:
print 'COMMENT : smoothing the end of the graph starting at energy {0: 8.8f} eV'.format(xi)
print ' => constant correction for higher states : fv = {0: 8.8f} eV'.format(fv)
print ' => last energy pivot : fi = {0: 8.8f} eV'.format(fi)
print ' => fv - fi = {0: 8.8f} eV'.format(fv-fi)
return new_energy_pivots,new_polyfit_list
def write_polyfit(filename,energypivots,polyfitlist,energypivots_2=None,polyfitlist_2=None):
writer = open(filename,'w')
if energypivots_2 == None:
writer.write('nsppol 1\n')
else:
print 'write_polyfit not yet implemented for nsppol = 2 ... returning'
writer.write('NOT IMPLEMENTED\n')
writer.close()
return
writer.write('%s\n' %len(polyfitlist))
for ie in range(len(energypivots)):
writer.write('%s ' %energypivots[ie])
writer.write('\n')
for ip in range(len(polyfitlist)):
pfit = polyfitlist[ip]
for ic in range(len(pfit)):
writer.write('%s ' %pfit[ic])
writer.write('\n')
writer.close()
def read_polyfit(filename):
reader = open(filename,'r')
data = reader.readlines()
if data[0][:8] != 'nsppol 1':
print data[0]
print data[0][:8]
print 'read_polyfit not yet implemented for nsppol != 1 ... returning'
reader.close()
return
npfit = N.int(data[1])
energypivots = N.zeros(npfit-1,N.float)
polyfitlist = list()
for ie, ep in enumerate(data[2].split()):
energypivots[ie] = N.float(ep)
for ip in range(npfit):
sp = data[3+ip].split()
tmp = N.zeros(len(sp),N.float)
for ic, cc in enumerate(sp):
tmp[ic] = N.float(cc)
polyfitlist.append(tmp)
return energypivots,polyfitlist
###########
##CLASSES##
###########
class EigenvalueContainer(object):
nsppol = None
nkpt = None
mband = None
eigenvalues = None
units = None
wtk = None
filename = None
filefullpath = None
bd_indices = None
eigenvalue_type = None
kpoints = None
GROUP_BANDS_BS_TOL_EV = N.float(0.01)
GROUP_BANDS_BS_TOL = GROUP_BANDS_BS_TOL_EV*csts.ev2hartree
GROUP_BANDS_TOL_EV = N.float(0.2)
GROUP_BANDS_TOL = GROUP_BANDS_TOL_EV*csts.ev2hartree
#kpoint_sampling_type: can be Monkhorst-Pack or Bandstructure
KPT_W90_TOL = N.float(1.0e-6)
KPT_DFT_TOL = N.float(1.0e-8)
kpoint_sampling_type = 'Monkhorst-Pack'
inputgvectors = None
gvectors = None
special_kpoints = None
special_kpoints_names = None
special_kpoints_indices = None
kpoint_path_values = None
kpoint_reduced_path_values = None
kpoint_path_length = None
#reduced_norm = None
norm_paths = None
norm_reduced_paths = None
def __init__(self,directory=None,filename=None):
if filename == None:return
if directory == None:directory='.'
self.filename = filename
self.filefullpath = '%s/%s' %(directory,filename)
self.file_open(self.filefullpath)
def file_open(self,filefullpath):
if filefullpath[-3:] == '_GW':
self.gw_file_open(filefullpath)
else:
self.nc_eig_open(filefullpath)
def set_kpoint_sampling_type(self,kpoint_sampling_type):
if kpoint_sampling_type != 'Monkhorst-Pack' and kpoint_sampling_type != 'Bandstructure':
print 'ERROR: kpoint_sampling_type "%s" does not exists' %kpoint_sampling_type
print ' it should be "Monkhorst-Pack" or "Bandstructure" ... exit'
sys.exit()
self.kpoint_sampling_type = kpoint_sampling_type
def find_band_groups(self,bandstructure_file=None,tolerance_ev=None,spinchoice=None):
if self.nsppol > 1:
print 'WARNING: find_band_groups is carefully checked only for nsppol = 1'
if spinchoice == None:
print 'COMMENT: find_band_groups handles spins up and down on equal footing'
spinchoice = 'common'
elif spinchoice == 'common':
print 'COMMENT: find_band_groups handles spins up and down on equal footing'
elif spinchoice == 'separate':
print 'COMMENT: find_band_groups handles spins up and down as 2 different band structures'
if bandstructure_file != None:
ec_bs = EigenvalueContainer(filename=bandstructure_file)
eigenvalues = ec_bs.eigenvalues
nkpt = ec_bs.nkpt
nband = ec_bs.mband
nsppol = ec_bs.nsppol
else:
eigenvalues = self.eigenvalues
nkpt = self.nkpt
nband = self.mband
nsppol = self.nsppol
if tolerance_ev == None:
if bandstructure_file == None:
tolerance = self.GROUP_BANDS_TOL
else:
tolerance = self.GROUP_BANDS_BS_TOL
else:
tolerance = tolerance_ev*csts.ev2hartree
if spinchoice == 'common':
energy_pivots_list = list()
band = eigenvalues[:,:,0]
for iband in range(1,nband):
if N.min(eigenvalues[:,:,iband]) - N.max(band) > tolerance:
energy_pivots_list.append((N.min(eigenvalues[:,:,iband]) + N.max(band))/2)
band = eigenvalues[:,:,iband]
return N.array(energy_pivots_list)
elif spinchoice == 'separate':
energy_pivots_list_up = list()
energy_pivots_list_down = list()
bandup = eigenvalues[0,:,0]
banddown = eigenvalues[1,:,0]
for iband in range(1,nband):
if N.min(eigenvalues[0,:,iband]) - N.max(bandup) > tolerance:
energy_pivots_list_up.append((N.min(eigenvalues[0,:,iband]) + N.max(bandup))/2)
bandup = eigenvalues[0,:,iband]
if N.min(eigenvalues[1,:,iband]) - N.max(banddown) > tolerance:
energy_pivots_list_down.append((N.min(eigenvalues[1,:,iband]) + N.max(banddown))/2)
banddown = eigenvalues[1,:,iband]
return N.array(energy_pivots_list_up),N.array(energy_pivots_list_down)
def correct_kpt(self,kpoint,tolerance=N.float(1.0e-6)):
kpt_correct = N.array(kpoint,N.float)
changed = False
for ii in range(3):
if N.allclose(kpoint[ii],N.float(1.0/3.0),atol=tolerance):
kpt_correct[ii] = N.float(1.0/3.0)
changed = True
elif N.allclose(kpoint[ii],N.float(1.0/6.0),atol=tolerance):
kpt_correct[ii] = N.float(1.0/6.0)
changed = True
elif N.allclose(kpoint[ii],N.float(-1.0/6.0),atol=tolerance):
kpt_correct[ii] = N.float(-1.0/6.0)
changed = True
elif N.allclose(kpoint[ii],N.float(-1.0/3.0),atol=tolerance):
kpt_correct[ii] = N.float(-1.0/3.0)
changed = True
if changed:
print 'COMMENT: kpoint %15.12f %15.12f %15.12f has been changed to %15.12f %15.12f %15.12f' %(kpoint[0],kpoint[1],kpoint[2],kpt_correct[0],kpt_correct[1],kpt_correct[2])
return kpt_correct
def find_special_kpoints(self,gvectors=None):
if self.kpoint_sampling_type != 'Bandstructure':
print 'ERROR: special kpoints are usefull only for bandstructures ... returning find_special_kpoints'
return
if self.eigenvalue_type == 'W90':
correct_kpt_tolerance = N.float(1.0e-4)
KPT_TOL = self.KPT_W90_TOL
elif self.eigenvalue_type == 'DFT':
correct_kpt_tolerance = N.float(1.0e-6)
KPT_TOL = self.KPT_DFT_TOL
else:
print 'ERROR: eigenvalue_type is "%s" while it should be "W90" or "DFT" ... returning find_special_kpoints' %self.eigenvalue_type
return
if gvectors == None:
self.inputgvectors = False
self.gvectors = N.identity(3,N.float)
else:
if N.shape(gvectors) != (3, 3):
print 'ERROR: wrong gvectors ... exiting now'
sys.exit()
self.inputgvectors = True
self.gvectors = gvectors
full_kpoints = N.zeros((self.nkpt,3),N.float)
for ikpt in range(self.nkpt):
full_kpoints[ikpt,:] = self.kpoints[ikpt,0]*self.gvectors[0,:]+self.kpoints[ikpt,1]*self.gvectors[1,:]+self.kpoints[ikpt,2]*self.gvectors[2,:]
delta_kpt = full_kpoints[1,:]-full_kpoints[0,:]
self.special_kpoints_indices = list()
self.special_kpoints = list()
self.special_kpoints_indices.append(0)
self.special_kpoints.append(self.correct_kpt(self.kpoints[0,:],tolerance=correct_kpt_tolerance))
for ikpt in range(1,self.nkpt-1):
thisdelta = full_kpoints[ikpt+1,:]-full_kpoints[ikpt,:]
if not N.allclose(thisdelta,delta_kpt,atol=KPT_TOL):
delta_kpt = thisdelta
self.special_kpoints_indices.append(ikpt)
self.special_kpoints.append(self.correct_kpt(self.kpoints[ikpt,:],tolerance=correct_kpt_tolerance))
self.special_kpoints_indices.append(N.shape(self.kpoints)[0]-1)
self.special_kpoints.append(self.correct_kpt(self.kpoints[-1,:],tolerance=correct_kpt_tolerance))
print 'Special Kpoints : '
print ' {0:d} : {1[0]: 8.8f} {1[1]: 8.8f} {1[2]: 8.8f}'.format(1,self.kpoints[0,:])
self.norm_paths = N.zeros((N.shape(self.special_kpoints_indices)[0]-1),N.float)
self.norm_reduced_paths = N.zeros((N.shape(self.special_kpoints_indices)[0]-1),N.float)
for ispkpt in range(1,N.shape(self.special_kpoints_indices)[0]):
self.norm_paths[ispkpt-1] = N.linalg.norm(full_kpoints[self.special_kpoints_indices[ispkpt]]-full_kpoints[self.special_kpoints_indices[ispkpt-1]])
self.norm_reduced_paths[ispkpt-1] = N.linalg.norm(self.special_kpoints[ispkpt]-self.special_kpoints[ispkpt-1])
print ' {2:d}-{3:d} path length : {0: 8.8f} | reduced path length : {1: 8.8f}'.\
format(self.norm_paths[ispkpt-1],self.norm_reduced_paths[ispkpt-1],ispkpt,ispkpt+1)
print ' {0:d} : {1[0]: 8.8f} {1[1]: 8.8f} {1[2]: 8.8f}'.format(ispkpt+1,self.kpoints[self.special_kpoints_indices[ispkpt],:])
self.kpoint_path_length = N.sum(self.norm_paths)
self.kpoint_reduced_path_length = N.sum(self.norm_reduced_paths)
self.normalized_kpoint_path_norm = self.norm_paths/self.kpoint_path_length
self.normalized_kpoint_reduced_path_norm = self.norm_reduced_paths/self.kpoint_reduced_path_length
kptredpathval = list()
kptpathval = list()
kptredpathval.append(N.float(0.0))
kptpathval.append(N.float(0.0))
curlen = N.float(0.0)
redcurlen = N.float(0.0)
for ispkpt in range(1,N.shape(self.special_kpoints_indices)[0]):
kptredpathval.extend(N.linspace(redcurlen,redcurlen+self.norm_reduced_paths[ispkpt-1],self.special_kpoints_indices[ispkpt]-self.special_kpoints_indices[ispkpt-1]+1)[1:])
kptpathval.extend(N.linspace(curlen,curlen+self.norm_paths[ispkpt-1],self.special_kpoints_indices[ispkpt]-self.special_kpoints_indices[ispkpt-1]+1)[1:])
redcurlen = redcurlen + self.norm_reduced_paths[ispkpt-1]
curlen = curlen + self.norm_paths[ispkpt-1]
self.kpoint_path_values = N.array(kptpathval,N.float)
self.kpoint_reduced_path_values = N.array(kptredpathval,N.float)
self.normalized_kpoint_path_values = self.kpoint_path_values/self.kpoint_path_length
self.normalized_kpoint_reduced_path_values = self.kpoint_reduced_path_values/self.kpoint_reduced_path_length
self.special_kpoints = N.array(self.special_kpoints,N.float)
def has_eigenvalue(self,nsppol,isppol,kpoint,iband):
if self.nsppol != nsppol:
return False
for ikpt in range(self.nkpt):
if N.absolute(self.kpoints[ikpt,0]-kpoint[0]) < csts.TOLKPTS and \
N.absolute(self.kpoints[ikpt,1]-kpoint[1]) < csts.TOLKPTS and \
N.absolute(self.kpoints[ikpt,2]-kpoint[2]) < csts.TOLKPTS:
if iband >= self.bd_indices[isppol,ikpt,0]-1 and iband < self.bd_indices[isppol,ikpt,1]:
return True
return False
return False
def get_eigenvalue(self,nsppol,isppol,kpoint,iband):
for ikpt in range(self.nkpt):
if N.absolute(self.kpoints[ikpt,0]-kpoint[0]) < csts.TOLKPTS and \
N.absolute(self.kpoints[ikpt,1]-kpoint[1]) < csts.TOLKPTS and \
N.absolute(self.kpoints[ikpt,2]-kpoint[2]) < csts.TOLKPTS:
return self.eigenvalues[isppol,ikpt,iband]
def gw_file_open(self,filefullpath):
if not (os.path.isfile(filefullpath)):
print 'ERROR : file "%s" does not exists' %filefullpath
print '... exiting now ...'
sys.exit()
self.eigenvalue_type = 'GW'
self.nsppol = None
self.nkpt = None
self.mband = None
self.eigenvalues = None
self.units = None
self.filefullpath = filefullpath
reader = open(self.filefullpath,'r')
filedata = reader.readlines()
reader.close()
self.nkpt = N.int(filedata[0].split()[0])
self.kpoints = N.ones([self.nkpt,3],N.float)
self.nsppol = N.int(filedata[0].split()[1])
self.bd_indices = N.zeros((self.nsppol,self.nkpt,2),N.int)
icur = 1
nbd_kpt = N.zeros([self.nsppol,self.nkpt],N.int)
for ikpt in range(self.nkpt):
for isppol in range(self.nsppol):
self.kpoints[ikpt,:] = N.array(filedata[icur].split()[:],N.float)
icur = icur + 1
nbd_kpt[isppol,ikpt] = N.int(filedata[icur])
self.bd_indices[isppol,ikpt,0] = N.int(filedata[icur+1].split()[0])
self.bd_indices[isppol,ikpt,1] = N.int(filedata[icur+nbd_kpt[isppol,ikpt]].split()[0])
icur = icur + nbd_kpt[isppol,ikpt] + 1
self.mband = N.max(self.bd_indices[:,:,1])
self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float)
self.eigenvalues[:,:,:] = N.nan
ii = 3
for ikpt in range(self.nkpt):
for isppol in range(self.nsppol):
for iband in range(self.bd_indices[isppol,ikpt,0]-1,self.bd_indices[isppol,ikpt,1]):
self.eigenvalues[isppol,ikpt,iband] = N.float(filedata[ii].split()[1])
ii = ii + 1
ii = ii + 2
self.eigenvalues = csts.ev2hartree*self.eigenvalues
self.units = 'Hartree'
def pfit_gw_eigenvalues_ha(self,polyfitlist_up,energy_pivots_up=None,nband=None,polyfitlist_down=None,energy_pivots_down=None,ecgw=None):
if polyfitlist_down == None and energy_pivots_down != None:
print 'ERROR: list of polyfits and energy pivots are not coherent ... exit'
sys.exit()
if polyfitlist_down != None and energy_pivots_down == None:
print 'ERROR: list of polyfits and energy pivots are not coherent ... exit'
sys.exit()
if nband == None:
mband = N.shape(self.eigenvalues)[2]
else:
mband = nband
pfit_eigenvalues = csts.hartree2ev*N.array(self.eigenvalues)
if polyfitlist_down == None:
for ikpt in range(self.nkpt):
for isppol in range(self.nsppol):
if ecgw == None:
ibdmin = 0
ibdmax = mband
else:
ibdmin = ecgw.bd_indices[isppol,ikpt,0]-1
ibdmax = ecgw.bd_indices[isppol,ikpt,1]
for iband in range(ibdmin,ibdmax):
delta = N.polyval(polyfitlist_up[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
for ipivot in range(len(energy_pivots_up)):
if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots_up[ipivot]:
delta = N.polyval(polyfitlist_up[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
break
pfit_eigenvalues[isppol,ikpt,iband] = self.eigenvalues[isppol,ikpt,iband]*csts.hartree2ev + delta
return pfit_eigenvalues*csts.ev2hartree
else:
for ikpt in range(self.nkpt):
isppol = 0
if ecgw == None:
ibdmin = 0
ibdmax = mband
else:
print ecgw.bd_indices
ibdmin = ecgw.bd_indices[isppol,0,0]-1
ibdmax = ecgw.bd_indices[isppol,0,1]
for iband in range(ibdmin,ibdmax):
delta = N.polyval(polyfitlist_up[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
for ipivot in range(len(energy_pivots_up)):
if polyfitlist_up[ipivot] != None:
if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots_up[ipivot]:
delta = N.polyval(polyfitlist_up[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
break
pfit_eigenvalues[isppol,ikpt,iband] = self.eigenvalues[isppol,ikpt,iband]*csts.hartree2ev + delta
isppol = 1
if ecgw == None:
ibdmin = 0
ibdmax = mband
else:
ibdmin = ecgw.bd_indices[isppol,0,0]-1
ibdmax = ecgw.bd_indices[isppol,0,1]
for iband in range(ibdmin,ibdmax):
delta = N.polyval(polyfitlist_down[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
for ipivot in range(len(energy_pivots_down)):
if polyfitlist_down[ipivot] != None:
if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots_down[ipivot]:
delta = N.polyval(polyfitlist_down[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
break
pfit_eigenvalues[isppol,ikpt,iband] = self.eigenvalues[isppol,ikpt,iband]*csts.hartree2ev + delta
return pfit_eigenvalues*csts.ev2hartree
def pfit_gw_eigenvalues(self,polyfitlist,energy_pivots=None,nband=None):
if nband == None:
mband = N.shape(self.eigenvalues)[2]
else:
mband = nband
pfit_eigenvalues = N.zeros((self.nsppol,self.nkpt,mband))
for ikpt in range(self.nkpt):
for isppol in range(self.nsppol):
for iband in range(mband):
delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
for ipivot in range(len(energy_pivots)):
if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]:
delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
break
pfit_eigenvalues[isppol,ikpt,iband] = self.eigenvalues[isppol,ikpt,iband]*csts.hartree2ev + delta
return pfit_eigenvalues
def pfit_gw_file_write(self,polyfitlist,directory=None,filename=None,bdgw=None,energy_pivots=None,gwec=None):
if filename == None:return
if directory == None:directory='.'
filefullpath = '%s/%s' %(directory,filename)
if (os.path.isfile(filefullpath)):
user_input = raw_input('WARNING : file "%s" exists, do you want to overwrite it ? (y/n)' %filefullpath)
if not (user_input == 'y' or user_input == 'Y'):
return
writer = open(filefullpath,'w')
writer.write('%12s%12s\n' %(self.nkpt,self.nsppol))
if gwec == None:
for ikpt in range(self.nkpt):
for isppol in range(self.nsppol):
writer.write('%10.6f%10.6f%10.6f\n' %(self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2]))
writer.write('%4i\n' %(bdgw[1]-bdgw[0]+1))
for iband in range(bdgw[0]-1,bdgw[1]):
delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
for ipivot in range(len(energy_pivots)):
if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]:
delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
break
writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta,delta,0.0))
else:
for ikpt in range(self.nkpt):
for isppol in range(self.nsppol):
writer.write('%10.6f%10.6f%10.6f\n' %(self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2]))
writer.write('%4i\n' %(bdgw[1]-bdgw[0]+1))
for iband in range(bdgw[0]-1,bdgw[1]):
if gwec.has_eigenvalue(self.nsppol,isppol,self.kpoints[ikpt],iband):
gw_eig = gwec.get_eigenvalue(self.nsppol,isppol,self.kpoints[ikpt],iband)
writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*gw_eig,csts.hartree2ev*(gw_eig-self.eigenvalues[isppol,ikpt,iband]),0.0))
else:
delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
for ipivot in range(len(energy_pivots)):
if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]:
delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
break
writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta,delta,0.0))
writer.close()
def pfit_dft_to_gw_bs_write(self,polyfitlist,directory=None,filename=None,bdgw=None,energy_pivots=None,gwec=None):
if filename == None:return
if directory == None:directory='.'
filefullpath = '%s/%s' %(directory,filename)
if (os.path.isfile(filefullpath)):
user_input = raw_input('WARNING : file "%s" exists, do you want to overwrite it ? (y/n)' %filefullpath)
if not (user_input == 'y' or user_input == 'Y'):
return
writer = open(filefullpath,'w')
if gwec == None:
for ikpt in range(self.nkpt):
writer.write('%s' %ikpt)
for isppol in range(self.nsppol):
for iband in range(bdgw[0]-1,bdgw[1]):
delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
for ipivot in range(len(energy_pivots)):
if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]:
delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
break
writer.write(' %s' %(csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta))
writer.write('\n')
else:
print 'NOT SUPPORTED YET'
sys.exit()
writer.close()
def nc_eig_open(self,filefullpath):
if not (os.path.isfile(filefullpath)):
print 'ERROR : file "%s" does not exists' %filefullpath
print '... exiting now ...'
sys.exit()
ncdata = nc.Dataset(filefullpath)
self.eigenvalue_type = 'DFT'
self.nsppol = None
self.nkpt = None
self.mband = None
self.eigenvalues = None
self.units = None
self.filefullpath = filefullpath
for dimname,dimobj in ncdata.dimensions.iteritems():
if dimname == 'nsppol':self.nsppol = N.int(len(dimobj))
if dimname == 'nkpt':self.nkpt = N.int(len(dimobj))
if dimname == 'mband':self.mband = N.int(len(dimobj))
for varname in ncdata.variables:
if varname == 'Eigenvalues':
varobj = ncdata.variables[varname]
varshape = N.shape(varobj[:])
self.units = None
for attrname in varobj.ncattrs():
if attrname == 'units':
self.units = varobj.getncattr(attrname)
if self.units == None:
print 'WARNING : units are not specified'
print '... assuming "Hartree" units ...'
self.units = 'Hartree'
elif self.units != 'Hartree':
print 'ERROR : units are unknown : "%s"' %self.units
print '... exiting now ...'
sys.exit()
self.eigenvalues = N.reshape(N.array(varobj,N.float),varshape)
self.nsppol = varshape[0]
self.nkpt = varshape[1]
self.kpoints = -1*N.ones((self.nkpt,3),N.float)
self.mband = varshape[2]
self.bd_indices = N.zeros((self.nsppol,self.nkpt,2),N.int)
self.bd_indices[:,:,0] = 1
self.bd_indices[:,:,1] = self.mband
break
for varname in ncdata.variables:
if varname == 'Kptns':
varobj = ncdata.variables[varname]
varshape = N.shape(varobj[:])
self.kpoints = N.reshape(N.array(varobj,N.float),varshape)
def write_bandstructure_to_file(self,filename,option_kpts='bohrm1_units'):
#if option_kpts is set to 'normalized', the path of the bandstructure will be normalized to 1 (and special k-points correctly chosen)
if self.kpoint_sampling_type != 'Bandstructure':
print 'ERROR: kpoint_sampling_type is not "Bandstructure" ... returning from write_bandstructure_to_file'
return
if self.nsppol > 1:
print 'ERROR: number of spins is more than 1, this is not fully tested ... use with care !'
writer = open(filename,'w')
writer.write('# BANDSTRUCTURE FILE FROM DAVID\'S SCRIPT\n')
writer.write('# nsppol = %s\n' %self.nsppol)
writer.write('# nband = %s\n' %self.mband)
writer.write('# eigenvalue_type = %s\n' %self.eigenvalue_type)
if self.inputgvectors:
writer.write('# inputgvectors = 1 (%s)\n' %self.inputgvectors)
else:
writer.write('# inputgvectors = 0 (%s)\n' %self.inputgvectors)
writer.write('# gvectors(1) = %20.17f %20.17f %20.17f \n' %(self.gvectors[0,0],self.gvectors[0,1],self.gvectors[0,2]))
writer.write('# gvectors(2) = %20.17f %20.17f %20.17f \n' %(self.gvectors[1,0],self.gvectors[1,1],self.gvectors[1,2]))
writer.write('# gvectors(3) = %20.17f %20.17f %20.17f \n' %(self.gvectors[2,0],self.gvectors[2,1],self.gvectors[2,2]))
writer.write('# special_kpoints_number = %s\n' %(len(self.special_kpoints_indices)))
writer.write('# list of special kpoints : (given in reduced coordinates, value_path is in Bohr^-1, value_red_path has its total path normalized to 1)\n')
for ii in range(len(self.special_kpoints_indices)):
ispkpt = self.special_kpoints_indices[ii]
spkpt = self.special_kpoints[ii]
writer.write('# special_kpt_index %5s : %20.17f %20.17f %20.17f (value_path = %20.17f | value_red_path = %20.17f)\n' %(ispkpt,spkpt[0],spkpt[1],spkpt[2],self.kpoint_path_values[ispkpt],self.kpoint_reduced_path_values[ispkpt]))
writer.write('# special_kpoints_names :\n')
for ii in range(len(self.special_kpoints_indices)):
ispkpt = self.special_kpoints_indices[ii]
spkpt = self.special_kpoints[ii]
writer.write('# special_kpt_name %3s : "%s" : %20.17f %20.17f %20.17f\n' %(ii+1,self.special_kpoints_names[ii],spkpt[0],spkpt[1],spkpt[2]))
writer.write('# kpoint_path_length = %20.17f \n' %(self.kpoint_path_length))
writer.write('# kpoint_path_number = %s \n' %(self.nkpt))
if self.inputgvectors:
writer.write('# kpoint_path_units = %s\n' %(option_kpts))
else:
writer.write('# kpoint_path_units = %s (!!! CONSIDERING UNITARY GVECTORS MATRIX !!!)\n' %(option_kpts))
writer.write('#BEGIN\n')
if option_kpts == 'bohrm1_units':
values_path = self.kpoint_path_values
elif option_kpts == 'reduced':
values_path = self.kpoint_reduced_path_values
elif option_kpts == 'bohrm1_units_normalized':
values_path = self.normalized_kpoint_path_values
elif option_kpts == 'reduced_normalized':
values_path = self.normalized_kpoint_reduced_path_values
else:
print 'ERROR: wrong option_kpts ... exit'
writer.write('... CANCELLED (wrong option_kpts)')
writer.close()
sys.exit()
for isppol in range(self.nsppol):
writer.write('#isppol %s\n' %isppol)
for iband in range(self.mband):
writer.write('#iband %5s (band number %s)\n' %(iband,iband+1))
for ikpt in range(self.nkpt):
writer.write('%20.17f %20.17f\n' %(values_path[ikpt],self.eigenvalues[isppol,ikpt,iband]))
writer.write('\n')
writer.write('#END\n')
writer.write('\n#KPT_LIST\n')
for ikpt in range(self.nkpt):
writer.write('# %6d : %20.17f %20.17f %20.17f\n' %(ikpt,self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2]))
writer.close()
# def write_bandstructure_to_file(self,filename,option_kpts='bohrm1_units'):
# #if option_kpts is set to 'normalized', the path of the bandstructure will be normalized to 1 (and special k-points correctly chosen)
# if self.kpoint_sampling_type != 'Bandstructure':
# print 'ERROR: kpoint_sampling_type is not "Bandstructure" ... returning from write_bandstructure_to_file'
# return
# if self.nsppol > 1:
# print 'ERROR: number of spins is more than 1, this is not yet coded ... returning from write_bandstructure_to_file'
# return
# writer = open(filename,'w')
# writer.write('# BANDSTRUCTURE FILE FROM DAVID\'S SCRIPT\n')
# writer.write('# nsppol = %s\n' %self.nsppol)
# writer.write('# nband = %s\n' %self.mband)
# writer.write('# eigenvalue_type = %s\n' %self.eigenvalue_type)
# if self.inputgvectors:
# writer.write('# inputgvectors = 1 (%s)\n' %self.inputgvectors)
# else:
# writer.write('# inputgvectors = 0 (%s)\n' %self.inputgvectors)
# writer.write('# gvectors(1) = %20.17f %20.17f %20.17f \n' %(self.gvectors[0,0],self.gvectors[0,1],self.gvectors[0,2]))
# writer.write('# gvectors(2) = %20.17f %20.17f %20.17f \n' %(self.gvectors[1,0],self.gvectors[1,1],self.gvectors[1,2]))
# writer.write('# gvectors(3) = %20.17f %20.17f %20.17f \n' %(self.gvectors[2,0],self.gvectors[2,1],self.gvectors[2,2]))
# writer.write('# special_kpoints_number = %s\n' %(len(self.special_kpoints_indices)))
# writer.write('# list of special kpoints : (given in reduced coordinates, value_path is in Bohr^-1, value_red_path has its total path normalized to 1)\n')
# for ii in range(len(self.special_kpoints_indices)):
# ispkpt = self.special_kpoints_indices[ii]
# spkpt = self.special_kpoints[ii]
# writer.write('# special_kpt_index %5s : %20.17f %20.17f %20.17f (value_path = %20.17f | value_red_path = %20.17f)\n' %(ispkpt,spkpt[0],spkpt[1],spkpt[2],self.kpoint_path_values[ispkpt],self.kpoint_reduced_path_values[ispkpt]))
# writer.write('# special_kpoints_names :\n')
# for ii in range(len(self.special_kpoints_indices)):
# ispkpt = self.special_kpoints_indices[ii]
# spkpt = self.special_kpoints[ii]
# writer.write('# special_kpt_name %3s : "%s" : %20.17f %20.17f %20.17f\n' %(ii+1,self.special_kpoints_names[ii],spkpt[0],spkpt[1],spkpt[2]))
# writer.write('# kpoint_path_length = %20.17f \n' %(self.kpoint_path_length))
# writer.write('# kpoint_path_number = %s \n' %(self.nkpt))
# if self.inputgvectors:
# writer.write('# kpoint_path_units = %s\n' %(option_kpts))
# else:
# writer.write('# kpoint_path_units = %s (!!! CONSIDERING UNITARY GVECTORS MATRIX !!!)\n' %(option_kpts))
# writer.write('#BEGIN\n')
# if option_kpts == 'bohrm1_units':
# values_path = self.kpoint_path_values
# elif option_kpts == 'reduced':
# values_path = self.kpoint_reduced_path_values
# elif option_kpts == 'bohrm1_units_normalized':
# values_path = self.normalized_kpoint_path_values
# elif option_kpts == 'reduced_normalized':
# values_path = self.normalized_kpoint_reduced_path_values
# else:
# print 'ERROR: wrong option_kpts ... exit'
# writer.write('... CANCELLED (wrong option_kpts)')
# writer.close()
# sys.exit()
# for isppol in range(self.nsppol):
# writer.write('#isppol %s\n' %isppol)
# for iband in range(self.mband):
# writer.write('#iband %5s (band number %s)\n' %(iband,iband+1))
# for ikpt in range(self.nkpt):
# writer.write('%20.17f %20.17f\n' %(values_path[ikpt],self.eigenvalues[isppol,ikpt,iband]))
# writer.write('\n')
# writer.write('#END\n')
# writer.write('\n#KPT_LIST\n')
# for ikpt in range(self.nkpt):
# writer.write('# %6d : %20.17f %20.17f %20.17f\n' %(ikpt,self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2]))
# writer.close()
def read_bandstructure_from_file(self,filename):
reader = open(filename,'r')
bs_data = reader.readlines()
reader.close()
self.gvectors = N.identity(3,N.float)
self.kpoint_sampling_type = 'Bandstructure'
self.special_kpoints_indices = list()
self.special_kpoints = list()
for ii in range(len(bs_data)):
if bs_data[ii] == '#BEGIN\n':
ibegin = ii
break
elif bs_data[ii][:10] == '# nsppol =':
self.nsppol = N.int(bs_data[ii][10:])
elif bs_data[ii][:9] == '# nband =':
self.mband = N.int(bs_data[ii][9:])
elif bs_data[ii][:19] == '# eigenvalue_type =':
self.eigenvalue_type = bs_data[ii][19:].strip()
elif bs_data[ii][:17] == '# inputgvectors =':
tt = N.int(bs_data[ii][18])
if tt == 1:
self.inputgvectors = True
elif tt == 0:
self.inputgvectors = False
else:
print 'ERROR: reading inputgvectors ... exit'
sys.exit()
elif bs_data[ii][:15] == '# gvectors(1) =':
sp = bs_data[ii][15:].split()
self.gvectors[0,0] = N.float(sp[0])
self.gvectors[0,1] = N.float(sp[1])
self.gvectors[0,2] = N.float(sp[2])
elif bs_data[ii][:15] == '# gvectors(2) =':
sp = bs_data[ii][15:].split()
self.gvectors[1,0] = N.float(sp[0])
self.gvectors[1,1] = N.float(sp[1])
self.gvectors[1,2] = N.float(sp[2])
elif bs_data[ii][:15] == '# gvectors(3) =':
sp = bs_data[ii][15:].split()
self.gvectors[2,0] = N.float(sp[0])
self.gvectors[2,1] = N.float(sp[1])
self.gvectors[2,2] = N.float(sp[2])
elif bs_data[ii][:26] == '# special_kpoints_number =':
special_kpoints_number = N.int(bs_data[ii][26:])
self.special_kpoints_names = ['']*special_kpoints_number
elif bs_data[ii][:22] == '# special_kpt_index':
sp = bs_data[ii][22:].split()
self.special_kpoints_indices.append(N.int(sp[0]))
self.special_kpoints.append(N.array([sp[2],sp[3],sp[4]]))
elif bs_data[ii][:21] == '# special_kpt_name':
sp = bs_data[ii][21:].split()
ispkpt = N.int(sp[0])-1
self.special_kpoints_names[ispkpt] = sp[2][1:-1]
elif bs_data[ii][:22] == '# kpoint_path_length =':
self.kpoint_path_length = N.float(bs_data[ii][22:])
elif bs_data[ii][:22] == '# kpoint_path_number =':
self.nkpt = N.int(bs_data[ii][22:])
elif bs_data[ii][:21] == '# kpoint_path_units =':
kpoint_path_units = bs_data[ii][21:].strip()
self.special_kpoints_indices = N.array(self.special_kpoints_indices,N.int)
self.special_kpoints = N.array(self.special_kpoints,N.float)
if len(self.special_kpoints_indices) != special_kpoints_number or len(self.special_kpoints) != special_kpoints_number:
print 'ERROR: reading the special kpoints ... exit'
sys.exit()
self.kpoint_path_values = N.zeros([self.nkpt],N.float)
self.kpoint_reduced_path_values = N.zeros([self.nkpt],N.float)
if kpoint_path_units == 'bohrm1_units':
jj = 0
for ii in range(ibegin+1,len(bs_data)):
if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
if bs_data[ii] == '\n':
break
self.kpoint_path_values[jj] = N.float(bs_data[ii].split()[0])
jj = jj + 1
if jj != self.nkpt:
print 'ERROR: reading bandstructure file ... exit'
sys.exit()
self.normalized_kpoint_path_values = self.kpoint_path_values/self.kpoint_path_length
if kpoint_path_units == 'bohrm1_units_normalized':
jj = 0
for ii in range(ibegin+1,len(bs_data)):
if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
if bs_data[ii] == '\n':
break
self.normalized_kpoint_path_values[jj] = N.float(bs_data[ii].split()[0])
jj = jj + 1
if jj != self.nkpt:
print 'ERROR: reading bandstructure file ... exit'
sys.exit()
self.kpoint_path_values = self.normalized_kpoint_path_values*self.kpoint_path_length
elif kpoint_path_units == 'reduced_normalized':
jj = 0
for ii in range(ibegin+1,len(bs_data)):
if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
if bs_data[ii] == '\n':
break
self.normalized_kpoint_reduced_path_values[jj] = N.float(bs_data[ii].split()[0])
jj = jj + 1
if jj != self.nkpt:
print 'ERROR: reading bandstructure file ... exit'
sys.exit()
self.kpoint_reduced_path_values = self.normalized_kpoint_reduced_path_values/self.kpoint_reduced_path_length
elif kpoint_path_units == 'reduced':
jj = 0
for ii in range(ibegin+1,len(bs_data)):
if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
if bs_data[ii] == '\n':
break
self.kpoint_reduced_path_values[jj] = N.float(bs_data[ii].split()[0])
jj = jj + 1
if jj != self.nkpt:
print 'ERROR: reading bandstructure file ... exit'
sys.exit()
self.normalized_kpoint_reduced_path_values = self.kpoint_reduced_path_values/self.kpoint_reduced_path_length
self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float)
check_nband = 0
for ii in range(ibegin+1,len(bs_data)):
if bs_data[ii][:7] == '#isppol':
isppol = N.int(bs_data[ii][7:])
elif bs_data[ii][:6] == '#iband':
iband = N.int(bs_data[ii][6:].split()[0])
ikpt = 0
elif bs_data[ii][:4] == '#END':
break
elif bs_data[ii] == '\n':
check_nband = check_nband + 1
else:
self.eigenvalues[isppol,ikpt,iband] = N.float(bs_data[ii].split()[1])
ikpt = ikpt + 1
def check_gw_vs_dft_parameters(dftec,gwec):
if gwec.eigenvalue_type != 'GW' or dftec.eigenvalue_type != 'DFT':
print 'ERROR: eigenvalue files do not contain GW and DFT eigenvalues ... exiting now'
sys.exit()
if dftec.nsppol != gwec.nsppol or dftec.nkpt != gwec.nkpt:
print 'ERROR: the number of spins/kpoints is not the same in the GW and DFT files used to make the interpolation ... exiting now'
sys.exit()
for ikpt in range(dftec.nkpt):
if N.absolute(dftec.kpoints[ikpt,0]-gwec.kpoints[ikpt,0]) > csts.TOLKPTS or \
N.absolute(dftec.kpoints[ikpt,1]-gwec.kpoints[ikpt,1]) > csts.TOLKPTS or \
N.absolute(dftec.kpoints[ikpt,2]-gwec.kpoints[ikpt,2]) > csts.TOLKPTS:
print 'ERROR: the kpoints are not the same in the GW and DFT files used to make the interpolation ... exiting now'
sys.exit()
def classify_eigenvalues(eigarray,energy_pivots,eig2array=None):
eigarray_list = list()
if eig2array != None:
eig2array_list = list()
for iinterval in range(len(energy_pivots)+1):
print iinterval,' : '
tmpeigarray = N.array([],N.float)
tmpeig2array = N.array([],N.float)
if iinterval == 0:
emin = None
emax = energy_pivots[0]
print emin,emax
for ii in range(len(eigarray)):
if eigarray[ii] <= emax:
tmpeigarray = N.append(tmpeigarray,[eigarray[ii]])
tmpeig2array = N.append(tmpeig2array,[eig2array[ii]])
elif iinterval == len(energy_pivots):
emin = energy_pivots[-1]
emax = None
print emin,emax
for ii in range(len(eigarray)):
if eigarray[ii] >= emin:
tmpeigarray = N.append(tmpeigarray,[eigarray[ii]])
tmpeig2array = N.append(tmpeig2array,[eig2array[ii]])
else:
emin = energy_pivots[iinterval-1]
emax = energy_pivots[iinterval]
print emin,emax
for ii in range(len(eigarray)):
if eigarray[ii] >= emin and eigarray[ii] <= emax:
tmpeigarray = N.append(tmpeigarray,[eigarray[ii]])
tmpeig2array = N.append(tmpeig2array,[eig2array[ii]])
eigarray_list.append(tmpeigarray)
eig2array_list.append(tmpeig2array)
return eigarray_list,eig2array_list
else:
for iinterval in range(len(energy_pivots)+1):
tmpeigarray = N.array([],N.float)
if iinterval == 0:
emin = None
emax = energy_pivots[0]
for ii in range(len(eigarray)):
if eigarray[ii] <= emax:
tmpeigarray = N.append(tmpeigarray,[eigarray[ii]])
elif iinterval == len(energy_pivots):
emin = energy_pivots[-1]
emax = None
for ii in range(len(eigarray)):
if eigarray[ii] >= emin:
tmpeigarray = N.append(tmpeigarray,[eigarray[ii]])
else:
emin = energy_pivots[iinterval-1]
emax = energy_pivots[iinterval]
for ii in range(len(eigarray)):
if eigarray[ii] >= emin and eigarray[ii] <= emax:
tmpeigarray = N.append(tmpeigarray,[eigarray[ii]])
eigarray_list.append(tmpeigarray)
return eigarray_list
def plot_gw_vs_dft_eig(dftec,gwec,vbm_index,energy_pivots_up=None,energy_pivots_down=None,polyfit_degrees_up=None,polyfit_degrees_down=None,limitpoints=None,spinchoice=None,smooth_end=True,smooth_energy=None,smooth_delta_energy=None):
DELTA_ENERGY_END = 2.0
if gwec.eigenvalue_type != 'GW' or dftec.eigenvalue_type != 'DFT':
print 'ERROR: eigenvalue containers do not contain GW and DFT eigenvalues ... exiting now'
sys.exit()
if dftec.nsppol != gwec.nsppol or dftec.nkpt != gwec.nkpt:
print 'ERROR: the number of spins/kpoints is not the same in the GW and DFT containers ... exiting now'
sys.exit()
if dftec.nsppol == 1:
spinchoice = 'common'
valdftarray = N.array([],N.float)
conddftarray = N.array([],N.float)
valgwarray = N.array([],N.float)
condgwarray = N.array([],N.float)
if dftec.nsppol == 2 and spinchoice == 'separate':
upvaldftarray = N.array([],N.float)
upconddftarray = N.array([],N.float)
upvalgwarray = N.array([],N.float)
upcondgwarray = N.array([],N.float)
downvaldftarray = N.array([],N.float)
downconddftarray = N.array([],N.float)
downvalgwarray = N.array([],N.float)
downcondgwarray = N.array([],N.float)
if spinchoice == None or spinchoice == 'common':
for ikpt in range(dftec.nkpt):
for isppol in range(dftec.nsppol):
ibdmin = N.max([dftec.bd_indices[isppol,ikpt,0],gwec.bd_indices[isppol,ikpt,0]])-1
ibdmax = N.min([dftec.bd_indices[isppol,ikpt,1],gwec.bd_indices[isppol,ikpt,1]])-1
valdftarray = N.append(valdftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
valgwarray = N.append(valgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
conddftarray = N.append(conddftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
condgwarray = N.append(condgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
elif spinchoice == 'separate':
for ikpt in range(dftec.nkpt):
isppol = 0
ibdmin = N.max([dftec.bd_indices[isppol,ikpt,0],gwec.bd_indices[isppol,ikpt,0]])-1
ibdmax = N.min([dftec.bd_indices[isppol,ikpt,1],gwec.bd_indices[isppol,ikpt,1]])-1
upvaldftarray = N.append(upvaldftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
upvalgwarray = N.append(upvalgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
upconddftarray = N.append(upconddftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
upcondgwarray = N.append(upcondgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
isppol = 1
ibdmin = N.max([dftec.bd_indices[isppol,ikpt,0],gwec.bd_indices[isppol,ikpt,0]])-1
ibdmax = N.min([dftec.bd_indices[isppol,ikpt,1],gwec.bd_indices[isppol,ikpt,1]])-1
downvaldftarray = N.append(downvaldftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
downvalgwarray = N.append(downvalgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
downconddftarray = N.append(downconddftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
downcondgwarray = N.append(downcondgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
if energy_pivots_up == None:
if plot_figures == 1:
if dftec.nsppol == 2:
P.figure(1,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(upvaldftarray,upvalgwarray,'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(upconddftarray,upcondgwarray,'rx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues - spin UP (in eV)')
P.ylabel('GW eigenvalues (in eV)')
P.figure(2,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(downvaldftarray,downvalgwarray,'bo',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(downconddftarray,downcondgwarray,'ro',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues - spin UP (in eV)')
P.ylabel('GW eigenvalues (in eV)')
else:
P.figure(1,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(valdftarray,valgwarray,'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(conddftarray,condgwarray,'rx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues (in eV)')
P.ylabel('GW eigenvalues (in eV)')
if dftec.nsppol == 2:
P.figure(3,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(upvaldftarray,upvalgwarray-upvaldftarray,'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(upconddftarray,upcondgwarray-upconddftarray,'rx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues - spin UP (in eV)')
P.ylabel('GW correction to the DFT eigenvalues (in eV)')
P.figure(4,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(downvaldftarray,downvalgwarray-downvaldftarray,'bo',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(downconddftarray,downcondgwarray-downconddftarray,'ro',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues - spin DOWN (in eV)')
P.ylabel('GW correction to the DFT eigenvalues (in eV)')
else:
P.figure(2,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(valdftarray,valgwarray-valdftarray,'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(conddftarray,condgwarray-conddftarray,'rx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues(in eV)')
P.ylabel('GW correction to the DFT eigenvalues (in eV)')
P.show()
return
if spinchoice == None or spinchoice == 'common':
polyfitlist = list()
if len(polyfit_degrees_up) == 1:
print 'ERROR: making a fit with only one interval is not allowed ... exiting now'
sys.exit()
dftarray = N.append(valdftarray,conddftarray)
gwarray = N.append(valgwarray,condgwarray)
dftarray_list,gwarray_list = classify_eigenvalues(dftarray,energy_pivots_up,gwarray)
for iinterval in range(len(polyfit_degrees_up)):
tmpdftarray = dftarray_list[iinterval]
tmpgwarray = gwarray_list[iinterval]
if len(tmpdftarray) > 0:
if limitpoints == 'least-squares' or (polyfit_degrees_up[iinterval] <= 0 and iinterval != len(polyfit_degrees_up)-1):
pfit = N.polyfit(tmpdftarray,tmpgwarray-tmpdftarray,N.abs(polyfit_degrees_up[iinterval]))
elif limitpoints == 'least-squares_last-fixed':
if iinterval == len(polyfit_degrees_up)-1:
idftmin = N.argmin(tmpdftarray)
idftmax = N.argmax(tmpdftarray)
igwmin = N.argmin(tmpgwarray)
igwmax = N.argmax(tmpgwarray)
if idftmin == igwmin:
myimin = idftmin
else:
print 'COMMENT: the minimum for DFT and GW are not the same for band group #%s' %(iinterval+1)
print ' => the gw minimum is taken'
myimin = igwmin
pfit = polynd_a(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees_up[iinterval],indices=[myimin])
else:
pfit = N.polyfit(tmpdftarray,tmpgwarray-tmpdftarray,N.abs(polyfit_degrees_up[iinterval]))
elif limitpoints == 'endpoints-fixed' or limitpoints == 'endpoints-fixed_last-flat':
idftmin = N.argmin(tmpdftarray)
idftmax = N.argmax(tmpdftarray)
igwmin = N.argmin(tmpgwarray)
igwmax = N.argmax(tmpgwarray)
if idftmin == igwmin:
myimin = idftmin
else:
print 'COMMENT: the minimum for DFT and GW are not the same for band group #%s' %(iinterval+1)
print ' => the gw minimum is taken'
myimin = igwmin
if iinterval == len(polyfit_degrees_up)-1:
if limitpoints == 'endpoints-fixed':
pfit = polynd_a(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees_up[iinterval],indices=[myimin])
elif limitpoints == 'endpoints-fixed_last-flat':
pfit = [N.polyval(polyfitlist[-1],energy_pivots_up[-1])]
else:
if idftmax == igwmax:
myimax = idftmax
else:
print 'COMMENT: the maximum for DFT and GW are not the same for band group #%s' %(iinterval+1)
print ' => the gw maximum is taken'
myimax = igwmax
pfit = polynd_ab(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees_up[iinterval],indices=[myimin,myimax])
else:
pfit = None
polyfitlist.append(pfit)
if smooth_end:
if smooth_energy == None:
smoothenergy = N.max(dftarray)
else:
smoothenergy = smooth_energy
smoothdeltaenergy = None
if smooth_delta_energy != None:
smoothdeltaenergy = smooth_delta_energy
oldpolyfitlist = list(polyfitlist)
oldenergypivots = N.array(energy_pivots_up)
energy_pivots_up,polyfitlist = smoothend(energy_pivots_up,polyfitlist,smoothenergy,delta_energy_ev=smoothdeltaenergy)
dftarray_list,gwarray_list = classify_eigenvalues(dftarray,energy_pivots_up,gwarray)
if plot_figures == 1:
linspace_npoints = 200
valpoly_x = N.linspace(N.min(valdftarray),N.max(valdftarray),linspace_npoints)
condpoly_x = N.linspace(N.min(conddftarray),N.max(conddftarray),linspace_npoints)
P.figure(3,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(valdftarray,valgwarray-valdftarray,'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(conddftarray,condgwarray-conddftarray,'rx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
[x_min,x_max] = P.xlim()
[y_min,y_max] = P.ylim()
if smooth_end:
x_max = energy_pivots_up[-1]+DELTA_ENERGY_END
for iinterval in range(len(polyfitlist)):
if iinterval == 0:
tmppoly_x = N.linspace(x_min,energy_pivots_up[iinterval],linspace_npoints)
elif iinterval == len(polyfitlist)-1:
tmppoly_x = N.linspace(energy_pivots_up[iinterval-1],x_max,linspace_npoints)
else:
tmppoly_x = N.linspace(energy_pivots_up[iinterval-1],energy_pivots_up[iinterval],linspace_npoints)
if polyfitlist[iinterval] != None:
P.plot(tmppoly_x,N.polyval(polyfitlist[iinterval],tmppoly_x),'k',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
for ipivot in range(len(energy_pivots_up)):
en = energy_pivots_up[ipivot]
if polyfitlist[ipivot] != None and polyfitlist[ipivot+1] != None:
P.plot([en,en],[N.polyval(polyfitlist[ipivot],en),N.polyval(polyfitlist[ipivot+1],en)],'k-.',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues (in eV)')
P.ylabel('GW correction to the DFT eigenvalues (in eV)')
P.ylim([y_min,y_max])
P.figure(4,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
for iinterval in range(len(polyfitlist)):
if polyfitlist[iinterval] != None:
P.plot(dftarray_list[iinterval],gwarray_list[iinterval]-dftarray_list[iinterval]-N.polyval(polyfitlist[iinterval],dftarray_list[iinterval]),'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
[x_min,x_max] = P.xlim()
P.plot([x_min,x_max],[0,0],'k-')
P.xlabel('DFT eigenvalues (in eV)')
P.ylabel('Error in the fit (in eV)')
P.show()
return energy_pivots_up,polyfitlist
elif spinchoice == 'separate':
polyfitlist_up = list()
polyfitlist_down = list()
if len(polyfit_degrees_up) == 1 or len(polyfit_degrees_down) == 1:
print 'ERROR: making a fit with only one interval is not allowed ... exiting now'
sys.exit()
updftarray = N.append(upvaldftarray,upconddftarray)
upgwarray = N.append(upvalgwarray,upcondgwarray)
downdftarray = N.append(downvaldftarray,downconddftarray)
downgwarray = N.append(downvalgwarray,downcondgwarray)
updftarray_list,upgwarray_list = classify_eigenvalues(updftarray,energy_pivots_up,upgwarray)
downdftarray_list,downgwarray_list = classify_eigenvalues(downdftarray,energy_pivots_down,downgwarray)
for iinterval in range(len(polyfit_degrees_up)):
tmpdftarray = updftarray_list[iinterval]
tmpgwarray = upgwarray_list[iinterval]
if len(tmpdftarray) > 0:
if limitpoints == 'least-squares' or polyfit_degrees_up[iinterval] <= 0:
pfit = N.polyfit(tmpdftarray,tmpgwarray-tmpdftarray,N.abs(polyfit_degrees_up[iinterval]))
elif limitpoints == 'endpoints-fixed':
idftmin = N.argmin(tmpdftarray)
idftmax = N.argmax(tmpdftarray)
igwmin = N.argmin(tmpgwarray)
igwmax = N.argmax(tmpgwarray)
if idftmin == igwmin:
myimin = idftmin
else:
print 'COMMENT: the minimum for DFT and GW are not the same for band group #%s' %(iinterval+1)
print ' => the gw minimum is taken'
myimin = igwmin
if iinterval == len(polyfit_degrees_up)-1:
pfit = polynd_a(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees_up[iinterval],indices=[myimin])
else:
if idftmax == igwmax:
myimax = idftmax
else:
print 'COMMENT: the maximum for DFT and GW are not the same for band group #%s' %(iinterval+1)
print ' => the gw maximum is taken'
myimax = igwmax
pfit = polynd_ab(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees_up[iinterval],indices=[myimin,myimax])
else:
pfit = None
polyfitlist_up.append(pfit)
if smooth_end:
if smooth_energy == None:
smoothenergy = N.max(dftarray)
else:
smoothenergy = smooth_energy
smoothdeltaenergy = None
if smooth_delta_energy != None:
smoothdeltaenergy = smooth_delta_energy
oldpolyfitlist_up = list(polyfitlist_up)
oldenergypivots_up = N.array(energy_pivots_up)
energy_pivots_up,polyfitlist_up = smoothend(energy_pivots_up,polyfitlist_up,smoothenergy,delta_energy_ev=smoothdeltaenergy)
updftarray_list,upgwarray_list = classify_eigenvalues(updftarray,energy_pivots_up,upgwarray)
for iinterval in range(len(polyfit_degrees_down)):
tmpdftarray = downdftarray_list[iinterval]
tmpgwarray = downgwarray_list[iinterval]
if len(tmpdftarray) > 0:
if limitpoints == 'least-squares' or polyfit_degrees_down[iinterval] <= 0:
pfit = N.polyfit(tmpdftarray,tmpgwarray-tmpdftarray,N.abs(polyfit_degrees_down[iinterval]))
elif limitpoints == 'endpoints-fixed':
idftmin = N.argmin(tmpdftarray)
idftmax = N.argmax(tmpdftarray)
igwmin = N.argmin(tmpgwarray)
igwmax = N.argmax(tmpgwarray)
if idftmin == igwmin:
myimin = idftmin
else:
print 'COMMENT: the minimum for DFT and GW are not the same for band group #%s' %(iinterval+1)
print ' => the gw minimum is taken'
myimin = igwmin
if iinterval == len(polyfit_degrees_down)-1:
pfit = polynd_a(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees_down[iinterval],indices=[myimin])
else:
if idftmax == igwmax:
myimax = idftmax
else:
print 'COMMENT: the maximum for DFT and GW are not the same for band group #%s' %(iinterval+1)
print ' => the gw maximum is taken'
myimax = igwmax
pfit = polynd_ab(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees_down[iinterval],indices=[myimin,myimax])
else:
pfit = None
polyfitlist_down.append(pfit)
if smooth_end:
if smooth_energy == None:
smoothenergy = N.max(dftarray)
else:
smoothenergy = smooth_energy
smoothdeltaenergy = None
if smooth_delta_energy != None:
smoothdeltaenergy = smooth_delta_energy
oldpolyfitlist_down = list(polyfitlist_down)
oldenergypivots_down = N.array(energy_pivots_down)
energy_pivots_down,polyfitlist_down = smoothend(energy_pivots_down,polyfitlist_down,smoothenergy,delta_energy_ev=smoothdeltaenergy)
downdftarray_list,downgwarray_list = classify_eigenvalues(downdftarray,energy_pivots_down,downgwarray)
if plot_figures == 1:
linspace_npoints = 200
upvalpoly_x = N.linspace(N.min(upvaldftarray),N.max(upvaldftarray),linspace_npoints)
upcondpoly_x = N.linspace(N.min(upconddftarray),N.max(upconddftarray),linspace_npoints)
downvalpoly_x = N.linspace(N.min(downvaldftarray),N.max(downvaldftarray),linspace_npoints)
downcondpoly_x = N.linspace(N.min(downconddftarray),N.max(downconddftarray),linspace_npoints)
P.figure(3,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(upvaldftarray,upvalgwarray-upvaldftarray,'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(upconddftarray,upcondgwarray-upconddftarray,'rx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
[x_min,x_max] = P.xlim()
[y_min,y_max] = P.ylim()
#for iinterval in range(len(polyfit_degrees_up)):
for iinterval in range(len(polyfitlist_up)):
if iinterval == 0:
tmppoly_x = N.linspace(x_min,energy_pivots_up[iinterval],linspace_npoints)
elif iinterval == len(polyfitlist_up)-1:
tmppoly_x = N.linspace(energy_pivots_up[iinterval-1],x_max,linspace_npoints)
else:
tmppoly_x = N.linspace(energy_pivots_up[iinterval-1],energy_pivots_up[iinterval],linspace_npoints)
if polyfitlist_up[iinterval] != None:
P.plot(tmppoly_x,N.polyval(polyfitlist_up[iinterval],tmppoly_x),'k',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
for ipivot in range(len(energy_pivots_up)):
en = energy_pivots_up[ipivot]
if polyfitlist_up[ipivot] != None and polyfitlist_up[ipivot+1] != None:
P.plot([en,en],[N.polyval(polyfitlist_up[ipivot],en),N.polyval(polyfitlist_up[ipivot+1],en)],'k-.',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues (in eV) - spin UP')
P.ylabel('GW correction to the DFT eigenvalues (in eV)')
P.ylim([y_min,y_max])
P.figure(4,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
P.plot(downvaldftarray,downvalgwarray-downvaldftarray,'bo',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.plot(downconddftarray,downcondgwarray-downconddftarray,'ro',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
[x_min,x_max] = P.xlim()
[y_min,y_max] = P.ylim()
for iinterval in range(len(polyfitlist_down)):
if iinterval == 0:
tmppoly_x = N.linspace(x_min,energy_pivots_down[iinterval],linspace_npoints)
elif iinterval == len(polyfitlist_down)-1:
tmppoly_x = N.linspace(energy_pivots_down[iinterval-1],x_max,linspace_npoints)
else:
tmppoly_x = N.linspace(energy_pivots_down[iinterval-1],energy_pivots_down[iinterval],linspace_npoints)
if polyfitlist_down[iinterval] != None:
P.plot(tmppoly_x,N.polyval(polyfitlist_down[iinterval],tmppoly_x),'k',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
for ipivot in range(len(energy_pivots_down)):
en = energy_pivots_down[ipivot]
if polyfitlist_down[ipivot] != None and polyfitlist_down[ipivot+1] != None:
P.plot([en,en],[N.polyval(polyfitlist_down[ipivot],en),N.polyval(polyfitlist_down[ipivot+1],en)],'k-.',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
P.xlabel('DFT eigenvalues (in eV) - spin DOWN')
P.ylabel('GW correction to the DFT eigenvalues (in eV)')
P.ylim([y_min,y_max])
P.figure(5,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
#for iinterval in range(len(polyfit_degrees_up)):
for iinterval in range(len(polyfitlist_up)):
if polyfitlist_up[iinterval] != None:
P.plot(updftarray_list[iinterval],upgwarray_list[iinterval]-updftarray_list[iinterval]-N.polyval(polyfitlist_up[iinterval],updftarray_list[iinterval]),'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
[x_min,x_max] = P.xlim()
P.plot([x_min,x_max],[0,0],'k-')
P.xlabel('DFT eigenvalues (in eV) - spin UP')
P.ylabel('Error in the fit (in eV)')
P.figure(6,figsize=(csts.fig_width,csts.fig_height))
P.hold(True)
P.grid(True)
#for iinterval in range(len(polyfit_degrees_down)):
for iinterval in range(len(polyfitlist_down)):
if polyfitlist_down[iinterval] != None:
P.plot(downdftarray_list[iinterval],downgwarray_list[iinterval]-downdftarray_list[iinterval]-N.polyval(polyfitlist_down[iinterval],downdftarray_list[iinterval]),'bx',markersize=csts.markersize,markeredgewidth=csts.markeredgewidth)
[x_min,x_max] = P.xlim()
P.plot([x_min,x_max],[0,0],'k-')
P.xlabel('DFT eigenvalues (in eV) - spin DOWN')
P.ylabel('Error in the fit (in eV)')
P.show()
return energy_pivots_up,energy_pivots_down,polyfitlist_up,polyfitlist_down
def get_gvectors():
if os.path.isfile('.gvectors.bsinfo'):
print 'File ".gvectors.bsinfo found with the following gvectors information :"'
try:
gvectors_reader = open('.gvectors.bsinfo','r')
gvectors_data = gvectors_reader.readlines()
gvectors_reader.close()
trial_gvectors = N.identity(3,N.float)
trial_gvectors[0,0] = N.float(gvectors_data[0].split()[0])
trial_gvectors[0,1] = N.float(gvectors_data[0].split()[1])
trial_gvectors[0,2] = N.float(gvectors_data[0].split()[2])
trial_gvectors[1,0] = N.float(gvectors_data[1].split()[0])
trial_gvectors[1,1] = N.float(gvectors_data[1].split()[1])
trial_gvectors[1,2] = N.float(gvectors_data[1].split()[2])
trial_gvectors[2,0] = N.float(gvectors_data[2].split()[0])
trial_gvectors[2,1] = N.float(gvectors_data[2].split()[1])
trial_gvectors[2,2] = N.float(gvectors_data[2].split()[2])
print ' gvectors(1) = [ %20.17f %20.17f %20.17f ]' %(trial_gvectors[0,0],trial_gvectors[0,1],trial_gvectors[0,2])
print ' gvectors(2) = [ %20.17f %20.17f %20.17f ]' %(trial_gvectors[1,0],trial_gvectors[1,1],trial_gvectors[1,2])
print ' gvectors(3) = [ %20.17f %20.17f %20.17f ]' %(trial_gvectors[2,0],trial_gvectors[2,1],trial_gvectors[2,2])
except:
print 'ERROR: file ".gvectors.bsinfo" might be corrupted (empty or not formatted correctly ...)'
print ' you should remove the file and start again or check the file ... exit'
sys.exit()
test = raw_input('Press <ENTER> to use these gvectors (any other character to enter manually other gvectors)\n')
if test == '':
gvectors = trial_gvectors
else:
gvectors = N.identity(3,N.float)
test = raw_input('Enter G1 (example : "0.153 0 0") : \n')
gvectors[0,0] = N.float(test.split()[0])
gvectors[0,1] = N.float(test.split()[1])
gvectors[0,2] = N.float(test.split()[2])
test = raw_input('Enter G2 (example : "0.042 1.023 0") : \n')
gvectors[1,0] = N.float(test.split()[0])
gvectors[1,1] = N.float(test.split()[1])
gvectors[1,2] = N.float(test.split()[2])
test = raw_input('Enter G3 (example : "0 0 1.432") : \n')
gvectors[2,0] = N.float(test.split()[0])
gvectors[2,1] = N.float(test.split()[1])
gvectors[2,2] = N.float(test.split()[2])
test = raw_input('Do you want to overwrite the gvectors contained in the file ".gvectors.bsinfo" ? (<ENTER> for yes, anything else for no)\n')
if test == '':
print 'Writing gvectors to file ".gvectors.bsinfo" ...'
gvectors_writer = open('.gvectors.bsinfo','w')
gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(trial_gvectors[0,0],trial_gvectors[0,1],trial_gvectors[0,2]))
gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(trial_gvectors[1,0],trial_gvectors[1,1],trial_gvectors[1,2]))
gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(trial_gvectors[2,0],trial_gvectors[2,1],trial_gvectors[2,2]))
gvectors_writer.close()
print '... done'
else:
test = raw_input('Do you want to enter the the reciprocal space primitive vectors (y/n)\n')
if test == 'y':
gvectors = N.identity(3,N.float)
test = raw_input('Enter G1 (example : "0.153 0 0") : ')
gvectors[0,0] = N.float(test.split()[0])
gvectors[0,1] = N.float(test.split()[1])
gvectors[0,2] = N.float(test.split()[2])
test = raw_input('Enter G2 (example : "0.042 1.023 0") : ')
gvectors[1,0] = N.float(test.split()[0])
gvectors[1,1] = N.float(test.split()[1])
gvectors[1,2] = N.float(test.split()[2])
test = raw_input('Enter G3 (example : "0 0 1.432") : ')
gvectors[2,0] = N.float(test.split()[0])
gvectors[2,1] = N.float(test.split()[1])
gvectors[2,2] = N.float(test.split()[2])
test = raw_input('Do you want to write the gvectors to file ".gvectors.bsinfo" ? (<ENTER> for yes, anything else for no)\n')
if test == '':
print 'Writing gvectors to file ".gvectors.bsinfo" ...'
gvectors_writer = open('.gvectors.bsinfo','w')
gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(gvectors[0,0],gvectors[0,1],gvectors[0,2]))
gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(gvectors[1,0],gvectors[1,1],gvectors[1,2]))
gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(gvectors[2,0],gvectors[2,1],gvectors[2,2]))
gvectors_writer.close()
print '... done'
else:
gvectors = None
return gvectors
# Parse the command line options
parser = argparse.ArgumentParser(description='Tool for eigenvalue analysis')
parser.add_argument('-g','--graphical',help='use the graphical user interface',action='store_true')
parser.add_argument('-c','--command_line',help='use the command line interface',action='store_true')
parser.add_argument('files',help='files to be opened',nargs=2)
args = parser.parse_args()
args_dict = vars(args)
if args_dict['command_line'] and args_dict['graphical']:
raise StandardError('Use either "-g/--graphical" or "-c/--command_line"')
elif args_dict['command_line']:
use_gui = False
else:
use_gui = False
if not use_gui:
if args_dict['files']:
if len(args_dict['files']) != 2:
print 'ERROR: you should provide EIG.nc and _GW files ! exiting now ...'
sys.exit()
file_1 = args_dict['files'][0]
file_2 = args_dict['files'][1]
if file_1[-6:] == 'EIG.nc':
eig_file = file_1
if file_2[-3:] == '_GW':
gw_file = file_2
else:
print 'ERROR: you should provide 1 _GW file with your EIG.nc file ! exiting now ...'
sys.exit()
elif file_1[-3:] == '_GW':
gw_file = file_1
if file_2[-6:] == 'EIG.nc':
eig_file = file_2
else:
print 'ERROR: you should provide 1 EIG.nc file with your _GW file ! exiting now ...'
sys.exit()
else:
print 'ERROR: you should provide 1 EIG.nc and 1 _GW files ! exiting now ...'
sys.exit()
else:
print 'ERROR: you should provide EIG.nc and _GW files ! exiting now ...'
sys.exit()
ec_dft = EigenvalueContainer(directory='.',filename=eig_file)
ec_gw = EigenvalueContainer(directory='.',filename=gw_file)
check_gw_vs_dft_parameters(ec_dft,ec_gw)
user_input = raw_input('Do you want to plot the figures ? (y/n)\n')
if user_input == 'y' or user_input == 'Y':
plot_figures = 1
else:
plot_figures = 0
user_input = raw_input('Enter the index of the valence band maximum :\n')
vbm_index = N.int(user_input)
user_input = raw_input('Do you want the script to automatically find groups of bands (y/n) ?\n')
if user_input == 'y':
user_input = raw_input('Enter the name of the bandstructure file used to find groups of bands\n(<ENTER> for finding groups of bands on the regular grid -- file "%s" ... not recommended)\n' %eig_file)
if user_input == '':
if ec_dft.nsppol > 1:
energy_pivots_up_ha,energy_pivots_down_ha = ec_dft.find_band_groups(spinchoice='separate')
energy_pivots_up = csts.hartree2ev*energy_pivots_up_ha
energy_pivots_down = csts.hartree2ev*energy_pivots_down_ha
else:
energy_pivots = csts.hartree2ev*ec_dft.find_band_groups()
else:
if ec_dft.nsppol > 1:
energy_pivots_up_ha,energy_pivots_down_ha = ec_dft.find_band_groups(bandstructure_file=user_input,spinchoice='separate')
energy_pivots_up = csts.hartree2ev*energy_pivots_up_ha
energy_pivots_down = csts.hartree2ev*energy_pivots_down_ha
else:
energy_pivots = csts.hartree2ev*ec_dft.find_band_groups(bandstructure_file=user_input)
if ec_dft.nsppol > 1:
nfittingintervals_up = len(energy_pivots_up)+1
nfittingintervals_down = len(energy_pivots_down)+1
else:
nfittingintervals = len(energy_pivots)+1
else:
if plot_figures == 1:
plot_gw_vs_dft_eig(ec_dft,ec_gw,vbm_index,spinchoice='separate')
if ec_dft.nsppol == 1:
user_input = raw_input('How many fitting intervals do you want ? (default is 2 : valence/conduction => press <ENTER>)\n')
if user_input == '':
nfittingintervals = 2
energy_pivots = N.zeros(nfittingintervals-1,N.float)
energy_pivots[0] = csts.hartree2ev*(N.min(ec_dft.eigenvalues[:,:,vbm_index])+N.max(ec_dft.eigenvalues[:,:,vbm_index-1]))/2
else:
nfittingintervals = N.int(user_input)
energy_pivots = N.zeros(nfittingintervals-1,N.float)
user_input = raw_input('Enter the %s energy "pivots" that splits the dft eigenvalues in %s fitting intervals (in eV) :\n' %(nfittingintervals-1,nfittingintervals))
energy_pivots = N.array(user_input.split(),N.float)
if len(energy_pivots) != nfittingintervals-1:
print 'ERROR: you asked %s fitting intervals and provided %s energy "pivots".' %(nfittingintervals,len(energy_pivots))
print ' you should provide %s energy "pivots" ... exiting now' %(nfittingintervals-1)
sys.exit()
for ienergy in range(1,len(energy_pivots)):
if energy_pivots[ienergy] <= energy_pivots[ienergy-1]:
print 'ERROR: the energy pivots have to be entered increasingly'
print ' you should provide energy "pivots" with increasing energies ... exiting now'
sys.exit()
elif ec_dft.nsppol == 2:
user_input = raw_input('How many fitting intervals do you want for spin up ? (default is 2 : valence/conduction => press <ENTER>)\n')
if user_input == '':
nfittingintervals_up = 2
energy_pivots_up = N.zeros(nfittingintervals_up-1,N.float)
energy_pivots_up[0] = csts.hartree2ev*(N.min(ec_dft.eigenvalues[0,:,vbm_index])+N.max(ec_dft.eigenvalues[0,:,vbm_index-1]))/2
else:
nfittingintervals_up = N.int(user_input)
energy_pivots_up = N.zeros(nfittingintervals_up-1,N.float)
user_input = raw_input('Enter the %s energy "pivots" that splits the dft eigenvalues (spin up) in %s fitting intervals (in eV) :\n' %(nfittingintervals_up-1,nfittingintervals_up))
energy_pivots_up = N.array(user_input.split(),N.float)
if len(energy_pivots_up) != nfittingintervals_up-1:
print 'ERROR: you asked %s fitting intervals and provided %s energy "pivots".' %(nfittingintervals_up,len(energy_pivots_up))
print ' you should provide %s energy "pivots" ... exiting now' %(nfittingintervals_up-1)
sys.exit()
for ienergy in range(1,len(energy_pivots_up)):
if energy_pivots_up[ienergy] <= energy_pivots_up[ienergy-1]:
print 'ERROR: the energy pivots have to be entered increasingly'
print ' you should provide energy "pivots" with increasing energies ... exiting now'
sys.exit()
user_input = raw_input('How many fitting intervals do you want for spin down ? (default is 2 : valence/conduction => press <ENTER>)\n')
if user_input == '':
nfittingintervals_down = 2
energy_pivots_down = N.zeros(nfittingintervals_down-1,N.float)
energy_pivots_down[0] = csts.hartree2ev*(N.min(ec_dft.eigenvalues[0,:,vbm_index])+N.max(ec_dft.eigenvalues[0,:,vbm_index-1]))/2
else:
nfittingintervals_down = N.int(user_input)
energy_pivots_down = N.zeros(nfittingintervals_down-1,N.float)
user_input = raw_input('Enter the %s energy "pivots" that splits the dft eigenvalues (spin down) in %s fitting intervals (in eV) :\n' %(nfittingintervals_down-1,nfittingintervals_down))
energy_pivots_down = N.array(user_input.split(),N.float)
if len(energy_pivots_down) != nfittingintervals_down-1:
print 'ERROR: you asked %s fitting intervals and provided %s energy "pivots".' %(nfittingintervals_down,len(energy_pivots_down))
print ' you should provide %s energy "pivots" ... exiting now' %(nfittingintervals_down-1)
sys.exit()
for ienergy in range(1,len(energy_pivots_down)):
if energy_pivots_down[ienergy] <= energy_pivots_down[ienergy-1]:
print 'ERROR: the energy pivots have to be entered increasingly'
print ' you should provide energy "pivots" with increasing energies ... exiting now'
sys.exit()
if ec_dft.nsppol > 1:
print 'Script will use the following energy pivots for the interpolation (spin up)'
print energy_pivots_up
user_input = raw_input('Enter the degree of polynomials used to fit the GW corrections (spin up) \nfor each interval (%s values, default is 3rd order polynomials with "fixed points" for each group of bands => press <ENTER>)\n or enter "options" to enter specific options' %nfittingintervals_up)
if user_input == '':
polyfit_degrees_up = 3*N.ones(nfittingintervals_up,N.int)
option_limit_points = 'endpoints-fixed'
elif user_input == 'options':
print 'ERROR: this option is not yet coded ... exit'
sys.exit()
else:
polyfit_degrees_up = N.array(user_input.split(),N.int)
option_limit_points = 'endpoints-fixed'
print 'Script will use the following energy pivots for the interpolation (spin down)'
print energy_pivots_down
user_input = raw_input('Enter the degree of polynomials used to fit the GW corrections (spin down) \nfor each interval (%s values, default is 3rd order polynomials with "fixed points" for each group of bands => press <ENTER>)\n or enter "options" to enter specific options' %nfittingintervals_down)
if user_input == '':
polyfit_degrees_down = 3*N.ones(nfittingintervals_down,N.int)
option_limit_points = 'endpoints-fixed'
elif user_input == 'options':
print 'ERROR: this option is not yet coded ... exit'
sys.exit()
else:
polyfit_degrees_down = N.array(user_input.split(),N.int)
option_limit_points = 'endpoints-fixed'
new_energy_pivots_up,new_energy_pivots_down,polyfit_list_up,polyfit_list_down = plot_gw_vs_dft_eig(ec_dft,ec_gw,vbm_index,energy_pivots_up=energy_pivots_up,energy_pivots_down=energy_pivots_down,polyfit_degrees_up=polyfit_degrees_up,polyfit_degrees_down=polyfit_degrees_down,limitpoints=option_limit_points,spinchoice='separate')
else:
print 'Script will use the following energy pivots for the interpolation (same for all spins)'
print energy_pivots
user_input = raw_input('Enter the degree of polynomials used to fit the GW corrections \nfor each interval (%s values, default is 3rd order polynomials with "fixed points" for each group of bands => press <ENTER>)\n or enter "options" to enter specific options' %nfittingintervals)
if user_input == '':
polyfit_degrees = 3*N.ones(nfittingintervals,N.int)
option_limit_points = 'endpoints-fixed'
elif user_input == 'options':
print 'ERROR: this option is not yet coded ... exit'
sys.exit()
else:
if user_input.split()[-1] == 'x':
tmp = user_input.split()
tmp[-1] = '0'
polyfit_degrees = N.array(tmp,N.int)
option_limit_points = 'endpoints-fixed_last-flat'
else:
polyfit_degrees = N.array(user_input.split(),N.int)
option_limit_points = 'endpoints-fixed'
user_input = raw_input('Enter specific options for the end of the polyfit ? (y/n) [<ENTER> to continue without entering specific options]')
if user_input == 'y':
user_input = raw_input('Enter the end smooth energy (to be documented ...) : ')
smoothenergy = N.float(user_input)
user_input = raw_input('Enter the end smooth delta energy (to be documented ...) [<ENTER> for default]: ')
if user_input == '':
smoothdeltaenergy = None
else:
smoothdeltaenergy = N.float(user_input)
new_energypivots,polyfit_list = plot_gw_vs_dft_eig(ec_dft,ec_gw,vbm_index,energy_pivots_up=energy_pivots,polyfit_degrees_up=polyfit_degrees,limitpoints=option_limit_points,smooth_end=True,smooth_energy=smoothenergy,smooth_delta_energy=smoothdeltaenergy)
else:
new_energypivots,polyfit_list = plot_gw_vs_dft_eig(ec_dft,ec_gw,vbm_index,energy_pivots_up=energy_pivots,polyfit_degrees_up=polyfit_degrees,limitpoints=option_limit_points)
if ec_dft.nsppol > 1:
print polyfit_list_up
print polyfit_list_down
else:
print polyfit_list
write_polyfit('mytest.pfitlist',new_energypivots,polyfit_list)
gw_interpolate = False
user_input = raw_input('Do you want to make an interpolated _GW file ? (y/n)\n')
if user_input == 'y' or user_input == 'Y':
gw_interpolate = True
if gw_interpolate:
nc_eig_file = raw_input('Enter the name of the EIG.nc file you want to extrapolate to GW :\n')
new_ec_dft = EigenvalueContainer(directory='.',filename=nc_eig_file)
user_input = raw_input('For which "bdgw"\'s do you want the interpolation (indices of \nthe smallest \
valence and largest conduction bands) ? bdgw(1)<=vbm_index<bdgw(2)<=%s \
(usually "1 something")\n' %N.min(new_ec_dft.bd_indices[:,:,1]))
if user_input == '':
bdgw_interpolated = N.array([1,N.min(new_ec_dft.bd_indices[:,:,1])])
else:
bdgw_interpolated = N.array(user_input.split(),N.int)
filename = '%s_polyfit_GW' %(nc_eig_file)
new_ec_dft.pfit_gw_file_write(polyfit_list,filename=filename,bdgw=bdgw_interpolated,energy_pivots=new_energypivots,gwec=ec_gw)
user_input = raw_input('Do you want to make an interpolated bandstructure file ? (y/n)\n')
if user_input == 'y' or user_input == 'Y':
nc_eig_file = raw_input('Enter the name of the bandstructure EIG.nc file you want to extrapolate to GW :\n')
new_ec_dft = EigenvalueContainer(directory='.',filename=nc_eig_file)
gvectors = get_gvectors()
if ec_dft.nsppol > 1:
gw_eigenvalues = new_ec_dft.pfit_gw_eigenvalues_ha(polyfit_list_up,energy_pivots_up=energy_pivots_up,polyfitlist_down=polyfit_list_down,energy_pivots_down=energy_pivots_down,ecgw=ec_gw)
new_ec_dft.eigenvalues = gw_eigenvalues
else:
#gw_eigenvalues = new_ec_dft.pfit_gw_eigenvalues_ha(polyfit_list,energy_pivots_up=energy_pivots,ecgw=ec_gw)
gw_eigenvalues = new_ec_dft.pfit_gw_eigenvalues_ha(polyfit_list,energy_pivots_up=new_energypivots,ecgw=None)
new_ec_dft.eigenvalues = gw_eigenvalues
new_ec_dft.set_kpoint_sampling_type('Bandstructure')
new_ec_dft.find_special_kpoints(gvectors)
print 'Number of bands in the file : %s' %(N.shape(new_ec_dft.eigenvalues)[2])
test = raw_input('Enter the number of bands to be plotted (<ENTER> : %s) : \n' %(N.shape(new_ec_dft.eigenvalues)[2]))
if test == '':
nbd_plot = N.shape(new_ec_dft.eigenvalues)[2]
else:
nbd_plot = N.int(test)
if nbd_plot > N.shape(new_ec_dft.eigenvalues)[2]:
print 'ERROR: the number of bands to be plotted is larger than the number available ... exit'
sys.exit()
new_ec_dft.special_kpoints_names = ['']*len(new_ec_dft.special_kpoints_indices)
for ii in range(len(new_ec_dft.special_kpoints_indices)):
new_ec_dft.special_kpoints_names[ii] = 'k%s' %(ii+1)
print 'List of special kpoints :'
for ii in range(len(new_ec_dft.special_kpoints_indices)):
spkpt = new_ec_dft.kpoints[new_ec_dft.special_kpoints_indices[ii]]
print ' Kpoint %s : %s %s %s' %(ii+1,spkpt[0],spkpt[1],spkpt[2])
print 'Enter the name of the %s special k-points :' %(len(new_ec_dft.special_kpoints_indices))
test = raw_input('')
if len(test.split()) == len(new_ec_dft.special_kpoints_indices):
for ii in range(len(new_ec_dft.special_kpoints_indices)):
new_ec_dft.special_kpoints_names[ii] = test.split()[ii]
test = raw_input('Enter base name for bandstructure file : \n')
new_ec_dft.write_bandstructure_to_file('%s.bandstructure' %test)
P.figure(1,figsize=(3.464,5))
P.hold('on')
P.grid('on')
P.xticks(N.take(new_ec_dft.kpoint_reduced_path_values,N.array(new_ec_dft.special_kpoints_indices,N.int)),new_ec_dft.special_kpoints_names)
for iband in range(nbd_plot):
if new_ec_dft.nsppol == 1:
P.plot(new_ec_dft.kpoint_reduced_path_values,new_ec_dft.eigenvalues[0,:,iband]*csts.hartree2ev,'k-',linewidth=2)
else:
P.plot(new_ec_dft.kpoint_reduced_path_values,new_ec_dft.eigenvalues[0,:,iband]*csts.hartree2ev,'k-',linewidth=2)
P.plot(new_ec_dft.kpoint_reduced_path_values,new_ec_dft.eigenvalues[1,:,iband]*csts.hartree2ev,'r-',linewidth=2)
P.show()
|