1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Abinit Post Process Application
author: Martin Alexandre
last edited: May 2013
"""
import sys,os,commands,time
import string, math
from numpy import array,sqrt,zeros,conjugate,arange,linspace,exp,log,sin,dot,degrees,arccos
from numpy.fft import rfft,fft, ifft
from numpy.linalg import inv
#Fortran Code
import fortran.math as math
import fortran.topology as topo
#----------------------------------------------------------------#
#--------------(AUTO)CORRELATION FUNCTION------------------------#
#----------------------------------------------------------------#
class Correlation:
#-------------Constructor--------------#
def __init__(self, serie1,serie2=None):
# This class aim is to calculate the (auto)correlation function
# the parameter is :
# - pSerie witch is the serie ([time,atom,[x,y,z]] )
self.nbtime = len(serie1) # Number of steps in the simulation
self.nbatom = len(serie1[0]) # Number of atoms in the simulation
self.CorrelationFunction = zeros(2*self.nbtime,complex) # (Auto)correlation function array
self.calculation(serie1,serie2)
#------------Methods-----------------------#
def calculation(self, pserie1, pserie2):
serie1 = pserie1
if pserie2 == None:
serie2 = pserie1
else:
serie2 = pserie2
for at in range(self.nbatom):
for j in range(3):
self.CorrelationFunction += ifft(conjugate(fft(serie1[:,at,j],2*self.nbtime,0))*fft(serie2[:,at,j],2*self.nbtime,0))
#Normalisation by the therm 1/ ((nbtime - t) * 3 * N). N is the number of atoms, nbtime the number of step and t the step.
self.CorrelationFunction = self.CorrelationFunction.real[:self.nbtime] / ((self.nbtime-arange(self.nbtime)) * 3 * self.nbatom)
def getCorrelationFunction(self,normalize = False):
if len(self.CorrelationFunction ) >= 0 :
if normalize:
return self.CorrelationFunction/self.CorrelationFunction[0]
else:
return self.CorrelationFunction
else:
return 0
#----------------------------------------------------------------#
#------------------DENSITY OF STATES (PHONONS)-------------------#
#----------------------------------------------------------------#
class DOS:
def __init__(self, pdata, pres, pdtion):
# This class aim is to calculate the density of phonon states (DOS),as being the Fourier transforms of the VACF
# the parameters are :
# - pdata witch is the array (1D) of the VACF
# - pres witch is the resolution
# - pdtion witch is ion time steps in atomic units of time
self.atu = 2.41884*10**-5 # one atomic time unit (in ps)
self.dtion = pdtion # ion time steps in atomic units of time
self.VACF = pdata # Velocity autocorelation Function (array 1D)
self.dt = self.dtion * self.atu # time step (in ps)
self.nbtime = len(pdata) # Number of steps
self.times = self.dt * arange(self.nbtime)# 1D array with the times of the simulation
self.fact = 0.6582054674822119 # conversion factor ps => 1/meV
#Calculation of sigma for the gaussian function
self.resolution = pres
self.sigma = 1.0/(1.5192669*self.resolution/(2.0*sqrt(2.0*log(2.0))))
def getDOS(self):
#Return array (1D) phonons density of states (1/mev)
DOS = self.windowGaussian(self.VACF, self.times, self.sigma)
return fft(DOS,len(DOS),0).real[:len(self.VACF)] * self.dt * self.fact
def getFrequencies(self):
#Return array (1D) with the frenquencies (mev)
frequencies = 4.1356 * arange(self.nbtime)/(2 * self.nbtime*self.dt)
return frequencies
def windowGaussian(self, inputSeries, x, s = 50, x0 = 0):
# Return the input serie multiplying by the gaussian function
# The size of the output array is double that the input serie,
# because the final array is periodized function
gauss= exp(-0.5*( (x - x0)**2 / (2*s**2)))
# Creation of the final array:
res = zeros(2*len(inputSeries))
# Multiplying the input serie by the gaussian:
win = gauss*inputSeries
# Periodic function is creating :
res[:len(inputSeries)] = win
res[len(inputSeries):] = win[-1:-len(inputSeries)-1:-1]
#old algorithm:
#res = zeros((2*len(inputSeries) - 2,))
#win = gauss*inputSeries
#res[:len(inputSeries)] = win
#res[len(inputSeries):] = win[-2:0:-1]
return res
def getSprectumDOS(self):
return rfft(self.VACF,2*len(self.VACF)-1,0).real * 2 * self.dt * self.fact
#----------------------------------------------------------------#
#-------------------Periodic table of the Element----------------#
#----------------------------------------------------------------#
class PeriodicTableElement :
# This class returns the atomic number of an element.
# Or the element corresponding to the atomic number.
def __init__(self):
self.table1 = { 'Ru' : 44, 'Re' : 75, 'Rf' : 104, 'Rg' : 111, 'Ra' : 88, 'Rb' : 37, 'Rn' : 86, 'Rh' : 45, 'Be' : 4, 'Ba' : 56,\
'Bh' : 107, 'Bi' : 83, 'Bk' : 97, 'Br' : 35, 'Ho' : 67, 'H' : 1, 'P' : 15, 'Os' : 76, 'Es' : 99, 'Hg' : 80,\
'Ge' : 32, 'Gd' : 64, 'Ga' : 31, 'He' : 2, 'Pr' : 59, 'Pt' : 78, 'Pu' : 94, 'Mg' : 12, 'Pb' : 82, 'Pa' : 91,\
'Pd' : 46, 'Xe' : 54, 'Po' : 84, 'Pm' : 61, 'Uut' : 113, 'Uuq' : 114, 'Uup' : 115, 'Uus' : 117, 'Uuo' : 118,\
'Uuh' : 116, 'Hf' : 72, 'K' : 19, 'Uub' : 112, 'Md' : 101, 'C' : 6, 'Mo' : 42, 'Mn' : 25, 'O' : 8, 'Mt' : 109,\
'S' : 16, 'W' : 74, 'Zn' : 30, 'Eu' : 63, 'Zr' : 40, 'Er' : 68, 'Ni' : 28, 'No' : 102, 'Na' : 11, 'Nb' : 41,\
'Nd' : 60, 'Ne' : 10, 'Np' : 93, 'Fr' : 87, 'Fe' : 26, 'Fm' : 100, 'B' : 5, 'F' : 9, 'Sr' : 38, 'N' : 7, 'Kr' : 36,\
'Si' : 14, 'Sn' : 50, 'Sm' : 62, 'V' : 23, 'Sc' : 21, 'Sb' : 51, 'Sg' : 106, 'Se' : 34, 'Co' : 27, 'Cm' : 96,\
'Cl' : 17, 'Ca' : 20, 'Cf' : 98, 'Ce' : 58, 'Cd' : 48, 'Lu' : 71, 'Cs' : 55, 'Cr' : 24, 'Cu' : 29, 'La' : 57,\
'Li' : 3, 'Tl' : 81, 'Tm' : 69, 'Lr' : 103, 'Th' : 90, 'Ti' : 22, 'Te' : 52, 'Tb' : 65, 'Tc' : 43, 'Ta' : 73,\
'Yb' : 70, 'Db' : 105, 'Dy' : 66, 'Ds' : 110, 'I' : 53, 'In' : 49, 'U' : 92, 'Y' : 39, 'Ac' : 89, 'Ag' : 47,\
'Ir' : 77, 'Am' : 95, 'Al' : 13, 'As' : 33, 'Ar' : 18, 'Au' : 79, 'At' : 85, 'Hs' : 108}
self.table2 = { 44 : 'Ru', 75 : 'Re', 104 : 'Rf', 111 : 'Rg', 88 : 'Ra', 37 : 'Rb', 86 : 'Rn', 45 : 'Rh', 4 : 'Be', 56 : 'Ba',\
107 : 'Bh', 83 : 'Bi', 97 : 'Bk', 35 : 'Br', 67 : 'Ho', 1 : 'H', 15 : 'P', 76 : 'Os', 99 : 'Es', 80 : 'Hg',\
32 : 'Ge', 64 : 'Gd', 31 : 'Ga', 2 : 'He', 59 : 'Pr', 78 : 'Pt', 94 : 'Pu', 12 : 'Mg', 82 : 'Pb', 91 : 'Pa',\
46 : 'Pd', 54 : 'Xe', 84 : 'Po', 61 : 'Pm', 113 : 'Uut', 114 : 'Uuq', 115 : 'Uup', 117 : 'Uus', 118 : 'Uuo',\
116 : 'Uuh', 72 : 'Hf', 19 : 'K', 112 : 'Uub', 101 : 'Md', 6 : 'C', 42 : 'Mo', 25 : 'Mn', 8 : 'O', 109 : 'Mt',\
16 : 'S', 74 : 'W', 30 : 'Zn', 63 : 'Eu', 40 : 'Zr', 68 : 'Er', 28 : 'Ni', 102 : 'No', 11 : 'Na', 41 : 'Nb',\
60 : 'Nd', 10 : 'Ne', 93 : 'Np', 87 : 'Fr', 26 : 'Fe', 100 : 'Fm', 5 : 'B', 9 : 'F', 38 : 'Sr', 7 : 'N',\
36 : 'Kr', 14 : 'Si', 50 : 'Sn', 62 : 'Sm', 23 : 'V', 21 : 'Sc', 51 : 'Sb', 106 : 'Sg', 34 : 'Se', 27 : 'Co',\
96 : 'Cm', 17 : 'Cl', 20 : 'Ca', 98 : 'Cf', 58 : 'Ce', 48 : 'Cd', 71 : 'Lu', 55 : 'Cs', 24 : 'Cr', 29 : 'Cu',\
57 : 'La', 3 : 'Li', 81 : 'Tl', 69 : 'Tm', 103 : 'Lr', 90 : 'Th', 22 : 'Ti', 52 : 'Te', 65 : 'Tb', 43 : 'Tc',\
73 : 'Ta', 70 : 'Yb', 105 : 'Db', 66 : 'Dy', 110 : 'Ds', 53 : 'I', 49 : 'In', 92 : 'U', 39 : 'Y', 89 : 'Ac',\
47 : 'Ag', 77 : 'Ir', 95 : 'Am', 13 : 'Al', 33 : 'As', 18 : 'Ar', 79 : 'Au', 85 : 'At', 108 : 'Hs'}
self.table3 = { 1: 1.007940, 2: 4.002602, 3: 6.941000, 4: 9.012182, 5: 10.811000, 6: 12.011000, 7: 14.006740,\
8: 15.999400, 9: 18.998404, 10: 20.179701, 11: 22.989767, 12: 24.305000, 13: 26.981539, 14: 28.085501,\
15: 30.973763, 16: 32.066002, 17: 35.452702, 18: 39.948002, 19: 39.098301, 20: 40.077999, 21: 44.955910,\
22: 47.880001, 23: 50.941502, 24: 51.996101, 25: 54.938049, 26: 55.847000, 27: 58.933201, 28: 58.689999, 29: 63.546001, 30: 65.389999,\
31: 69.723000, 32: 72.610001, 33: 74.921593, 34: 78.959999, 35: 79.903999, 36: 83.800003, 37: 85.467796, 38: 87.620003, 39: 88.905853,\
40: 91.223999, 41: 92.906380, 42: 95.940002, 43: 98.906197, 44: 101.070000, 45: 102.905502, 46: 106.419998, 47: 107.868202, 48: 112.411003,\
49: 114.820000, 50: 118.709999, 51: 121.752998, 52: 127.599998, 53: 126.904472, 54: 131.289993, 55: 132.905426, 56: 137.326996, 57: 138.905502,\
58: 140.115005, 59: 140.907654, 60: 144.240005, 61: 147.910004, 62: 150.360001, 63: 151.964996, 64: 157.250000, 65: 158.925339, 66: 162.500000, \
67: 164.930313, 68: 167.259995, 69: 168.934204, 70: 173.039993, 71: 174.966995, 72: 178.490005, 73: 180.947906, 74: 183.850006, 75: 186.207001, \
76: 190.199997, 77: 192.220001, 78: 195.080002, 79: 196.966537, 80: 200.589996, 81: 204.383301, 82: 207.199997, 83: 208.980377, 84: 209.000000, \
85: 210.000000, 86: 222.000000, 87: 223.000000, 88: 226.025406, 89: 230.000000, 90: 232.038101, 91: 231.035904, 92: 238.028900, 93: 237.048203, \
94: 242.000000, 95: 243.000000, 96: 247.000000, 97: 247.000000, 98: 249.000000, 99: 254.000000,100: 253.000000,101: 256.000000,102: 254.000000,\
103: 257.000000}
def getZnucl(self,name):
try :
return self.table1[name]
except:
return 0
def getName(self,znucl):
try :
return self.table2[znucl]
except:
return 'Unknown Element'
def getMass(self,znucl):
try :
return self.table3[znucl]
except:
return 'Unknown Element'
#----------------------------------------------------------------#
#-------------------RADIAL DISTRIBUTION FUNCTION-----------------#
#----------------------------------------------------------------#
class RDF:
def __init__(self, pfile, mode, atom1, atom2, box, pdr, pstep, No_Windows=False):
# This class aim is to calculate the Radial Distrubution Function
# the parameters are :
# - mode = 0 for normal RDF, 1 for its deconvolution
# - pfile is the output file (ascii/netcdf)
# - atom1/2 give the number of the atom in typat
# - box : give the number of box wide for the calculculation of g(r)
# - pdr : give the radial precision of the calculation
# - pstep : give the self.increment for the step loop
file = pfile
pos = file.getXCart() # position of atom (cartesian)
inc = pstep # incrementation
acell = file.getAcell() # acell
a = acell[:,0]
b = acell[:,1]
c = acell[:,2]
a_max = max(acell[:,0])
b_max = max(acell[:,1])
c_max = max(acell[:,2])
rprim = zeros((3,3)) # primitives vectors of the cell
rprim[0] = file.getRPrim()[0,0]
rprim[1] = file.getRPrim()[0,1]
rprim[2] = file.getRPrim()[0,2]
rho = 1/file.getVol() # density
if box >= 0:
f = (1/2.+box) # factor of maximum radius
else: # box < 0
f = 3**0.5/2.
rmax = f*min(a_max,b_max,c_max)
deltaR = pdr # delta r (Bohr)
maxbin = int((rmax/deltaR)) # number of iteration
typat = file.getTypat() # Type of particule
if atom1 == 0:
indexAtom1 = array([i for i,x in enumerate(typat) if x == 1 and 2],dtype=int) + 1
else:
indexAtom1 = array([i for i,x in enumerate(typat) if x == atom1],dtype=int) + 1 #get list of the index of typat1 (+1 for fortran)
if atom2 == 0:
indexAtom2 = array([i for i,x in enumerate(typat) if x == 1 and 2 ],dtype=int) + 1
else:
indexAtom2 = array([i for i,x in enumerate(typat) if x == atom2],dtype=int) + 1 #get list of the index of typat2 (+1 for fortran)
nbtime = len(pos) # final step
self.r = arange(maxbin)*deltaR
if mode == 0:
self.g = topo.pair_distribution(nbtime,pos,rprim,f,inc,a,b,c,deltaR,rho,indexAtom1,indexAtom2,self.r)
self.r += deltaR/2.
else: #mode == 1
nba = len(pos[0]) # number of atom
it = (int(nbtime/inc)+1)*nba*(nba-1)
self.m = topo.m_distribution(0,nbtime,pos,inc,it,a,b,c,indexAtom1,indexAtom2)
def getR(self):
return self.r
def getRDF(self):
return self.g[0]
def getINT(self):
return self.g[1]
def getDATA(self):
return self.m[2]
class DEC:
def __init__(self, pfile, n, atom1, atom2, data, box, pdr, step, No_Windows=False):
# This class aim is to calculate the Deconvolution of the RDF
# the parameters are :
# - pfile is the output file (ascii/netcdf)
# - n = is the neibhor number
# - atom1/2 give the number of the atom in typat
# - box : give the number of box wide for the calculculation of g(r)
# - pdr : give the radial precision of the calculation
# - pstep : give the self.increment for the step loop
file = pfile
pos = file.getXCart() # position of atom (cartesian)
nei = n
inc = step #incrementation
acell = file.getAcell() #acell
a_max = max(acell[:,0])
b_max = max(acell[:,1])
c_max = max(acell[:,2])
if box >= 0:
f = (1/2.+ box) # factor of maximum radius
else: # box < 0
f = 3**0.5/2.
rmax = f*min(a_max,b_max,c_max)
deltaR = pdr # delta r (Bohr)
maxbin = int((rmax/deltaR)) # number of iteration
typat = file.getTypat() # Type of particule
if atom1 == 0:
indexAtom1 = array([i for i,x in enumerate(typat) if x == 1 and 2],dtype=int) + 1
else:
indexAtom1 = array([i for i,x in enumerate(typat) if x == atom1],dtype=int) + 1 #get list of the index of typat1 (+1 for fortran)
if atom2 == 0:
indexAtom2 = array([i for i,x in enumerate(typat) if x == 1 and 2 ],dtype=int) + 1
else:
indexAtom2 = array([i for i,x in enumerate(typat) if x == atom2],dtype=int) + 1 #get list of the index of typat2 (+1 for fortran)
nbtime = len(pos) # final step
self.r = arange(maxbin)*deltaR
self.n = topo.n_distribution(nei,nbtime,data,inc,deltaR,indexAtom1,indexAtom2,0,self.r)
def getNEI(self):
return self.n
#-----------------------------------------------------------------#
#-------------------ANGULAR DISTRIBUTION FUNCTION-----------------#
#-----------------------------------------------------------------#
class ADF:
def __init__(self, nei, pfile, atom1, atom2, pdt, pstep, No_Windows=False):
# This class aim is to calculate the Angular Distrubution Function
# the parameters are :
# - nei gives the number of neibours we consider
# - pfile is the output file (ascii/netcdf)
# - atom1/2 give the number of the atom in typat
# - pdt : give the dtheta for the calculation
# - pstep : give the self.increment for the step loop
file = pfile
pos = file.getXCart() # position of atom (cartesian)
inc = pstep #incrementation
acell = file.getAcell() #acell
a = acell[:,0]
b = acell[:,1]
c = acell[:,2]
rprim = zeros((3,3)) # primitives vectors of the cell
rprim[0] = file.getRPrim()[0,0]
rprim[1] = file.getRPrim()[0,1]
rprim[2] = file.getRPrim()[0,2]
deltaTheta = pdt # delta Theta (degres)
maxbin = int((180./deltaTheta)) + 1 # number of iteration
typat = file.getTypat() # Type of particule
if atom1 == 0:
indexAtom1 = array([i for i,x in enumerate(typat) if x == 1 and 2],dtype=int) + 1
else:
indexAtom1 = array([i for i,x in enumerate(typat) if x == atom1],dtype=int) + 1 #get list of the index of typat1 (+1 for fortran)
if atom2 == 0:
indexAtom2 = array([i for i,x in enumerate(typat) if x == 1 and 2 ],dtype=int) + 1
else:
indexAtom2 = array([i for i,x in enumerate(typat) if x == atom2],dtype=int) + 1 #get list of the index of typat2 (+1 for fortran)
nbtime = len(pos) # final step
self.t = arange(maxbin)*deltaTheta
self.a = topo.angular_distribution(nei,nbtime,pos,rprim,inc,a,b,c,deltaTheta,indexAtom1,indexAtom2,self.t)
def getTheta(self):
return self.t
def getADF(self):
return self.a
#------------------------------------------------------------------#
#-------------------NEIGHBOR DISTRIBUTION FUNCTION-----------------#
#------------------------------------------------------------------#
class NDF:
def __init__(self, nei, pfile, atom1, atom2, pdr, pstep, No_Windows=False):
# This class aim is to calculate the Neighbor Distrubution Function
# the parameters are :
# - nei gives the neith neibours we consider.
# - pfile is the output file (ascii/netcdf)
# - atom1 give the number of the atom in typat
# - pdt : give the dtheta for the calculation
# - pstep : give the self.increment for the step loop
file = pfile
pos = file.getXCart() # position of atom (cartesian)
inc = pstep #incrementation
acell = file.getAcell() #acell
a = acell[:,0]
b = acell[:,1]
c = acell[:,2]
rprim = zeros((3,3)) # primitives vectors of the cell
rprim[0] = file.getRPrim()[0,0]
rprim[1] = file.getRPrim()[0,1]
rprim[2] = file.getRPrim()[0,2]
deltaR = pdr
typat = file.getTypat() # Type of particule
if atom1 == 0:
indexAtom1 = array([i for i,x in enumerate(typat) if x == 1 and 2],dtype=int) + 1
else:
indexAtom1 = array([i for i,x in enumerate(typat) if x == atom1],dtype=int) + 1 #get list of the index of typat1 (+1 for fortran)
if atom2 == 0:
indexAtom2 = array([i for i,x in enumerate(typat) if x == 1 and 2 ],dtype=int) + 1
else:
indexAtom2 = array([i for i,x in enumerate(typat) if x == atom2],dtype=int) + 1 #get list of the index of typat2 (+1 for fortran)
nbtime = len(pos) # final step
nba = len(pos[0]) # number of atom
it = (int(nbtime/inc)+1)*nba*(nba-1)
self.m = topo.m_distribution(nei,nbtime,pos,rprim,inc,it,a,b,c,indexAtom1,indexAtom2)
maxi = self.m[0]
mini = self.m[1]
data = self.m[2]
self.r = []
for i in range(int(mini*1000),int(maxi*1000+1),int(deltaR*1000)):
i = i/1000.
self.r.append(i)
self.n = topo.n_distribution(nei,nbtime,data,inc,deltaR,indexAtom1,indexAtom2,mini,self.r)
def getR(self):
return self.r
def getNDF(self):
return self.n
#--------------------------------------------------------#
#-------------------Probability function-----------------#
#--------------------------------------------------------#
class Proba:
def __init__(self, nei, pfile, atom1, No_Windows=False):
# This class aim is to calculate the Pobability that one neighbor stay in the same neighborhood of an atom between the first step and the last step considered
# the parameters are :
# - nei give the number of neighbors considered
# - pfile is the output file (ascii/netcdf)
# - atom1 give the number of the atom in typat
file = pfile
pos = file.getXCart() # position of atom (cartesian)
acell = file.getAcell() #acell
a = acell[:,0]
b = acell[:,1]
c = acell[:,2]
rprim = zeros((3,3)) # primitives vectors of the cell
rprim[0] = file.getRPrim()[0,0]
rprim[1] = file.getRPrim()[0,1]
rprim[2] = file.getRPrim()[0,2]
typat = file.getTypat() # Type of particule
if atom1 == 0:
indexAtom1 = array([i for i,x in enumerate(typat) if x == 1 and 2],dtype=int) + 1
else:
indexAtom1 = array([i for i,x in enumerate(typat) if x == atom1],dtype=int) + 1 #get list of the index of typat1 (+1 for fortran)
nbtime = len(pos) # final step
self.n = arange(1,nei+1)
self.p = topo.probability(nei,nbtime,pos,rprim,a,b,c,indexAtom1,indexAtom1)
def getN(self):
return self.n
def getProba(self):
return self.p
#-----------------------------------------------------------------#
#-------------------MEANS SQUARE DISPLACEMENT---------------------#
#-----------------------------------------------------------------#
class MSD:
def __init__(self, pfile, atom1):
# This class aim is to calculate the Mean square displacement
# the parameters are :
# - pfile is the output file (ascii/netcdf)
# - atom1 give the number of the atom in typat
file = pfile
pos = file.getXCart() # position of atom (cartesian)
typat = file.getTypat() # Type of particule
indexAtom1 = array([i for i,x in enumerate(typat) if x == atom1],dtype=int) + 1 #get list of the index of typat1 (+1 for fortran)
self.mds = math.mean_square_displacement(pos,indexAtom1)
self.x = arange(len(self.mds))
def getX(self):
return self.x
def getMSD(self):
return self.mds
#---------------------------------------------------#
#---------ELASTIC CALCULATION CLASS-----------------#
#---------------------------------------------------#
class elasticCalculation:
#-------------Constructor--------------#
def __init__(self,pfiles,pni,pWDData):
# This class aim is to calculate the Elastic constant
# the parameter is :
# -pfiles : witch is dictionnay array with the path of the files
self.files = pfiles #Dictionnary array
self.elastic = {} #Dictionnary array with the elastics constants
self.ni = pni #Departure of the step
self.datasetWD = pWDData #Dataset without deformation
self.struct = structure(self.files).getStructure()
self.deformation = deformation(self.files,self.ni,self.datasetWD).getDeformation()
if len(self.deformation) != 0 :
if (self.struct == 'cubic'):
self.elastic['C11'] = 0
self.elastic['C12'] = 0
self.elastic['C44'] = 0
self.M = 0 # M = C11 - C12 using in the tetragonal deformotation
self.T = 0 # T = C11 + 2C12 using in the isotropic deformotation
#print self.deformation
#for key in self.deformation:
#print key
sigma_0 = self.deformation['WD'][2]
for i in range(len(self.deformation)-1):
sigma_i = self.deformation[i][2]
delta = self.deformation[i][1]
if self.deformation[i][0] == 'single':
C11 = ( sigma_i[2] - sigma_0[2] ) / delta
C12 = ( sigma_i[1] - sigma_0[1] ) / delta
C44 = ( sigma_i[5] - sigma_0[5] ) / (2*delta)
self.elastic['C11'] += C11
self.elastic['C12'] += C12
self.elastic['C44'] += C44
if self.deformation[i][0] == 'orto':
C44 = ( sigma_i[5] - sigma_0[5] ) / (2*delta)
self.elastic['C44'] += C44
if self.deformation[i][0] == 'tetra':
self.M += ( sigma_i[1]- sigma_0[1] ) / delta
if self.deformation[i][0] == 'iso':
self.T += ( sigma_i[1] - sigma_0[1] ) / delta
#----------ADD OTHER DEFORMATION HERE--------#
#--------------------------------------------#
try:
self.M /= self.count(self.deformation,'tetra')
self.T /= self.count(self.deformation,'iso')
except:
pass
nbOfSingleDef = self.count(self.deformation,'single')
if (self.M == 0 and self.T != 0 or self.M != 0 and self.T == 0):
print 'Deformation error 1'
self.elastic = {}
return
elif (self.M != 0 and self.T != 0):
self.elastic['C11'] += ( 2 * self.M + self.T ) / 3
self.elastic['C12'] += -( self.M - self.T ) / 3
nbC11 = nbOfSingleDef +1
else :
nbC11 = nbOfSingleDef
if nbC11 != 0 :
self.elastic['C11'] /= nbC11
self.elastic['C12'] /= nbC11
self.elastic['C44'] /= (nbOfSingleDef + self.count(self.deformation,'orto') )
return
#----------ADD OTHER STRUCTURE HERE--------#
if (self.struct == 'hexagonal'):
return
#------------------------------------------#
else:
self.elastic = {}
print 'Deformation error 2'
return
#------------Methods--------------------#
def getElasticsConstants(self):
return self.elastic
def count(self,dic,pkey):
i = 0
for key in dic:
if dic[key][0] == pkey :
i += 1
return i
#---------------------------------------------------#
#---------------------------------------------------#
#----------------STRUCTURE CLASS--------------------#
#--------------------NOT YET IMPLEMENTED------------#
#---------------------------------------------------#
class structure:
#-------------Constructor--------------#
def __init__(self, pfiles):
# This class aim is to determinate the structure of the system
# the parameters are :
# -self.files
self.files = pfiles
def getStructure(self):
return "cubic"
#---------------------------------------------------#
#---------------------------------------------------#
#----------------DEFORMATION CLASS------------------#
#---------------------------------------------------#
#---------------------------------------------------#
class deformation:
#-------------Constructor--------------#
def __init__(self, pfiles,pni,pWDData):
# This class aim is to determinate the deformations used for the calculation of elastic constant
# the parameters are :
# -self.files
# -self.ni
self.files = pfiles
self.ni = pni
self.datasetWD = pWDData #Dataset without deformation
self.deformation = {}
self.goodDeformation = True
self.calculation()
#------------Methods--------------------#
def calculation(self):
self.rprim0 = []
self.sigma = {}
self.deformation = {}
if self.files['WD'].getIonMove()[0] in [1,6,7,8,9,12] :
self.files['WD'].setNi(self.ni)
sigma = self.files['WD'].getStress()
sigma = sum(sigma[:,:]) / len(sigma)
self.deformation['WD'] = ['WD', 0 ,sigma]
self.rprim_0 = self.files['WD'].getRPrim()[0,:,:]
for i in range(len(self.files)-1):
self.files[i].setNi(self.ni)
sigma = self.files[i].getStress()
sigma = sum(sigma[:,:]) / len(sigma)
rprim = self.files[i].getRPrim()[0,:,:]
d = dot(inv(self.rprim_0),rprim)
self.deform(i,d,sigma)
return
if self.files['WD'].getIonMove()[0] == 0 :
if 1 == 1:
sigma = self.files['WD'].getStress()[self.datasetWD]
self.deformation['WD'] = ['WD', 0 ,sigma]
self.rprim_0 = self.files['WD'].getRPrim()[self.datasetWD]
self.nbdataset = self.files['WD'].getNbDataset()
j = 0
for i in range(self.nbdataset) :
if i != self.datasetWD :
sigma = self.files['WD'].getStress()[i]
rprim = self.files['WD'].getRPrim()[i]
d = dot(inv(self.rprim_0),rprim)
self.deform(j,d,sigma)
j += 1
for i in range(len(self.files)-1):
self.nbdataset = self.files[i].getNbDataset()
for j in range(self.nbdataset) :
sigma = self.files[i].getStress()[j]
rprim = self.files[i].getRPrim()[j]
d = dot(inv(self.rprim_0),rprim)
self.deform(i,d,sigma)
return
else :
self.goodDeformation = False
def deform(self,i,d,sigma):
if( round(d[0][1],6) == round(d[1][0],6) and round(d[0][0],6) == round(d[1][1],6) and round(d[2][2],6) == (1 + round(d[0][1],6)) ):
self.deformation[i] = ['single',round(d[0][1],5),sigma]
return
if( round(d[0][0],6) == round(d[1][1],6) and round(d[2][2],4) == round( 1.0 / ( d[0][0]**2 ),4 ) ):\
if ( abs(d[0][1]) <= 1e-10 and abs(d[1][0]) <= 1e-10 and abs(d[2][0]) <= 1e-10 and d[2][1]<= 1e-10 and abs(d[1][0]) <= 1e-10 ):
self.deformation[i] = ['tetra',d[0][0]-1,sigma]
return
if( round(d[0][1],6) == round(d[1][0],6) and round(d[2][2],4) == round( 1.0 / (1 - d[0][1]**2 ),4 ) ):
if (d[0][0] == d[1][1] and abs(d[0][2]) <= 1e-10 and abs(d[1][2]) <= 1e-10):
self.deformation[i] = ['orto',round(d[0][1],4),sigma]
return
if( round(d[0][0],6) == round(d[1][1],6) and round(d[1][1],6) == round(d[2][2],6) and round(d[0][0],6) != 0 ):
if ( abs(d[0][1]) <= 1e-10 and abs(d[0][2]) <= 1e-10 and abs(d[0][1]) <= 1e-10 and abs(d[1][0]) <= 1e-10):
if (abs(d[1][0]) <= 1e-10 and abs(d[1][2])<= 1e-10 and abs(d[1][0]) <= 1e-10 ):
self.deformation[i] = ['iso',d[0][0]-1,sigma]
return
#----------ADD OTHER DEFORMATION HERE------#
#------------------------------------------#
self.goodDeformation = False
#--------Accessor-----------#
def getDeformation(self):
if (self.goodDeformation):
return self.deformation
else:
return []
#----------------------------------------------------------------#
#-------------------CALCULATION OF BULK MODULUS------------------#
#----------------------------------------------------------------#
class birch:
def __init__(self,data,number):
#This class uses FORTRAN code for the fit
self.value = {}
self.namefiles ="fit.inp"
self.workDir = os.getcwd()
self.homeDir = commands.getoutput('echo ~/')
path = os.path.dirname(__file__) + "/" # Get the path of the source Code
os.system('cp -r '+path + 'BIRCH '+ self.homeDir) # Copy the BIRCH DIR to the home DIR
os.chdir(self.homeDir + 'BIRCH') # Move to the BIRCH DIR
print os.getcwd()
file_out = open( self.namefiles ,"w") # Creation of the inputFIle for the FIT
file_out.write(' 2 ! Nb of columns\n')
file_out.write(' 1 ! Column of X-axis\n')
file_out.write(' 2 ! Column of Y-axis\n')
file_out.write(' 1 ! What is X: 1 for Volume, 2 for Acell\n')
file_out.write(' 1 ! 1 for V=a^3/4, 2 for V=a^3/2\n')
file_out.write(' 2 ! Unit for L: 1 for angstrom, 2 for u.a.\n')
file_out.write(' 3 ! Unit for E: 1 for Ryd, 2 for Ev, 3 for Ha, 4 for ?\n')
file_out.write(' 1 ! Mupliplier for V (V will be multiplied by this factor)\n')
file_out.write(' 1 ! Mupliplier for E (E will be divided by this factor)\n')
file_out.write(' '+str(number)+' ! Nb of input points\n')
file_out.write(data)
file_out.write(' 3 ! Order of v^(-2/3) polynomial\n')
file_out.write(' -2 ! ?\n')
file_out.write(' 0 ! ?\n')
file_out.write(' 0 ! ?\n')
file_out.write(' 0 ! ?\n')
file_out.close()
benf = commands.getoutput('./benf ') # execution of the FIT program
if benf == '':
print 'fit program computes successfully!'
else:
commands.getoutput('ifort -O -o benf benf.f')# compilation of the fit program
benf = commands.getoutput('./benf ')
if benf =='':
print 'fit program computes successfully!'
else:
print 'unable to launch the fit program'
## Get the value of the fit
self.value['E0'] = float( (commands.getoutput('grep -P \'Eo = .* Rydbergs\' fit.res').split())[2]) / 2.0
self.value['B0'] = float( (commands.getoutput('grep -P \'Ko = .* GPa\' fit.res').split())[2] )
self.value['dB0'] = float( (commands.getoutput('grep -P \"Ko\'=.*\" fit.res').split())[1] )
self.value['V0'] = float( (commands.getoutput('grep -P \'Vo =.* Bohr.*\' fit.res').split())[2])
self.value['RMS'] = float( (commands.getoutput('grep -P \"RMS.*Ry\" fit.res').split())[6]) / 2.0
os.chdir(self.homeDir) # Move to the HOME DIR
os.system('rm -r BIRCH') # Remove the BIRCH DIR
os.chdir(self.workDir) # Move to the original path
def getValue(self):
return self.value
|