1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Abinit Post Process Application
author: Martin Alexandre
last edited: May 2013
"""
import os, sys, time
import string, math, re
import commands
from scipy.io import netcdf
import numpy as np
#Utility
import utility.analysis as Analysis
try:
from PyQt4 import QtGui,QtCore
except :
pass;
class MolecularDynamicFile:
Ha_eV = 27.2113845e0 # Conversion factor 1 Hartree = 27,2113845 eV
kb_eVK = 8.617342e-5 # Boltzman constant in eV/K = (1.380658e-23)/(1.60217733e-19) #eV/K
amu_emass = 1.660538782e-27/9.10938215e-31 # 1 atomic mass unit, in electronic mass
fact = 29421.033e0 # Conversion factor hartree/bohr^3 en GPa
namefile1 = ""
namefile2 = ""
ni = 0
nf = 0
Nbtime = 0
goodFile= False
type_of_file = ""
#-----------------------------#
#-------CONSTRUCTOR-----------#
#-----------------------------#
def __init__(self, pnamefile):
# Take the last HIST/OUT.nc file in the directory (when APPA is launch)
if pnamefile == "":
OUT_list = []
filesdir = os.listdir(os.getcwd())
for files in filesdir :
if os.path.isfile(files):
stats = os.stat(files)
fic_tuple = time.localtime(stats[8]), files
lili = string.split(files, '.')
# if files.find('_OUT.nc') == len(files)-7 and len(files)>7 :
# OUT_list.append(fic_tuple)
if files.find('HIST.nc') == len(files)-7 and len(files)>7 :
OUT_list.append(fic_tuple)
if files.find('HIST.nc') == len(files)-7 and len(files)>7 :
OUT_list.append(fic_tuple)
if len(OUT_list) > 0 :
OUT_list.sort() ; OUT_list.reverse()
fic_HIST=OUT_list[0][1].replace('_OUT.nc','_HIST')
fic_HIST=OUT_list[0][1]
if os.path.exists(fic_HIST) :
self.namefile1 = fic_HIST
self.namefile2 = fic_HIST
# self.namefile2 = fic_HIST.replace('_HIST','_OUT.nc')
self.type_of_file = 'netcdf'
# or the file in parameter :
else:
if str(pnamefile).find('_OUT.nc') != -1:
self.namefile2 = str(pnamefile)
self.namefile1 = str(pnamefile).replace('_OUT.nc','_HIST')
self.type_of_file = 'netcdf'
elif str(pnamefile).find('HIST.nc') != -1 :
self.namefile1 = str(pnamefile)
if(os.path.exists(self.namefile1.replace('HIST.nc','OUT.nc'))):
self.namefile2 = str(pnamefile).replace('HIST.nc','OUT.nc')
else:
self.namefile2 = str(pnamefile)
self.type_of_file = 'netcdf'
self.namefile1 = str(pnamefile)
self.type_of_file = 'netcdf'
elif str(pnamefile).find('HIST') != -1 :
self.namefile1 = str(pnamefile)
if(os.path.exists(self.namefile1.replace('HIST','OUT.nc'))):
self.namefile2 = str(pnamefile).replace('HIST','OUT.nc')
else:
self.namefile2 = str(pnamefile)
self.type_of_file = 'netcdf'
else:
self.type_of_file = 'ASCII_output'
self.namefile2 = str(pnamefile)
if (self.type_of_file == 'ASCII_output'):
self.read_ascii()
if (self.type_of_file == 'netcdf'):
self.read_netcdf()
#-----------------------------#
#--------METHODS--------------#
#-----------------------------#
def read_ascii(self):
if 1==1:
#try:
#Read the number of image:
message = "Unable to read the number of image "
try:
temp = commands.getoutput('grep \"nimage =\" ' + self.namefile2 + ' | awk \'{print $3}\'')
self.n_image = int(temp)
except:
self.n_image = 1
#Reading potential energy:
message = "Unable to read potential energy "
if self.n_image == 1 :
temp = commands.getoutput('grep \"Total energy\" ' + self.namefile2 + ' | awk \'{print $5}\'')
else:
temp = commands.getoutput('grep \"Potential energy\" ' + self.namefile2 + ' | awk \'{print $4}\'')
self.E_pot = np.array(temp.split('\n'), dtype=float)
self.ni = 1 #Set the initial step to 1
temp = len(self.E_pot)
self.nf = temp
self.Nbtime = temp
#Reading the number of atom
message = "Unable to read the number of atoms"
temp = commands.getoutput('grep \"natom\" ' + self.namefile2 + ' | awk \'{print $6}\'')
self.natom = int(temp)
#Reading acell:
message = "Unable to read acell"
temp = commands.getoutput('grep \" acell \" '+self.namefile2+' | awk \'{print $2,$3,$4 }\' ')
if len(np.array(temp.split(),dtype=float)) == 3:
acell = np.reshape(np.array(temp.split(),dtype=float),3)
self.acell = np.array([[acell,]*self.n_image,]*self.Nbtime)
#Reading the primitive vectors:
message = "Unable to read the primitive vectors"
temp = commands.getoutput(' grep -A 3 \"Real(R)+Recip(G)\" '\
+ self.namefile2 + ' | awk \'{print $2,$3,$4 }\' | sed \'/space primitive vectors,/d\' ')
if len(np.array(temp.split(),dtype=float)) == 9:
rprim = np.reshape(np.array(temp.split(),dtype=float),(3,3))
self.rprimd = np.array([[rprim,]*self.Nbtime])
else:
self.rprimd = np.reshape(np.array(temp.split()[0:self.n_image*self.Nbtime*9],dtype=float),(self.Nbtime,self.n_image,3,3))
self.rprimd[:,:,0,:] = self.rprimd[:,:,0,:] * self.acell[0,:]
self.rprimd[:,:,1,:] = self.rprimd[:,:,1,:] * self.acell[1,:]
self.rprimd[:,:,2,:] = self.rprimd[:,:,2,:] * self.acell[2,:]
#Reading velocity of particules:
message = "Unable to read the velocity of particules"
temp = commands.getoutput(' grep -A '+str(self.natom)+' \"Cartesian velocities\" '\
+ self.namefile2 + ' | awk \'{print $1,$2,$3 }\'| sed \'/--/d\' | sed \'/Cartesian velocities (vel)/d\' ' )
self.vel = np.reshape(np.array(temp.split()[0:self.n_image*self.Nbtime*self.natom*3],dtype=float),(self.Nbtime,self.n_image,self.natom,3))
#Reading position of particules (Cartesian):
message = "Unable to read the position of particules (cart)"
temp = commands.getoutput(' grep -A '+str(self.natom)+' \"Cartesian coordinates\" '\
+ self.namefile2 + ' | awk \'{print $1,$2,$3 }\'| sed \'/--/d\' | sed \'/Cartesian coordinates/d\' ' )
self.xcart = np.reshape(np.array(temp.split()[0:self.n_image*self.Nbtime*self.natom*3],dtype=float),(self.Nbtime,self.n_image,self.natom,3))
#Reading position of particules (Reduced):
message = "Unable to read the position of particules (red)"
temp = commands.getoutput(' grep -A '+str(self.natom)+' \"Reduced coordinates\" '\
+ self.namefile2 + ' | awk \'{print $1,$2,$3 }\'| sed \'/--/d\' | sed \'/Reduced coordinates/d\' ' )
self.xred = np.reshape(np.array(temp.split()[0:self.n_image*self.Nbtime*self.natom*3],dtype=float),(self.Nbtime,self.n_image,self.natom,3))
#Reading stress of particules:
message = "Unable to read stress of particules"
if self.n_image==1:
temp = commands.getoutput(' grep -A 3 \"Cartesian components of stress\" '+ self.namefile2\
+ ' | awk \'{print $3,$6 }\'| sed \'/^\s/d\' | sed \'/of/d\' ')
else:
temp = commands.getoutput(' grep -A 3 \"Cartesian components of stress\" '+ self.namefile2\
+ ' | awk \'{print $4,$7 }\'| sed \'/^\s/d\' | sed \'/of/d\'| sed \'/Pressure/d\'')
self.temp = np.reshape(np.array(temp.split()[0:self.n_image*self.Nbtime*6],dtype=float),(self.Nbtime,self.n_image,6))
s = (self.Nbtime,self.n_image,6)
self.stress = np.zeros(s)
nb = len(temp) / 6
ni = self.Nbtime - nb
self.stress[ni:] = self.temp
self.stress[ni:,:,1]= self.temp[:,:,2]
self.stress[ni:,:,2]= self.temp[:,:,4]
self.stress[ni:,:,3]= self.temp[:,:,1]
self.stress[ni:,:,4]= self.temp[:,:,3]
del self.temp
#Reading the type of particules:
message = "Unable to read the type of particules"
temp = commands.getoutput('grep -A '+str(int(self.natom/20))+ ' \" typat \" '+self.namefile2+' | sed \'s/typat//\'')
self.typat = np.array(temp.split(), dtype=int)
#Reading mass of particules:
temp = commands.getoutput('grep -P -A' + str(int(max(self.typat))/3) +' \'amu\s(.*)\' '+self.namefile2+' | sed \'s/amu//\'')
self.amu = np.array(temp.split(), dtype=float)
#Reading znucl :
message = "Unable to read znucl"
temp = commands.getoutput('grep \"znucl \" '+self.namefile2+' | sed \'s/znucl//\'')
self.znucl = np.array(temp.split(), dtype=float)
#Reading dtion:
try:
#try to read dtion :
temp = commands.getoutput('grep \"dtion \" '+self.namefile2+' | awk \'{print $2}\'')
self.dtion = float(temp)
except:
#If dtion doesn't exist, it's set to 100 (default value)
self.dtion = 100
self.goodFile = True
#-----------Calculation of some quantities------------#
#-----------not available in the output File----------#
self.mass_calculation()
self.volume_calculation()
self.angles_calculation()
self.E_kinCalculation()
self.temperature_calculation()
self.pressure_calculation()
#-----------------------------------------------------#
#-----------------------------------------------------#
# except:
# self.goodFile = False
# print "Error, " +message+ ", please use netcdf file "
# try:
# QtGui.QMessageBox.critical(None,"Warning","Error, " +message+ ", please use netcdf file ")#
# except :
# pass;
def read_netcdf(self):
#Check the version of scipy for the netcdf library
module = __import__('scipy')
if float(module.__version__.split('.')[1]) >= 9:
module = "data"
else:
module = "__array_data__"
#if 1==1:
try :
#Set the two netcdf_file variable with the HOST and ncfile:
self.hist_file = netcdf.netcdf_file(str(self.namefile1), 'r')
self.nc_file = netcdf.netcdf_file(str(self.namefile2), 'r')
#---------------READING DATA----------------------#
self.ni = 1 #Set the initial step to 1
temp = getattr(self.hist_file.variables['etotal'],module).shape[0]
self.nf = temp
self.Nbtime = temp
#Set the number of image (only 1 for netcdf)
self.n_image = 1
#Reading the number of atom
self.natom = self.hist_file.dimensions['natom']
#Reading the primitive vectors:
self.rprimd = np.reshape(getattr(self.hist_file.variables['rprimd'],module),(self.Nbtime,self.n_image,3,3))
#Reading acell:
self.acell = np.reshape(getattr(self.hist_file.variables['acell'],module),(self.Nbtime,self.n_image,3))
#Reading stress of particules:
self.stress = np.reshape(getattr(self.hist_file.variables['strten'],module),(self.Nbtime,self.n_image,6))
#Reading the type of particules:
self.typat = getattr(self.nc_file.variables['typat'],module)
#Reading mass of particules:
self.amu = getattr(self.nc_file.variables['amu'],module)
#Reading potential energy:
self.E_pot = getattr(self.hist_file.variables['etotal'],module)
#Reading potential energy:
self.E_kin_ion = getattr(self.hist_file.variables['ekin'],module)
#Reading potential energy:
self.mdtime = getattr(self.hist_file.variables['mdtime'],module)
#Reading position of particules:
self.xcart = np.reshape(getattr(self.hist_file.variables['xcart'],module),(self.Nbtime,self.n_image,self.natom,3))
self.xred = np.reshape(getattr(self.hist_file.variables['xred'] ,module),(self.Nbtime,self.n_image,self.natom,3))
#Reading forces of particules:
self.fcart = np.reshape(getattr(self.hist_file.variables['fcart'],module),(self.Nbtime,self.n_image,self.natom,3))
self.fred = np.reshape(getattr(self.hist_file.variables['fred'] ,module),(self.Nbtime,self.n_image,self.natom,3))
#Reading velocity of particules:
self.vel = np.reshape(getattr(self.hist_file.variables['vel'],module),(self.Nbtime,self.n_image,self.natom,3))
#Reading dtion:
try:
#try to read dtion :
self.dtion = getattr(self.nc_file.variables['dtion'],module)
except:
# If dtion doesn't exist, it's set to default abinit value => 100 :
self.dtion = 100
#Reading znucl of particules:
self.znucl = getattr(self.nc_file.variables['znucl'],module)
#----------------------------------------------------
self.goodFile = True
#-----------Calculation of some quantities------------#
#-----------not available in the output File----------#
self.mass_calculation()
self.volume_calculation()
self.angles_calculation()
self.E_kinCalculation()
self.temperature_calculation()
self.pressure_calculation()
#-----------------------------------------------------#
except:
self.goodFile = False
print "Error,unable to read this netcdf file "
def E_kinCalculation(self):
natom = self.getNatom()
mass = self.getMass()
vel = self.getVel()
self.E_kin= np.zeros(self.Nbtime-1)
self.E_kin[:] = np.sum((vel[:,:,0]**2+vel[:,:,1]**2+vel[:,:,2]**2)[:,:] * mass[:] * 0.5,axis=1)
def mass_calculation(self):
self.mass=[]
typat = self.getTypat()
amu = self.getAmu()
for typ in typat:
self.mass.extend([self.amu_emass*amu[int(typ-1)]])
def temperature_calculation(self):
Nbstep = self.getNbStep()-1
E_kin = self.getE_kin()
self.temperature = np.zeros(Nbstep)
for itim in range(Nbstep):
self.temperature[itim] = 2.*E_kin[itim]*self.Ha_eV/(3.*self.kb_eVK*self.getNatom())
def pressure_calculation(self):
Nbstep = self.getNbStep()-1
TEMPER = self.getTemp()
Vol = self.getVol()
Stress = self.getStress()
natom = self.getNatom()
self.pressure= np.zeros(Nbstep)
for itim in range(Nbstep):
Pionique = (natom/Vol[itim])*self.kb_eVK*TEMPER[itim] * self.fact /self.Ha_eV
PP=-(Stress[itim][0]+Stress[itim][1]+Stress[itim][2])/3. + Pionique
self.pressure[itim] = PP
def volume_calculation(self):
Nbstep = self.getNbStep()
rprim = self.getRPrim()
self.volume = np.zeros(Nbstep)
self.volume[:] = rprim[:,0,0]*(rprim[:,1,1]*rprim[:,2,2]-rprim[:,1,2]*rprim[:,2,1]) \
+ rprim[:,0,1]*(rprim[:,1,2]*rprim[:,2,0]-rprim[:,1,0]*rprim[:,2,2]) \
+ rprim[:,0,2]*(rprim[:,1,0]*rprim[:,2,1]-rprim[:,1,1]*rprim[:,2,0])
def angles_calculation(self):
Nbstep = self.getNbStep()
rprim = self.getRPrim()
self.angles = np.zeros((Nbstep,3))
self.angles[:,0] = (np.arccos((rprim[:,0,0]*rprim[:,1,0]+rprim[:,0,1]*rprim[:,1,1]+rprim[:,0,2]*rprim[:,1,2])\
/np.sqrt((rprim[:,0,0]**2+rprim[:,0,1]**2+rprim[:,0,2]**2)*(rprim[:,1,0]**2+rprim[:,1,1]**2+rprim[:,1,2]**2))))
self.angles[:,1] = (np.arccos((rprim[:,0,0]*rprim[:,2,0]+rprim[:,0,1]*rprim[:,2,1]+rprim[:,0,2]*rprim[:,2,2])\
/np.sqrt((rprim[:,0,0]**2+rprim[:,0,1]**2+rprim[:,0,2]**2)*(rprim[:,2,0]**2+rprim[:,2,1]**2+rprim[:,2,2]**2))))
self.angles[:,2] = (np.arccos((rprim[:,2,0]*rprim[:,1,0]+rprim[:,2,1]*rprim[:,1,1]+rprim[:,2,2]*rprim[:,1,2])\
/np.sqrt((rprim[:,2,0]**2+rprim[:,2,1]**2+rprim[:,2,2]**2)*(rprim[:,1,0]**2+rprim[:,1,1]**2+rprim[:,1,2]**2))))
#-----------------------------#
#-------ACCESSOR--------------#
#-----------------------------#
def isGoodFile(self):
# return Boolean True/False according to the HIST and NC file:
return self.goodFile
def getNameFile(self,fullpath=False):
# return string with the name of the file
if self.goodFile:
if fullpath :
return self.namefile2
else:
name = self.namefile2.split('/')
return name[len(name)-1]
else:
return 0
def getNatom(self):
# return integer with the number of atom
if self.goodFile:
return self.natom
else:
return 0
def getVol(self):
# return double with the value of the volume (in bohr^3)
if self.goodFile:
return self.volume[self.ni:self.nf] # Temporarily. (ni-1) for start slicing at 0
else:
return 0
def getTypat(self):
# return 1D array with the type of particules
if self.goodFile:
return self.typat
else:
return 0
def getNTypat(self):
# return the number of type of particules
if self.goodFile:
return np.max(self.typat)
else:
return 0
def getAmu(self):
# return 1D array with the atomic mass
if self.goodFile:
return self.amu
else:
return 0
def getZnucl(self):
# return 1D array with the number atomic of all the atoms
if self.goodFile:
return self.znucl
else:
return 0
def getMass(self):
# return 1D array with the mass of all particules
if self.goodFile:
return self.mass
else:
return 0
def getNbTime(self):
# return integer with the number of step in the simulation
if self.goodFile :
return self.Nbtime
else:
return 0
def getNImage(self):
# return integer with the number of image in the simulation
if self.goodFile :
return self.n_image
else:
return 0
def getRPrim(self,image = 1):
# return the primitive vector (Borh)
if self.goodFile :
return self.rprimd[self.ni-1:self.nf,image-1]
else:
return 0
def getNbStep(self):
# return the number of step between ni and nf
if self.goodFile:
return self.nf-self.ni+1
else:
return 0
def getDtion(self):
# return ion time steps in atomic units of time
if self.goodFile:
return self.dtion
else:
return 0
def getVel(self,image = 1):
# return 3D array with the velocity (vx,vy,z) for all particule at each time ( V[t][[at][vx,vy,vz]) for one image
# between ni and nf
if self.goodFile:
if self.n_image == 1:
return self.vel[self.ni:self.nf,image-1] # Temporarily because vel[t=0] = 0. put (ni-1) for start slicing at 0
elif self.n_image != 1 :
return self.getVelCentroid()
else:
return 0
def getXCart(self,image = 1):
# return 3D array with the position (x, y, z) for all particule at each time ( pos[t][at][x,y,z]) for one image in cartesian coordiantes
# between ni and nf
if self.goodFile:
if self.n_image == 1:
return self.xcart[self.ni:self.nf,image-1] # Temporarily because pos[t=0] = 0. put (ni-1) for start slicing at 0
elif self.n_image != 1 :
return self.getXCartCentroid()
else:
return 0
def getXRed(self,image = 1):
# return 3D array with the position (x, y, z) for all particule at each time ( pos[t][at][x,y,z]) for one image in reduced coordinates
# between ni and nf
if self.goodFile:
if self.n_image == 1:
return self.xred[self.ni:self.nf,image-1] # Temporarily because pos[t=0] = 0. put (ni-1) for start slicing at 0
elif self.n_image != 1 :
return self.getXCartCentroid(xred=True)
else:
return 0
def getFCart(self,image = 1):
# return 3D array with the forces (x, y, z) for all particule at each time ( pos[t][at][x,y,z]) for one image in cartesian coordinates
# between ni and nf
if self.goodFile:
if self.n_image == 1:
return self.fcart[self.ni:self.nf,image-1] # Temporarily because pos[t=0] = 0. put (ni-1) for start slicing at 0
elif self.n_image != 1 :
return self.getXCartCentroid(xred=True)
else:
return 0
def getFRed(self,image = 1):
# return 3D array with the forces (x, y, z) for all particule at each time ( f[t][at][x,y,z]) for one image in reduced coordinates
# between ni and nf
if self.goodFile:
if self.n_image == 1:
return self.fred[self.ni:self.nf,image-1] # Temporarily because pos[t=0] = 0. put (ni-1) for start slicing at 0
elif self.n_image != 1 :
return self.getXCartCentroid(xred=True)
else:
return 0
def getVelCentroid(self):
# return 3D array with the velocity (vx,vy,z) for all particule at each time ( V[t][[at][vx,vy,vz]) for the centroid
# between ni and nf
if self.goodFile:
return np.sqrt(np.mean(self.vel[self.ni:self.nf,:]**2,axis=1)) # Temporarily because vel[t=0] = 0. put (ni-1) for start slicing at 0
else:
return 0
def getXCartCentroid(self,xred=False):
# return 3D array with the position (x, y, z) for all particule at each time ( pos[t][at][x,y,z]) for the centroid
# between ni and nf
if self.goodFile:
if(xred):
return np.mean(self.xred[self.ni:self.nf,:],axis=1) # Temporarily because pos[t=0] = 0. put (ni-1) for start slicing at 0
else:
return np.mean(self.xcart[self.ni:self.nf,:],axis=1) # Temporarily because pos[t=0] = 0. put (ni-1) for start slicing at 0
else:
return 0
def getE_pot(self):
# return 1D array with the potential energy (Ha)
if self.goodFile :
return self.E_pot[self.ni-1:self.nf-1] #Temporarily. put (nf) for finish slicing at 299,
else: #Skip the last step to get the same array size (see vel and pos).
return 0
def getMdtime(self):
if self.goodFile :
return self.mdtime[self.ni-1:self.nf-1] #Temporarily. put (nf) for finish slicing at 299,
else: #Skip the last step to get the same array size (see vel and pos).
return 0
def getE_kin_ion(self):
# return 1D array with the Energy KINetic ionic (Ha)
if self.goodFile :
return self.E_kin_ion[self.ni-1:self.nf-1] #Temporarily. put (nf) for finish slicing at 299,
else: #Skip the last step to get the same array size (see vel and pos).
return 0
def getE_kin(self):
# return 1D array with the kinetic energy (Ha)
if self.goodFile :
return self.E_kin[self.ni-1:self.nf-1]#Temporarily. put (nf) for finish slicing at 299,
else: #Skip the last step to get the same array size (see vel and pos).
return 0
def getE_Tot(self):
# return 1D array with the total energy (Ha) between ni and nf
if self.goodFile :
E_kin = self.getE_kin()
E_pot = self.getE_pot()
Nbstep = self.getNbStep()
ETOT = E_kin[0:Nbstep] + E_pot[0:Nbstep]
return ETOT
else:
return 0
def getTemp(self):
# return 1D array with the Temperature (K)
if self.goodFile :
return self.temperature[self.ni-1:self.nf-1]#Temporarily. put (nf) for finish slicing at 299,
else: #Skip the last step to get the same array size (see vel and pos).
return 0
def getIonMove(self):
if self.goodFile :
self.ionMove = [12]
return self.ionMove
else:
return 0
def getStress(self,image = 1):
# return 2D array with the Stess (GPa)
if self.goodFile:
if self.n_image==1:
return self.stress[self.ni-1:self.nf-1,image-1] * 29421.033e0#Temporarily. put (nf) for finish slicing at 299,
else: #Skip the last step to get the same array size (see vel and pos).
return self.stress[self.ni-1:self.nf-1,image-1] #In PIMD, stress is already give in GPA#
else:
return 0
def getAcell(self,image = 1):
if self.goodFile:
acell = np.zeros(((self.nf-self.ni),image,3))
for i in range(3):
acell[:,image-1,i]=np.sqrt(self.rprimd[self.ni:self.nf,image-1,i,0]**2+\
self.rprimd[self.ni:self.nf,image-1,i,1]**2+\
self.rprimd[self.ni:self.nf,image-1,i,2]**2)
return acell[:,image-1,:] # Temporarily. (ni-1) for start slicing at 0
else:
return 0
def getAngles(self):
if self.goodFile:
return self.angles[self.ni:self.nf] * 180 / np.pi # Temporarily. (ni-1) for start slicing at 0
else:
return 0
def getPress(self):
# return 1D array with the Pressure between ni and nf (GPa)
if self.goodFile :
return self.pressure[self.ni-1:self.nf-1]
else:
return 0
def getMoy(self,data):
#return average of data
if self.goodFile :
nb = len(data)
M=0.0
for i in range(nb):
M = M + data[i]
M = M / nb
return M
else:
return 0
def getStandardDeviation(self,data ,averageData = 0):
res = 0
if averageData == 0:
averageData = self.getMoy(data)
for i in range(len(data)):
res += (data[i] - averageData)**2
res /= len(data)
res = res**0.5
return res
def getAtomName(self):
#return array with the name of the atom
PTOE = Analysis.PeriodicTableElement()
znucl = self.getZnucl()
name = []
for i in range(len(znucl)):
name.append(PTOE.getName(znucl[i]))
return name
def getNi(self):
#return ni (integer)
return self.ni
def getNf(self):
#return nf (integer)
return self.nf
def setNi(self,pNi):
#to set ni (integer)
self.ni = pNi
def setNf(self,pNf):
#to set nf (integer)
self.nf = pNf
#-----------------------------#
#-----------------------------#
#-----------------------------#
#######GROUND STATES OUTPUT (BETA)#############
class outputFile:
#-----------------------------#
#-------CONSTRUCTOR-----------#
#-----------------------------#
Ha_eV = 27.2113834e0 # Conversion factor 1 Hartree = 27,2113834 eV
def __init__(self, pnamefile):
self.V = []
self.P = []
self.E = []
self.ecut = []
self.Nbk = []
self.ionMove = []
self.a = []
self.stress = {}
self.begin = True
self.date = ""
self.hour = ""
self.name = ""
self.goodFile = False
self.namefile =""
#-------READ THE LAST OUTPUT FILE OR THE CHOOSEN FILE--------#
if pnamefile == "":
OUT_list = []
filesdir = os.listdir(os.getcwd())
for files in filesdir :
if os.path.isfile(files):
stats = os.stat(files)
fic_tuple = time.localtime(stats[8]), files
lili = string.split(files, '.')
if files.find('.out') == len(files)-4 and len(files)>4 :
OUT_list.append(fic_tuple)
if len(OUT_list) > 0 :
OUT_list.sort() ; OUT_list.reverse()
fic=OUT_list[0][1]
if os.path.exists(fic):
self.namefile = fic
else:
self.namefile = str(pnamefile)
#-------------------------------------------------------------#
if self.namefile !="":
try :
#if 1==1:
self.ionMove = np.array(commands.getoutput('grep \"ionmov =\" '+ self.namefile + ' | awk \'{print $6}\'').split(), dtype=float)
for i in range(len(self.ionMove)):
if self.ionMove[i] == 12 :
return
self.date = commands.getoutput('grep \"Starting date\" ' + self.namefile + ' | awk \'{print $4,$5,$6,$7}\'')
self.hour = commands.getoutput('grep \"( at\" '+ self.namefile + ' | awk \'{print $4}\'')
self.Nbk = np.array(commands.getoutput('grep \"nkpt =\" '+ self.namefile + ' | awk \'{print $12}\'').split(), dtype=float)
self.V = np.array(commands.getoutput('grep \"Unit cell volume ucvol\" '+ self.namefile + ' | awk \'{print $5}\'').split(), dtype=float)
self.P = np.array(commands.getoutput('grep \"Pressure\" '+ self.namefile + ' | awk \'{print $8}\'').split(), dtype=float)
self.E = np.array(commands.getoutput('grep \"etotal\" '+ self.namefile + '|sed /\"Total energy\"/d | awk \'{print $2}\'').split(), dtype=float)
self.ecut = np.array(commands.getoutput('grep \"ecut(hartree)\" '+ self.namefile + ' | awk \'{print $2}\'').split(), dtype=float)
self.a = np.array(commands.getoutput('grep -A '+ str(len(self.E)+1)+ ' \"after computation\" '+ self.namefile+ '| sed \'/acell/!d\' | awk \'{print $2}\'').split(), dtype=float)
self.b = np.array(commands.getoutput('grep -A '+ str(len(self.E)+1)+ ' \"after computation\" '+ self.namefile+ '| sed \'/acell/!d\' | awk \'{print $3}\'').split(), dtype=float)
self.c = np.array(commands.getoutput('grep -A '+ str(len(self.E)+1)+ ' \"after computation\" '+ self.namefile+ '| sed \'/acell/!d\' | awk \'{print $4}\'').split(), dtype=float)
#Reading stress of particules:
temp = commands.getoutput(' grep -A 3 \"stress tensor (GPa)\" '+ self.namefile + '|sed \'/Car/d\' |sed \'/--/d\' | awk \'{print $4,$7}\' ')
temp = temp.split()
s = (len(self.E),6)
temp2 = np.zeros(s)
for i in range(len(self.E)):
temp2[i] = np.array( [ temp[(6*i)+0], temp[(6*i)+2], temp[(6*i)+4], temp[(6*i)+1], temp[(6*i)+3], temp[(6*i)+5] ], dtype=float)
self.stress = temp2
#Reading the primitive vectors:
temp = commands.getoutput(' grep -A 3 \"Real(R)+Recip(G)\" '+ self.namefile + ' | sed \'/space primitive vectors,/d\'|sed \'/--/d\' | awk \'{print $2,$3,$4 }\' ')
temp = temp.split()
s = (len(self.E),3,3)
temp2 = np.zeros(s)
for i in range(len(self.E)):
a = np.array( [temp[(9*i)+0], temp[(9*i)+1], temp[(9*i)+2]], dtype=float)
b = np.array( [temp[(9*i)+3], temp[(9*i)+4], temp[(9*i)+5]], dtype=float)
c = np.array( [temp[(9*i)+6], temp[(9*i)+7], temp[(9*i)+8]], dtype=float)
temp2[i] = np.array( [a,b,c], dtype=float)
self.rprimd =temp2
if len(self.E) > 0:
self.goodFile = True
else :
try :
QtGui.QMessageBox.critical(None,"Warning","Your output file is not correct")
except:
print "Your output file is not correct"
if len(self.a) == 1:
self.a = np.zeros(len(self.E))+self.a[0]
self.b = np.zeros(len(self.E))+self.b[0]
self.c = np.zeros(len(self.E))+self.c[0]
if len(self.ecut) == 1:
self.ecut = np.zeros(len(self.E))+self.ecut[0]
except:
print "Unable to read file, please contact abinit Group"
QtGui.QMessageBox.critical(None,"Warning","Unable to read file, please contact abinit Group")
#-----------------------------#
#-------ACCESSOR--------------#
#-----------------------------#
def getNameFile(self):
# return string with the name of the file
if self.goodFile:
name = self.namefile.split('/')
return name[len(name)-1]
else:
return 0
def getNbDataset(self):
if self.goodFile:
return len(self.E)
else:
return 0
def getE_Tot(self):
if self.goodFile:
return np.array(self.E)
else:
return 0
def getVol(self):
if self.goodFile:
return np.array(self.V)
else:
return 0
def getSigma(self):
if self.goodFile:
return self.sigma
else:
return 0
def getAcell(self):
if self.goodFile:
return self.acell
else:
return 0
def getPress(self):
if self.goodFile:
return np.array(self.P)
else:
return 0
def getNbK(self):
if self.goodFile:
return np.array(self.Nbk)
else:
return 0
def getIonMove(self):
if self.goodFile:
return np.array(self.ionMove)
else:
return 0
def getRPrim(self):
if self.goodFile:
return self.rprimd
else:
return 0
def getEcut(self):
if self.goodFile:
return np.array(self.ecut)
else:
return 0
def getA(self):
if self.goodFile:
return self.a
else:
return 0
def getB(self):
if self.goodFile:
return self.b
else:
return 0
def getC(self):
if self.goodFile:
return self.c
else:
return 0
def getDate(self):
if self.goodFile:
return self.date
else:
return 0
def getStress(self):
if self.goodFile:
return self.stress
else:
return 0
def getHour(self):
if self.goodFile:
return self.hour
else:
return 0
def isGoodFile(self):
return self.goodFile
|