File: plot_bandstructure.py

package info (click to toggle)
abinit 9.10.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 518,712 kB
  • sloc: xml: 877,568; f90: 577,240; python: 80,760; perl: 7,019; ansic: 4,585; sh: 1,925; javascript: 601; fortran: 557; cpp: 454; objc: 323; makefile: 77; csh: 42; pascal: 31
file content (913 lines) | stat: -rwxr-xr-x 47,920 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
#!/usr/bin/python
#=================================================================#
#  Script to plot the bandstructure from an abinit bandstructure  #
#  _EIG.nc netcdf file or from a wannier bandstructure, or from   #
#  an _EIG.nc file+GW file+ bandstructure _EIG.nc file            #
#=================================================================#

#########
#IMPORTS#
#########

import numpy as N
import matplotlib.pyplot as P
import  matplotlib.ticker as mticker
import netCDF4 as nc
import sys
import os
import argparse
import time

#############
##VARIABLES##
#############

class VariableContainer:pass

#Constants
csts = VariableContainer()

csts.hartree2ev = N.float(27.211396132)
csts.ev2hartree = N.float(1/csts.hartree2ev)
csts.sqrtpi = N.float(N.sqrt(N.pi))
csts.invsqrtpi = N.float(1/csts.sqrtpi)
csts.TOLKPTS = N.float(0.00001)

###########
##CLASSES##
###########

class PolynomialFit(object):
    def __init__(self):
        self.degree = 2

class EigenvalueContainer(object):
    nsppol = None
    nkpt = None
    mband = None
    eigenvalues = None
    units = None
    wtk = None
    filename = None
    filefullpath = None
    bd_indices = None
    eigenvalue_type = None
    kpoints = None
    #kpoint_sampling_type: can be Monkhorst-Pack or Bandstructure
    KPT_W90_TOL = N.float(1.0e-6)
    KPT_DFT_TOL = N.float(1.0e-8)
    kpoint_sampling_type = 'Monkhorst-Pack'
    inputgvectors = None
    gvectors = None
    special_kpoints = None
    special_kpoints_names = None
    special_kpoints_indices = None
    kpoint_path_values = None
    kpoint_reduced_path_values = None
    kpoint_path_length = None
    #reduced_norm = None
    norm_paths = None
    norm_reduced_paths = None
    def __init__(self,directory=None,filename=None):
        if filename == None:return
        if directory == None:directory='.'
        self.filename = filename
        self.filefullpath = '%s/%s' %(directory,filename)
        self.file_open(self.filefullpath)
    def set_kpoint_sampling_type(self,kpoint_sampling_type):
        if kpoint_sampling_type != 'Monkhorst-Pack' and kpoint_sampling_type != 'Bandstructure':
            print 'ERROR: kpoint_sampling_type "%s" does not exists' %kpoint_sampling_type
            print '       it should be "Monkhorst-Pack" or "Bandstructure" ... exit'
            sys.exit()
        self.kpoint_sampling_type = kpoint_sampling_type
    def correct_kpt(self,kpoint,tolerance=N.float(1.0e-6)):
        kpt_correct = N.array(kpoint,N.float)
        changed = False
        for ii in range(3):
            if N.allclose(kpoint[ii],N.float(1.0/3.0),atol=tolerance):
                kpt_correct[ii] = N.float(1.0/3.0)
                changed = True
            elif N.allclose(kpoint[ii],N.float(1.0/6.0),atol=tolerance):
                kpt_correct[ii] = N.float(1.0/6.0)
                changed = True
            elif N.allclose(kpoint[ii],N.float(-1.0/6.0),atol=tolerance):
                kpt_correct[ii] = N.float(-1.0/6.0)
                changed = True
            elif N.allclose(kpoint[ii],N.float(-1.0/3.0),atol=tolerance):
                kpt_correct[ii] = N.float(-1.0/3.0)
                changed = True
        if changed:
            print 'COMMENT: kpoint %15.12f %15.12f %15.12f has been changed to %15.12f %15.12f %15.12f' %(kpoint[0],kpoint[1],kpoint[2],kpt_correct[0],kpt_correct[1],kpt_correct[2])
        return kpt_correct
    def find_special_kpoints(self,gvectors=None):
        if self.kpoint_sampling_type != 'Bandstructure':
            print 'ERROR: special kpoints are usefull only for bandstructures ... returning find_special_kpoints'
            return
        if self.eigenvalue_type == 'W90':
            correct_kpt_tolerance = N.float(1.0e-4)
            KPT_TOL = self.KPT_W90_TOL
        elif self.eigenvalue_type == 'DFT':
            correct_kpt_tolerance = N.float(1.0e-6)
            KPT_TOL = self.KPT_DFT_TOL
        else:
            print 'ERROR: eigenvalue_type is "%s" while it should be "W90" or "DFT" ... returning find_special_kpoints' %self.eigenvalue_type
            return
        if gvectors == None:
            self.inputgvectors = False
            self.gvectors = N.identity(3,N.float)
        else:
            if N.shape(gvectors) != (3, 3):
                print 'ERROR: wrong gvectors ... exiting now'
                sys.exit()
            self.inputgvectors = True
            self.gvectors = gvectors
        full_kpoints = N.zeros((self.nkpt,3),N.float)
        for ikpt in range(self.nkpt):
            full_kpoints[ikpt,:] = self.kpoints[ikpt,0]*self.gvectors[0,:]+self.kpoints[ikpt,1]*self.gvectors[1,:]+self.kpoints[ikpt,2]*self.gvectors[2,:]
        delta_kpt = full_kpoints[1,:]-full_kpoints[0,:]
        self.special_kpoints_indices = list()
        self.special_kpoints = list()
        self.special_kpoints_indices.append(0)
        self.special_kpoints.append(self.correct_kpt(self.kpoints[0,:],tolerance=correct_kpt_tolerance))
        for ikpt in range(1,self.nkpt-1):
            thisdelta = full_kpoints[ikpt+1,:]-full_kpoints[ikpt,:]
            if not N.allclose(thisdelta,delta_kpt,atol=KPT_TOL):
                delta_kpt = thisdelta
                self.special_kpoints_indices.append(ikpt)
                self.special_kpoints.append(self.correct_kpt(self.kpoints[ikpt,:],tolerance=correct_kpt_tolerance))
        self.special_kpoints_indices.append(N.shape(self.kpoints)[0]-1)
        self.special_kpoints.append(self.correct_kpt(self.kpoints[-1,:],tolerance=correct_kpt_tolerance))
        print 'Special Kpoints : '
        print ' {0:d} : {1[0]: 8.8f} {1[1]: 8.8f} {1[2]: 8.8f}'.format(1,self.kpoints[0,:])
        self.norm_paths = N.zeros((N.shape(self.special_kpoints_indices)[0]-1),N.float)
        self.norm_reduced_paths = N.zeros((N.shape(self.special_kpoints_indices)[0]-1),N.float)
        for ispkpt in range(1,N.shape(self.special_kpoints_indices)[0]):
            self.norm_paths[ispkpt-1] = N.linalg.norm(full_kpoints[self.special_kpoints_indices[ispkpt]]-full_kpoints[self.special_kpoints_indices[ispkpt-1]])
            self.norm_reduced_paths[ispkpt-1] = N.linalg.norm(self.special_kpoints[ispkpt]-self.special_kpoints[ispkpt-1])
            print '     {2:d}-{3:d} path length : {0: 8.8f} | reduced path length : {1: 8.8f}'.\
                  format(self.norm_paths[ispkpt-1],self.norm_reduced_paths[ispkpt-1],ispkpt,ispkpt+1)
            print ' {0:d} : {1[0]: 8.8f} {1[1]: 8.8f} {1[2]: 8.8f}'.format(ispkpt+1,self.kpoints[self.special_kpoints_indices[ispkpt],:])
        self.kpoint_path_length = N.sum(self.norm_paths)
        self.kpoint_reduced_path_length = N.sum(self.norm_reduced_paths)
        self.normalized_kpoint_path_norm = self.norm_paths/self.kpoint_path_length
        self.normalized_kpoint_reduced_path_norm = self.norm_reduced_paths/self.kpoint_reduced_path_length
        
        kptredpathval = list()
        kptpathval = list()
        kptredpathval.append(N.float(0.0))
        kptpathval.append(N.float(0.0))
        curlen = N.float(0.0)
        redcurlen = N.float(0.0)
        for ispkpt in range(1,N.shape(self.special_kpoints_indices)[0]):
            kptredpathval.extend(N.linspace(redcurlen,redcurlen+self.norm_reduced_paths[ispkpt-1],self.special_kpoints_indices[ispkpt]-self.special_kpoints_indices[ispkpt-1]+1)[1:])
            kptpathval.extend(N.linspace(curlen,curlen+self.norm_paths[ispkpt-1],self.special_kpoints_indices[ispkpt]-self.special_kpoints_indices[ispkpt-1]+1)[1:])
            redcurlen = redcurlen + self.norm_reduced_paths[ispkpt-1]
            curlen = curlen + self.norm_paths[ispkpt-1]
        self.kpoint_path_values = N.array(kptpathval,N.float)
        self.kpoint_reduced_path_values = N.array(kptredpathval,N.float)
        self.normalized_kpoint_path_values = self.kpoint_path_values/self.kpoint_path_length
        self.normalized_kpoint_reduced_path_values = self.kpoint_reduced_path_values/self.kpoint_reduced_path_length
        self.special_kpoints = N.array(self.special_kpoints,N.float)
    def file_open(self,filefullpath):
        if filefullpath[-3:] == '_GW':
            self.gw_file_open(filefullpath)
        elif filefullpath[-7:] == '_EIG.nc':
            self.nc_eig_open(filefullpath)
        elif filefullpath[-4:] == '.dat':
            self.wannier_bs_file_open(filefullpath)
    def has_eigenvalue(self,nsppol,isppol,kpoint,iband):
        if self.nsppol != nsppol:
            return False
        for ikpt in range(self.nkpt):
            if N.absolute(self.kpoints[ikpt,0]-kpoint[0]) < csts.TOLKPTS and \
               N.absolute(self.kpoints[ikpt,1]-kpoint[1]) < csts.TOLKPTS and \
               N.absolute(self.kpoints[ikpt,2]-kpoint[2]) < csts.TOLKPTS:
                if iband >= self.bd_indices[isppol,ikpt,0]-1 and iband < self.bd_indices[isppol,ikpt,1]:
                    return True
                return False
        return False
    def get_eigenvalue(self,nsppol,isppol,kpoint,iband):
        for ikpt in range(self.nkpt):
            if N.absolute(self.kpoints[ikpt,0]-kpoint[0]) < csts.TOLKPTS and \
               N.absolute(self.kpoints[ikpt,1]-kpoint[1]) < csts.TOLKPTS and \
               N.absolute(self.kpoints[ikpt,2]-kpoint[2]) < csts.TOLKPTS:
                return self.eigenvalues[isppol,ikpt,iband]
    def wannier_bs_file_open(self,filefullpath):
        if not (os.path.isfile(filefullpath)):
            print 'ERROR : file "%s" does not exists' %filefullpath
            print '... exiting now ...'
            sys.exit()
        print 'WARNING: no spin polarization reading yet for Wannier90 bandstructure files!'
        self.eigenvalue_type = 'W90'
        self.nsppol = None
        self.nkpt = None
        self.mband = None
        self.eigenvalues = None
        self.units = None
        self.filefullpath = filefullpath
        reader = open(self.filefullpath,'r')
        filedata = reader.readlines()
        reader.close()
        for iline in range(len(filedata)):
            if filedata[iline].strip() == '':
                self.nkpt = iline
                break
        self.mband = N.int(len(filedata)/self.nkpt)
        self.nsppol = 1
        self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float)
        self.kpoints = N.zeros([self.nkpt,3],N.float)
        iline = 0
        kpt_file = '%s.kpt' %filefullpath[:-4]
        if os.path.isfile(kpt_file):
            reader = open(kpt_file,'r')
            kptdata = reader.readlines()
            reader.close()
            if N.int(kptdata[0]) != self.nkpt:
                print 'ERROR : the number of kpoints in file "%s" is not the same as in "%s" ... exit' %(self.filefullpath,kpt_file)
                sys.exit()
            for ikpt in range(self.nkpt):
                linesplit = kptdata[ikpt+1].split()
                self.kpoints[ikpt,0] = N.float(linesplit[0])
                self.kpoints[ikpt,1] = N.float(linesplit[1])
                self.kpoints[ikpt,2] = N.float(linesplit[2])
        else:
            for ikpt in range(self.nkpt):
                self.kpoints[ikpt,0] = N.float(filedata[ikpt].split()[0])
        for iband in range(self.mband):
            for ikpt in range(self.nkpt):
                self.eigenvalues[0,ikpt,iband] = N.float(filedata[iline].split()[1])
                iline = iline+1
            iline = iline+1
        self.eigenvalues = self.eigenvalues*csts.ev2hartree
        self.units = 'Hartree'
    def gw_file_open(self,filefullpath):
        if not (os.path.isfile(filefullpath)):
            print 'ERROR : file "%s" does not exists' %filefullpath
            print '... exiting now ...'
            sys.exit()
        self.eigenvalue_type = 'GW'
        self.nsppol = None
        self.nkpt = None
        self.mband = None
        self.eigenvalues = None
        self.units = None
        self.filefullpath = filefullpath
        reader = open(self.filefullpath,'r')
        filedata = reader.readlines()
        reader.close()
        self.nkpt = N.int(filedata[0].split()[0])
        self.kpoints = N.ones([self.nkpt,3],N.float)
        self.nsppol = N.int(filedata[0].split()[1])
        self.bd_indices = N.zeros((self.nsppol,self.nkpt,2),N.int)
        icur = 1
        nbd_kpt = N.zeros([self.nsppol,self.nkpt],N.int)
        for isppol in range(self.nsppol):
            for ikpt in range(self.nkpt):
                self.kpoints[ikpt,:] = N.array(filedata[icur].split()[:],N.float)
                icur = icur + 1
                nbd_kpt[isppol,ikpt] = N.int(filedata[icur])
                self.bd_indices[isppol,ikpt,0] = N.int(filedata[icur+1].split()[0])
                self.bd_indices[isppol,ikpt,1] = N.int(filedata[icur+nbd_kpt[isppol,ikpt]].split()[0])
                icur = icur + nbd_kpt[isppol,ikpt] + 1
        self.mband = N.max(self.bd_indices[:,:,1])
        self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float)
        self.eigenvalues[:,:,:] = N.nan
        ii = 3
        for isppol in range(self.nsppol):
            for ikpt in range(self.nkpt):
                for iband in range(self.bd_indices[isppol,ikpt,0]-1,self.bd_indices[isppol,ikpt,1]):
                    self.eigenvalues[isppol,ikpt,iband] = N.float(filedata[ii].split()[1])
                    ii = ii + 1
                ii = ii + 2
        self.eigenvalues = csts.ev2hartree*self.eigenvalues
        self.units = 'Hartree'
    def pfit_gw_file_write(self,polyfitlist,directory=None,filename=None,bdgw=None,energy_pivots=None,gwec=None):
        if filename == None:return
        if directory == None:directory='.'
        filefullpath = '%s/%s' %(directory,filename)
        if (os.path.isfile(filefullpath)):
            user_input = raw_input('WARNING : file "%s" exists, do you want to overwrite it ? (y/n)' %filefullpath)
            if not (user_input == 'y' or user_input == 'Y'):
                return
        writer = open(filefullpath,'w')
        writer.write('%12s%12s\n' %(self.nkpt,self.nsppol))
        if gwec == None:
            for ikpt in range(self.nkpt):
                for isppol in range(self.nsppol):
                    writer.write('%10.6f%10.6f%10.6f\n' %(self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2]))
                    writer.write('%4i\n' %(bdgw[1]-bdgw[0]+1))
                    for iband in range(bdgw[0]-1,bdgw[1]):
                        delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
                        for ipivot in range(len(energy_pivots)):
                            if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]:
                                delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
                                break
                        writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta,delta,0.0))
        else:
            for ikpt in range(self.nkpt):
                for isppol in range(self.nsppol):
                    writer.write('%10.6f%10.6f%10.6f\n' %(self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2]))
                    writer.write('%4i\n' %(bdgw[1]-bdgw[0]+1))
                    for iband in range(bdgw[0]-1,bdgw[1]):
                        if gwec.has_eigenvalue(self.nsppol,isppol,self.kpoints[ikpt],iband):
                            gw_eig = gwec.get_eigenvalue(self.nsppol,isppol,self.kpoints[ikpt],iband)
                            writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*gw_eig,csts.hartree2ev*(gw_eig-self.eigenvalues[isppol,ikpt,iband]),0.0))
                        else:
                            delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
                            for ipivot in range(len(energy_pivots)):
                                if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]:
                                    delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
                                    break
                            writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta,delta,0.0))
        writer.close()
    def pfit_dft_to_gw_bs_write(self,polyfitlist,directory=None,filename=None,bdgw=None,energy_pivots=None,gwec=None):
        if filename == None:return
        if directory == None:directory='.'
        filefullpath = '%s/%s' %(directory,filename)
        if (os.path.isfile(filefullpath)):
            user_input = raw_input('WARNING : file "%s" exists, do you want to overwrite it ? (y/n)' %filefullpath)
            if not (user_input == 'y' or user_input == 'Y'):
                return
        writer = open(filefullpath,'w')
        if gwec == None:
            for ikpt in range(self.nkpt):
                writer.write('%s' %ikpt)
                for isppol in range(self.nsppol):
                    for iband in range(bdgw[0]-1,bdgw[1]):
                        delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
                        for ipivot in range(len(energy_pivots)):
                            if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]:
                                delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband])
                                break
                        writer.write(' %s' %(csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta))
                writer.write('\n')
        else:
            print 'NOT SUPPORTED YET'
            sys.exit()
        writer.close()
    def nc_eig_open(self,filefullpath):
        if not (os.path.isfile(filefullpath)):
            print 'ERROR : file "%s" does not exists' %filefullpath
            print '... exiting now ...'
            sys.exit()
        ncdata = nc.Dataset(filefullpath)
        self.eigenvalue_type = 'DFT'
        self.nsppol = None
        self.nkpt = None
        self.mband = None
        self.eigenvalues = None
        self.units = None
        self.filefullpath = filefullpath
        for dimname,dimobj in ncdata.dimensions.iteritems():
            if dimname == 'nsppol':self.nsppol = N.int(len(dimobj))
            if dimname == 'nkpt':self.nkpt = N.int(len(dimobj))
            if dimname == 'mband':self.mband = N.int(len(dimobj))
        for varname in ncdata.variables:
            if varname == 'Eigenvalues':
                varobj = ncdata.variables[varname]
                varshape = N.shape(varobj[:])
                self.units = None
                for attrname in varobj.ncattrs():
                    if attrname == 'units':
                        self.units = varobj.getncattr(attrname)
                if self.units == None:
                    print 'WARNING : units are not specified'
                    print '... assuming "Hartree" units ...'
                    self.units = 'Hartree'
                elif self.units != 'Hartree':
                    print 'ERROR : units are unknown : "%s"' %self.units
                    print '... exiting now ...'
                    sys.exit()
                self.eigenvalues = N.reshape(N.array(varobj,N.float),varshape)
                self.nsppol = varshape[0]
                self.nkpt = varshape[1]
                self.kpoints = -1*N.ones((self.nkpt,3),N.float)
                self.mband = varshape[2]
                self.bd_indices = N.zeros((self.nsppol,self.nkpt,2),N.int)
                self.bd_indices[:,:,0] = 1
                self.bd_indices[:,:,1] = self.mband
                break
        for varname in ncdata.variables:
            if varname == 'Kptns':
                varobj = ncdata.variables[varname]
                varshape = N.shape(varobj[:])
                self.kpoints = N.reshape(N.array(varobj,N.float),varshape)
    def write_bandstructure_to_file(self,filename,option_kpts='bohrm1_units'):
        #if option_kpts is set to 'normalized', the path of the bandstructure will be normalized to 1 (and special k-points correctly chosen)
        if self.kpoint_sampling_type != 'Bandstructure':
            print 'ERROR: kpoint_sampling_type is not "Bandstructure" ... returning from write_bandstructure_to_file'
            return
        if self.nsppol > 1:
            print 'ERROR: number of spins is more than 1, this is not yet coded ... returning from write_bandstructure_to_file'
            return
        writer = open(filename,'w')
        writer.write('# BANDSTRUCTURE FILE FROM DAVID\'S SCRIPT\n')
        writer.write('# nsppol = %s\n' %self.nsppol)
        writer.write('# nband = %s\n' %self.mband)
        writer.write('# eigenvalue_type = %s\n' %self.eigenvalue_type)
        if self.inputgvectors:
            writer.write('# inputgvectors = 1 (%s)\n' %self.inputgvectors)
        else:
            writer.write('# inputgvectors = 0 (%s)\n' %self.inputgvectors)
        writer.write('# gvectors(1) = %20.17f %20.17f %20.17f \n' %(self.gvectors[0,0],self.gvectors[0,1],self.gvectors[0,2]))
        writer.write('# gvectors(2) = %20.17f %20.17f %20.17f \n' %(self.gvectors[1,0],self.gvectors[1,1],self.gvectors[1,2]))
        writer.write('# gvectors(3) = %20.17f %20.17f %20.17f \n' %(self.gvectors[2,0],self.gvectors[2,1],self.gvectors[2,2]))
        writer.write('# special_kpoints_number = %s\n' %(len(self.special_kpoints_indices)))
        writer.write('# list of special kpoints : (given in reduced coordinates, value_path is in Bohr^-1, value_red_path has its total path normalized to 1)\n')
        for ii in range(len(self.special_kpoints_indices)):
            ispkpt = self.special_kpoints_indices[ii]
            spkpt = self.special_kpoints[ii]
            writer.write('#    special_kpt_index %5s : %20.17f %20.17f %20.17f (value_path = %20.17f | value_red_path = %20.17f)\n' %(ispkpt,spkpt[0],spkpt[1],spkpt[2],self.kpoint_path_values[ispkpt],self.kpoint_reduced_path_values[ispkpt]))
        writer.write('# special_kpoints_names :\n')
        for ii in range(len(self.special_kpoints_indices)):
            ispkpt = self.special_kpoints_indices[ii]
            spkpt = self.special_kpoints[ii]
            writer.write('#    special_kpt_name %3s : "%s" : %20.17f %20.17f %20.17f\n' %(ii+1,self.special_kpoints_names[ii],spkpt[0],spkpt[1],spkpt[2]))
        writer.write('# kpoint_path_length = %20.17f \n' %(self.kpoint_path_length))
        writer.write('# kpoint_path_number = %s \n' %(self.nkpt))
        if self.inputgvectors:
            writer.write('# kpoint_path_units = %s\n' %(option_kpts))
        else:
            writer.write('# kpoint_path_units =  %s (!!! CONSIDERING UNITARY GVECTORS MATRIX !!!)\n' %(option_kpts))
        writer.write('#BEGIN\n')
        if option_kpts == 'bohrm1_units':
            values_path = self.kpoint_path_values
        elif option_kpts == 'reduced':
            values_path = self.kpoint_reduced_path_values
        elif option_kpts == 'bohrm1_units_normalized':
            values_path = self.normalized_kpoint_path_values
        elif option_kpts == 'reduced_normalized':
            values_path = self.normalized_kpoint_reduced_path_values
        else:
            print 'ERROR: wrong option_kpts ... exit'
            writer.write('... CANCELLED (wrong option_kpts)')
            writer.close()
            sys.exit()
        for isppol in range(self.nsppol):
            writer.write('#isppol %s\n' %isppol)
            for iband in range(self.mband):
                writer.write('#iband %5s (band number %s)\n' %(iband,iband+1))
                for ikpt in range(self.nkpt):
                    writer.write('%20.17f %20.17f\n' %(values_path[ikpt],self.eigenvalues[isppol,ikpt,iband]))
                writer.write('\n')
        writer.write('#END\n')
        writer.close()
    def print_bandstructure_info(self):
        print 'Bandstructure file'
        print 'nsppol : %s' %self.nsppol
        print 'nband : %s' %self.mband
        print 'eigenvalue type : %s' %self.eigenvalue_type
        print 'special kpoints :'
        for ispkpt in range(len(self.special_kpoints)):
            print '  %2d : %15.12f %15.12f %15.12f' %(ispkpt+1,self.special_kpoints[ispkpt,0],self.special_kpoints[ispkpt,1],self.special_kpoints[ispkpt,2])
        print 'kpoint path length : %s' %self.kpoint_path_length
        print 'kpoint path units : %s' %self.kpoint_path_units
        if self.inputgvectors == 1:
            print 'kpoint path made with these gvectors :'
            print ' gvectors(1) : %15.12f %15.12f %15.12f' %(self.gvectors[0,0],self.gvectors[0,1],self.gvectors[0,2])
            print ' gvectors(2) : %15.12f %15.12f %15.12f' %(self.gvectors[1,0],self.gvectors[1,1],self.gvectors[1,2])
            print ' gvectors(3) : %15.12f %15.12f %15.12f' %(self.gvectors[2,0],self.gvectors[2,1],self.gvectors[2,2])
        else:
            print '  !!! gvectors are unitary !!!'
        print 'kpoint path number : %s' %self.nkpt
    def read_bandstructure_from_file(self,filename):
        reader = open(filename,'r')
        bs_data = reader.readlines()
        reader.close()
        self.gvectors = N.identity(3,N.float)
        self.kpoint_sampling_type = 'Bandstructure'
        self.special_kpoints_indices = list()
        self.special_kpoints = list()
        for ii in range(len(bs_data)):
            if bs_data[ii] == '#BEGIN\n':
                ibegin = ii
                break
            elif bs_data[ii][:10] == '# nsppol =':
                self.nsppol = N.int(bs_data[ii][10:])
            elif bs_data[ii][:9] == '# nband =':
                self.mband = N.int(bs_data[ii][9:])
            elif bs_data[ii][:19] == '# eigenvalue_type =':
                self.eigenvalue_type = bs_data[ii][19:].strip()
            elif bs_data[ii][:17] == '# inputgvectors =':
                tt = N.int(bs_data[ii][18])
                if tt == 1:
                    self.inputgvectors = True
                elif tt == 0:
                    self.inputgvectors = False
                else:
                    print 'ERROR: reading inputgvectors ... exit'
                    sys.exit()
            elif bs_data[ii][:15] == '# gvectors(1) =':
                sp = bs_data[ii][15:].split()
                self.gvectors[0,0] = N.float(sp[0])
                self.gvectors[0,1] = N.float(sp[1])
                self.gvectors[0,2] = N.float(sp[2])
            elif bs_data[ii][:15] == '# gvectors(2) =':
                sp = bs_data[ii][15:].split()
                self.gvectors[1,0] = N.float(sp[0])
                self.gvectors[1,1] = N.float(sp[1])
                self.gvectors[1,2] = N.float(sp[2])
            elif bs_data[ii][:15] == '# gvectors(3) =':
                sp = bs_data[ii][15:].split()
                self.gvectors[2,0] = N.float(sp[0])
                self.gvectors[2,1] = N.float(sp[1])
                self.gvectors[2,2] = N.float(sp[2])
            elif bs_data[ii][:26] == '# special_kpoints_number =':
                special_kpoints_number = N.int(bs_data[ii][26:])
                self.special_kpoints_names = ['']*special_kpoints_number
            elif bs_data[ii][:22] == '#    special_kpt_index':
                sp = bs_data[ii][22:].split()
                self.special_kpoints_indices.append(N.int(sp[0]))
                self.special_kpoints.append(N.array([sp[2],sp[3],sp[4]]))
            elif bs_data[ii][:21] == '#    special_kpt_name':
                sp = bs_data[ii][21:].split()
                ispkpt = N.int(sp[0])-1
                self.special_kpoints_names[ispkpt] = sp[2][1:-1]
            elif bs_data[ii][:22] == '# kpoint_path_length =':
                self.kpoint_path_length = N.float(bs_data[ii][22:])
            elif bs_data[ii][:22] == '# kpoint_path_number =':
                self.nkpt = N.int(bs_data[ii][22:])
            elif bs_data[ii][:21] == '# kpoint_path_units =':
                self.kpoint_path_units = bs_data[ii][21:].split()[0]
        self.special_kpoints_indices = N.array(self.special_kpoints_indices,N.int)
        self.special_kpoints = N.array(self.special_kpoints,N.float)
        if len(self.special_kpoints_indices) != special_kpoints_number or len(self.special_kpoints) != special_kpoints_number:
            print 'ERROR: reading the special kpoints ... exit'
            sys.exit()
        self.kpoint_path_values = N.zeros([self.nkpt],N.float)
        self.kpoint_reduced_path_values = N.zeros([self.nkpt],N.float)
        if self.kpoint_path_units == 'bohrm1_units':
            jj = 0
            for ii in range(ibegin+1,len(bs_data)):
                if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
                if bs_data[ii] == '\n':
                    break
                self.kpoint_path_values[jj] = N.float(bs_data[ii].split()[0])
                jj = jj + 1
            if jj != self.nkpt:
                print 'ERROR: reading bandstructure file ... exit'
                sys.exit()
            self.normalized_kpoint_path_values = self.kpoint_path_values/self.kpoint_path_length
        if self.kpoint_path_units == 'bohrm1_units_normalized':
            jj = 0
            for ii in range(ibegin+1,len(bs_data)):
                if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
                if bs_data[ii] == '\n':
                    break
                self.normalized_kpoint_path_values[jj] = N.float(bs_data[ii].split()[0])
                jj = jj + 1
            if jj != self.nkpt:
                print 'ERROR: reading bandstructure file ... exit'
                sys.exit()
            self.kpoint_path_values = self.normalized_kpoint_path_values*self.kpoint_path_length
        elif self.kpoint_path_units == 'reduced_normalized':
            jj = 0
            for ii in range(ibegin+1,len(bs_data)):
                if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
                if bs_data[ii] == '\n':
                    break
                self.normalized_kpoint_reduced_path_values[jj] = N.float(bs_data[ii].split()[0])
                jj = jj + 1
            if jj != self.nkpt:
                print 'ERROR: reading bandstructure file ... exit'
                sys.exit()
            self.kpoint_reduced_path_values = self.normalized_kpoint_reduced_path_values/self.kpoint_reduced_path_length
        elif self.kpoint_path_units == 'reduced':
            jj = 0
            for ii in range(ibegin+1,len(bs_data)):
                if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue
                if bs_data[ii] == '\n':
                    break
                self.kpoint_reduced_path_values[jj] = N.float(bs_data[ii].split()[0])
                jj = jj + 1
            if jj != self.nkpt:
                print 'ERROR: reading bandstructure file ... exit'
                sys.exit()
            self.normalized_kpoint_reduced_path_values = self.kpoint_reduced_path_values/self.kpoint_reduced_path_length
        self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float)
        check_nband = 0
        for ii in range(ibegin+1,len(bs_data)):
            if bs_data[ii][:7] == '#isppol':
                isppol = N.int(bs_data[ii][7:])
            elif bs_data[ii][:6] == '#iband':
                iband = N.int(bs_data[ii][6:].split()[0])
                ikpt = 0
            elif bs_data[ii][:4] == '#END':
                break
            elif bs_data[ii] == '\n':
                check_nband = check_nband + 1
            else:
                self.eigenvalues[isppol,ikpt,iband] = N.float(bs_data[ii].split()[1])
                ikpt = ikpt + 1

def check_gw_vs_dft_parameters(dftec,gwec):
    if gwec.eigenvalue_type != 'GW' or dftec.eigenvalue_type != 'DFT':
        print 'ERROR: eigenvalue files do not contain GW and DFT eigenvalues ... exiting now'
        sys.exit()
    if dftec.nsppol != gwec.nsppol or dftec.nkpt != gwec.nkpt:
        print 'ERROR: the number of spins/kpoints is not the same in the GW and DFT files used to make the interpolation ... exiting now'
        sys.exit()
    for ikpt in range(dftec.nkpt):
        if N.absolute(dftec.kpoints[ikpt,0]-gwec.kpoints[ikpt,0]) > csts.TOLKPTS or \
           N.absolute(dftec.kpoints[ikpt,1]-gwec.kpoints[ikpt,1]) > csts.TOLKPTS or \
           N.absolute(dftec.kpoints[ikpt,2]-gwec.kpoints[ikpt,2]) > csts.TOLKPTS:
            print 'ERROR: the kpoints are not the same in the GW and DFT files used to make the interpolation ... exiting now'
            sys.exit()

def plot_gw_vs_dft_eig(dftec,gwec,vbm_index,energy_pivots=None,polyfit_degrees=None):
    if gwec.eigenvalue_type != 'GW' or dftec.eigenvalue_type != 'DFT':
        print 'ERROR: eigenvalue containers do not contain GW and DFT eigenvalues ... exiting now'
        sys.exit()
    if dftec.nsppol != gwec.nsppol or dftec.nkpt != gwec.nkpt:
        print 'ERROR: the number of spins/kpoints is not the same in the GW and DFT containers ... exiting now'
        sys.exit()
    valdftarray = N.array([],N.float)
    conddftarray = N.array([],N.float)
    valgwarray = N.array([],N.float)
    condgwarray = N.array([],N.float)
    for isppol in range(dftec.nsppol):
        for ikpt in range(dftec.nkpt):
            ibdmin = N.max([dftec.bd_indices[isppol,ikpt,0],gwec.bd_indices[isppol,ikpt,0]])-1
            ibdmax = N.min([dftec.bd_indices[isppol,ikpt,1],gwec.bd_indices[isppol,ikpt,1]])-1
            valdftarray = N.append(valdftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
            valgwarray = N.append(valgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,ibdmin:vbm_index])
            conddftarray = N.append(conddftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
            condgwarray = N.append(condgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1])
    if energy_pivots == None:
        if plot_figures == 1:
            P.figure(1)
            P.hold(True)
            P.grid(True)
            P.plot(valdftarray,valgwarray,'bx')
            P.plot(conddftarray,condgwarray,'rx')
            P.xlabel('DFT eigenvalues (in eV)')
            P.ylabel('GW eigenvalues (in eV)')
            P.figure(2)
            P.hold(True)
            P.grid(True)
            P.plot(valdftarray,valgwarray-valdftarray,'bx')
            P.plot(conddftarray,condgwarray-conddftarray,'rx')
            P.xlabel('DFT eigenvalues (in eV)')
            P.ylabel('GW correction to the DFT eigenvalues (in eV)')
            P.show()
            return
    polyfitlist = list()
    if len(polyfit_degrees) == 1:
        print 'ERROR: making a fit with only one interval is not allowed ... exiting now'
        sys.exit()
    dftarray = N.append(valdftarray,conddftarray)
    gwarray = N.append(valgwarray,condgwarray)
    dftarray_list = list()
    gwarray_list = list()
    for iinterval in range(len(polyfit_degrees)):
        tmpdftarray = N.array([],N.float)
        tmpgwarray = N.array([],N.float)
        if iinterval == 0:
            emin = None
            emax = energy_pivots[0]
            for ii in range(len(dftarray)):
                if dftarray[ii] <= emax:
                    tmpdftarray = N.append(tmpdftarray,[dftarray[ii]])
                    tmpgwarray = N.append(tmpgwarray,[gwarray[ii]])
        elif iinterval == len(polyfit_degrees)-1:
            emin = energy_pivots[-1]
            emax = None
            for ii in range(len(dftarray)):
                if dftarray[ii] >= emin:
                    tmpdftarray = N.append(tmpdftarray,[dftarray[ii]])
                    tmpgwarray = N.append(tmpgwarray,[gwarray[ii]])
        else:
            emin = energy_pivots[iinterval-1]
            emax = energy_pivots[iinterval]
            for ii in range(len(dftarray)):
                if dftarray[ii] >= emin and dftarray[ii] <= emax:
                    tmpdftarray = N.append(tmpdftarray,[dftarray[ii]])
                    tmpgwarray = N.append(tmpgwarray,[gwarray[ii]])
        dftarray_list.append(tmpdftarray)
        gwarray_list.append(tmpgwarray)
        pfit = N.polyfit(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees[iinterval])
        polyfitlist.append(pfit)
    if plot_figures == 1:
        linspace_npoints = 200
        valpoly_x = N.linspace(N.min(valdftarray),N.max(valdftarray),linspace_npoints)
        condpoly_x = N.linspace(N.min(conddftarray),N.max(conddftarray),linspace_npoints)
        P.figure(3)
        P.hold(True)
        P.grid(True)
        P.plot(valdftarray,valgwarray-valdftarray,'bx')
        P.plot(conddftarray,condgwarray-conddftarray,'rx')
        [x_min,x_max] = P.xlim()
        for iinterval in range(len(polyfit_degrees)):
            if iinterval == 0:
                tmppoly_x = N.linspace(x_min,energy_pivots[iinterval],linspace_npoints)
            elif iinterval == len(polyfit_degrees)-1:
                tmppoly_x = N.linspace(energy_pivots[iinterval-1],x_max,linspace_npoints)
            else:
                tmppoly_x = N.linspace(energy_pivots[iinterval-1],energy_pivots[iinterval],linspace_npoints)
            P.plot(tmppoly_x,N.polyval(polyfitlist[iinterval],tmppoly_x),'k')
        for ipivot in range(len(energy_pivots)):
            en = energy_pivots[ipivot]
            P.plot([en,en],[N.polyval(polyfitlist[ipivot],en),N.polyval(polyfitlist[ipivot+1],en)],'k-.')
        P.xlabel('DFT eigenvalues (in eV)')
        P.ylabel('GW correction to the DFT eigenvalues (in eV)')
        P.figure(4)
        P.hold(True)
        P.grid(True)
        for iinterval in range(len(polyfit_degrees)):
            P.plot(dftarray_list[iinterval],gwarray_list[iinterval]-dftarray_list[iinterval]-N.polyval(polyfitlist[iinterval],dftarray_list[iinterval]),'bx')
        [x_min,x_max] = P.xlim()
        P.plot([x_min,x_max],[0,0],'k-')
        P.xlabel('DFT eigenvalues (in eV)')
        P.ylabel('Error in the fit (in eV)')
        P.show()
    return polyfitlist

def compare_bandstructures(ec_ref,ec_test,label_ref=None,label_test=None):
    if label_ref == None:
        labref = 'Reference'
    else:
        labref = label_ref
    if label_test == None:
        labtest = 'Test'
    else:
        labtest = label_test
    nspkpt_ref = len(ec_ref.special_kpoints)
    nspkpt_test = len(ec_test.special_kpoints)
    if nspkpt_ref != nspkpt_test:
        print 'ERROR: The number of special kpoints is different in the two files ... exit'
        sys.exit()
    eig_type_ref = ec_ref.eigenvalue_type
    eig_type_test = ec_test.eigenvalue_type
    if eig_type_ref == 'DFT' and eig_type_test == 'W90':
        TOL_KPTS = N.float(1.0e-4)
    else:
        TOL_KPTS = N.float(1.0e-6)
    for ispkpt in range(nspkpt_ref):
        if not N.allclose(ec_ref.special_kpoints[ispkpt,:],ec_test.special_kpoints[ispkpt,:],atol=TOL_KPTS):
            print 'ERROR: The kpoints are not the same :'
            print '       Kpt #%s ' %ispkpt
            print '         Reference => %20.17f %20.17f %20.17f' %(ec_ref.special_kpoints[ispkpt,0],ec_ref.special_kpoints[ispkpt,1],ec_ref.special_kpoints[ispkpt,2])
            print '         Compared  => %20.17f %20.17f %20.17f' %(ec_test.special_kpoints[ispkpt,0],ec_test.special_kpoints[ispkpt,1],ec_test.special_kpoints[ispkpt,2])
            print '       ... exit'
            sys.exit()
    mband_comparison = N.min([ec_ref.mband,ec_test.mband])
    if mband_comparison < ec_ref.mband:
        print 'Number of bands in the test bandstructure is lower than the number of bands in the reference (%s)' %ec_ref.mband
        print '  => Comparison will proceed with %s bands' %ec_test.mband
    elif mband_comparison < ec_test.mband:
        print 'Number of bands in the reference bandstructure is lower than the number of bands in the test bandstructure (%s)' %ec_test.mband
        print '  => Comparison will only proceed with %s bands of the test bandstructure' %ec_ref.mband
    else:
        print 'Number of bands in the reference and test bandstructure is the same'
        print '  => Comparison will proceed with %s bands' %mband_comparison
#    eig_test_ref_path = ec_ref.eigenvalues[:,:,:mband_comparison]
    rmsd_per_band = N.zeros([ec_ref.nsppol,mband_comparison],N.float)
    nrmsd_per_band = N.zeros([ec_ref.nsppol,mband_comparison],N.float)
    mae_per_band = N.zeros([ec_ref.nsppol,mband_comparison],N.float)
    maxabserror_per_band = N.zeros([ec_ref.nsppol,mband_comparison],N.float)
    for isppol in range(ec_ref.nsppol):
        for iband in range(mband_comparison):
            interp = N.interp(ec_ref.normalized_kpoint_path_values,ec_test.normalized_kpoint_path_values,ec_test.eigenvalues[isppol,:,iband])
            rmsd_per_band[isppol,iband] = N.sqrt(N.sum((csts.hartree2ev*interp-csts.hartree2ev*ec_ref.eigenvalues[isppol,:,iband])**2)/ec_ref.nkpt)
            mae_per_band[isppol,iband] = N.sum(N.abs(csts.hartree2ev*interp-csts.hartree2ev*ec_ref.eigenvalues[isppol,:,iband]))/ec_ref.nkpt
            maxabserror_per_band[isppol,iband] = N.max(N.abs(csts.hartree2ev*interp-csts.hartree2ev*ec_ref.eigenvalues[isppol,:,iband]))
    minorxticks = mticker.FixedLocator(N.arange(1,mband_comparison+1))
    mae_figure=P.figure(1)
    mae_ax=mae_figure.add_subplot(111)
    mae_ax.set_title('Errors made "%s" vs "%s"' %(labref,labtest))
    mae_plot=mae_ax.plot(N.arange(1,len(mae_per_band[0,:])+1),mae_per_band[0,:],'bx-',linewidth=2,markersize=10,markeredgewidth=2)
    mae_ax.xaxis.set_minor_locator(minorxticks)
    mae_ax.set_xlabel('Band index')
    mae_ax.set_ylabel('Error (in eV)')
    mae_ax.grid(True)
    rmsd_plot=mae_ax.plot(N.arange(1,len(rmsd_per_band[0,:])+1),rmsd_per_band[0,:],'go-',linewidth=2,markersize=10)
    maxabserror_plot=mae_ax.plot(N.arange(1,len(rmsd_per_band[0,:])+1),maxabserror_per_band[0,:],'r+-',linewidth=2,markersize=10,markeredgewidth=2)
    mae_ax.legend([mae_plot,rmsd_plot,maxabserror_plot],['Mean absolute error','Root mean square deviation','Maximum absolute error'],loc='upper left')
    P.show()

# Parse the command line options

parser = argparse.ArgumentParser(description='Tool for plotting dft bandstructures')
parser.add_argument('files',help='files to be opened',nargs='*')
parser.add_argument('--align_vbm_index',help='script will align the bandstructures with respect to the given vbm index',nargs=1)
args = parser.parse_args()
args_dict = vars(args)

if args_dict['files']:
    print 'will open the file'
else:
    print 'ERROR: you should provide some bandstructure file ! exiting now ...'
    sys.exit()
file_list = args_dict['files']

ec_list = list()

input_labels = False
if len(file_list) > 1:
    test = raw_input('Do you want to enter labels for the bandstructures ? (y/n)\n')
    if test == 'y':
        input_labels = True
        labels = list()
    else:
        input_labels = False
for ifile in range(len(file_list)):
    ec_dft = EigenvalueContainer()
    ec_dft.read_bandstructure_from_file(file_list[ifile])
    if args_dict['align_vbm_index']:
        ec_dft.eigenvalues = ec_dft.eigenvalues-N.max(ec_dft.eigenvalues[:,:,args_dict['align_vbm_index'][0]])
    ec_dft.print_bandstructure_info()
    if input_labels:
        test = raw_input('Label for bandstructure file "%s" : \n' %file_list[ifile])
        labels.append(test)
    ec_list.append(ec_dft)

print 'Minimum and maximum energies of the bandstructures :'
for ifile in range(len(file_list)):
    if input_labels:
        print ' => %18s : minenergy = %8.5f   maxenergy = %8.5f   (file "%s")' %(labels[ifile],N.min(ec_list[ifile].eigenvalues)*csts.hartree2ev,N.max(ec_list[ifile].eigenvalues)*csts.hartree2ev,file_list[ifile])
    else:
        print ' => minenergy = %8.5f   maxenergy = %8.5f   for file "%s"' %(N.min(ec_list[ifile].eigenvalues)*csts.hartree2ev,N.max(ec_list[ifile].eigenvalues)*csts.hartree2ev,file_list[ifile])

test = raw_input('Enter the minimum and maximum energy for the bandstructure plot (<ENTER> : default) :\n')
if test == '':
    energy_default = True
else:
    energy_default = False
    energy_limits = N.array([N.float(test.split()[0]),N.float(test.split()[1])],N.float)

style = ['k-','r--','b-.','g:']
onebsstyle = ['k-','r-']

P.figure(1,figsize=(3.464,5))
P.hold('on')
P.grid('on')
P.xticks(N.take(ec_list[0].kpoint_path_values,N.array(ec_list[0].special_kpoints_indices,N.int))/ec_list[0].kpoint_path_length,ec_list[0].special_kpoints_names)

ax_list = list()

if len(ec_list) == 1:
    ibs = 0
    if ec_list[ibs].nsppol == 1:
        updown = False
        for iband in range(ec_list[ibs].mband):
            if iband == 0:
                ax = P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[0,:,iband]*csts.hartree2ev,onebsstyle[0],linewidth=2)
                ax_list.append(ax)
            else:
                P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[0,:,iband]*csts.hartree2ev,onebsstyle[0],linewidth=2)
    elif ec_list[ibs].nsppol == 2:
        test = raw_input('Put "Up/Down" legend for this spin polarized system ?\n')
        if test == 'y':
            updown = True
        else:
            updown = False
        for iband in range(ec_list[ibs].mband):
            if iband == 0:
                axup = P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[0,:,iband]*csts.hartree2ev,onebsstyle[0],linewidth=2)
                axdown = P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[1,:,iband]*csts.hartree2ev,onebsstyle[1],linewidth=2)
                ax_list.append(axup)
                ax_list.append(axdown)
            else:
                P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[0,:,iband]*csts.hartree2ev,onebsstyle[0],linewidth=2)
                P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[1,:,iband]*csts.hartree2ev,onebsstyle[1],linewidth=2)
else:
    print 'WARNING: when several bandstructures are to be plotted, care must be taken with spins ... not yet fully tested ... !'
    updown = False
    for ibs in range(len(ec_list)):
        for iband in range(ec_list[ibs].mband):
            if iband == 0:
                ax = P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[0,:,iband]*csts.hartree2ev,style[ibs],linewidth=2)
                ax_list.append(ax)
            else:
                P.plot(ec_list[ibs].kpoint_path_values/ec_list[ibs].kpoint_path_length,ec_list[ibs].eigenvalues[0,:,iband]*csts.hartree2ev,style[ibs],linewidth=2)
P.xlim([0,1])
if not energy_default:
    P.ylim(energy_limits)
if input_labels:
    P.legend(ax_list,labels)
if updown:
    P.legend(ax_list,['Up','Down'])
P.xlim([0,1])
P.show()

if len(ec_list) > 1:
    test = raw_input('Do you want to compare the bandstructures ? (y/n)')
    if test == 'y':
        print 'Bandstructure list :'
        if input_labels:
            for iec in range(len(ec_list)):
                print ' %3d => %20s (file "%s")' %(iec,labels[iec],file_list[iec])
        else:
            for iec in range(len(ec_list)):
                print ' %3d => bandstructure from file "%s"' %(iec,file_list[iec])
        test = raw_input('Enter the index of the "reference" band structure (<ENTER> : default = 0)\n')
        if test == '':
            ref_index = 0
        else:
            ref_index = N.int(test)
        for iec in range(len(ec_list)):
            if iec != ref_index:
                if input_labels:
                    compare_bandstructures(ec_list[ref_index],ec_list[iec],label_ref=labels[ref_index],label_test=labels[iec])
                else:
                    compare_bandstructures(ec_list[ref_index],ec_list[iec],label_ref=file_list[ref_index],label_test=file_list[iec])