File: plot_bs.py

package info (click to toggle)
abinit 9.10.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 518,712 kB
  • sloc: xml: 877,568; f90: 577,240; python: 80,760; perl: 7,019; ansic: 4,585; sh: 1,925; javascript: 601; fortran: 557; cpp: 454; objc: 323; makefile: 77; csh: 42; pascal: 31
file content (225 lines) | stat: -rwxr-xr-x 7,503 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
# Author: Samuel Ponc\'e
# Date: 26/06/2013 -- 22/12/2020
# Script to create a corrected electronic bandstructure with lifetime broadening

try:
  from rf_final import system
except ImportError:
  import warnings
  warnings.warn("The system module is missing!")
  raise
try:
  import numpy as N
except ImportError:
  import warnings
  warnings.warn("The numpy module is missing!")
  raise
from numpy import zeros
try:
  import netCDF4 as nc
except ImportError:
  import warnings
  warnings.warn("The netCDF4 module is missing!")
  raise
import matplotlib.pyplot as P
from numpy.linalg import inv
from scipy.interpolate import UnivariateSpline 


#############
# Constants #
#############
class VariableContainer:pass
csts = VariableContainer()
csts.hartree2ev = N.float(27.211396132)
csts.ev2hartree = N.float(1/csts.hartree2ev)
csts.sqrtpi = N.float(N.sqrt(N.pi))
csts.invsqrtpi = N.float(1/csts.sqrtpi)
csts.TOLKPTS = N.float(0.00001)

def angle_kpt(vector1,vector2):
  dot_prod = N.dot(vector1,vector2.T)
  arg = dot_prod/(N.linalg.norm(vector1)*N.linalg.norm(vector2))
  if arg > 1: arg=1
  if arg < -1: arg=-1
  theta = N.arccos(arg)/(N.pi*180)
  return theta

class find_special_kpt:
  def __init__(self,kpt):
    nkpt = len(kpt[:,0])
    self.special_kpoints = list()
    self.position_special = []
    angle = 0
    ref = 0
    for ikpt in N.arange(nkpt):
      if ikpt == 0:
        self.special_kpoints.append(kpt[ikpt,:])
        self.position_special.append(ikpt)
      elif ikpt == 1:
        vector2 = kpt[ikpt,:]-kpt[ikpt-1,:]
      elif ikpt == nkpt-1:
        self.special_kpoints.append(kpt[ikpt,:])
        self.position_special.append(ikpt)
      else:
        vector1 = kpt[ikpt,:]-kpt[ikpt-1,:]
        if N.allclose(kpt[ikpt-1,:],[3.0/8,3.0/8,3.0/4],1e-8):
          self.special_kpoints.append(kpt[ikpt-1,:])
          self.position_special.append(ikpt-1)
        else:
          if angle_kpt(vector1,vector2) < csts.TOLKPTS:
            pass
          else:
            self.special_kpoints.append(kpt[ikpt-1,:])
            self.position_special.append(ikpt-1)
        vector2 = vector1
     

# Interaction with the user
print("""
  _____  _       _          ______ _____        ____   _____ 
 |  __ \| |     | |        |  ____|  __ \      |  _ \ / ____|
 | |__) | | ___ | |_ ______| |__  | |__) |_____| |_) | (___  
 |  ___/| |/ _ \| __|______|  __| |  ___/______|  _ < \___ \ 
 | |    | | (_) | |_       | |____| |          | |_) |____) |
 |_|    |_|\___/ \__|      |______|_|          |____/|_____/
""")
print(""" 
This script allows you to plot an electronic bandstructure from en _EP.nc 
file. If you computed the file including lifetime you can also plot 
"fat-band".
""")
# Read the input file
user_input = input('Enter name of the _EP.nc file\n')
EP_file = user_input.strip()
EP = system(directory='.',filename=EP_file)

gprimd = inv(EP.rprimd)
full_kpt = N.matrix(EP.kpt)*gprimd
#print full_kpt

special = find_special_kpt(EP.kpt)

print("The special k-points are:")
for ikpt in N.arange(len(special.special_kpoints)):
  print(str(special.special_kpoints[ikpt]))
user_input = input('Enter the name of the '+str(len(special.special_kpoints))+' special k-points \n')

special_name = user_input.split()
for ii in N.arange(len(special_name)):
  special_name[ii] = "$\mathbf{"+str(special_name[ii])+"}$"

user_input = input('Enter energy limit for the plot in eV: e.g. -5 10\n')
user_tmp = user_input.split()
if len(user_tmp) != 2:
  raise Exception("You should provide only 2 numbers")
else: # Append and TRIM the input string with STRIP
  lower = N.float(user_tmp[0])
  upper = N.float(user_tmp[1])

if EP.ntemp > 0:
  print("Enter the temperature at which you want to do the Bandstructure plot (in K)")
  user_input = input('The possible temperature are:\n'+str(EP.temp[:])+'\n')
  if len(user_input.split()) != 1:
    raise Exception("You should provide only 1 number")
  else: # Append and TRIM the input string with STRIP
    temp = N.float(user_input)
    for itemp in N.arange(EP.ntemp):
      if N.allclose(temp,EP.temp[itemp],csts.TOLKPTS):
        temp_index = itemp
        break  

# Compute the first conduction band
for iband in N.arange(EP.nband):
  if (EP.occ[0,0,iband]==0):
    cond = iband
    print("First Cond band ", cond)
    break

# Definie the Fermi level as the highest band before 0 occupations
fermi = -1000000.0
for ikpt in N.arange(EP.nkpt):
  for iband in N.arange(cond):
    if (EP.eigenvalues[0,ikpt,iband] > fermi):
      fermi = EP.eigenvalues[0,ikpt,iband]


xspan = N.arange(0,EP.nkpt,1)

xfine = N.arange(0,(EP.nkpt-1)+0.2,0.2)

fig = P.figure(figsize=(5.196,7.5))
#P.rc('text',usetex = True)
#P.hold('on')
P.grid('on')
yprops = dict(rotation=0, horizontalalignment='right',verticalalignment='center',x=-0.01)

ax = fig.add_subplot(111)
#ax = P.gca()
#ax.set_xticks(special.position_special,special_name)

P.xticks(special.position_special,special_name,fontsize=16)
P.yticks(fontsize=16)
ylabel = ax.set_ylabel('Energy [eV]',fontsize=16,**yprops)
ax.yaxis.set_label_coords(0.17, 1.05)
ax.set_ylim([lower,upper])

# Plot Eigenenergies
for iband in N.arange(EP.nband):
  if iband < cond:
    eigen =(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev
    spl = UnivariateSpline(xspan,eigen,k=1)
    eig_fine = spl(xfine)
    #P.plot(xfine,eig_fine,linewidth=2,color='k')    
    P.plot(xspan,(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev,linewidth=2,color='k')    
  else:
    eigen =(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev  
    spl = UnivariateSpline(xspan,eigen, k=1)  
    eig_fine = spl(xfine)
    #P.plot(xfine,eig_fine,linewidth=2,color='k')
    P.plot(xspan,(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev,linewidth=2,color='k')    

# Plot renormalization
if EP.ntemp > 0: 
  for iband in N.arange(EP.nband):
    if iband < cond:
      #renormalization = real part of zpr
      renorm = (EP.eigenvalues[0,:,iband]-fermi + EP.zpm[temp_index,0,:,iband,0])*csts.hartree2ev
      bandwith = EP.zpm[temp_index,0,:,iband,1]*csts.hartree2ev
      #spl = UnivariateSpline(xspan,renorm)
      #renorm_fine = spl(xfine)
      #spl = UnivariateSpline(xspan,bandwith)
      #bandwith_fine = spl(xfine)
      #P.fill_between(xfine,renorm_fine+bandwith_fine/2, renorm_fine-bandwith_fine/2, alpha=.3,color='b')
      #P.plot(xfine,renorm_fine,color='b',linestyle='--',linewidth=2)
      P.fill_between(xspan, renorm + bandwith / 2, renorm - bandwith / 2, alpha=.3,color='b')
      P.plot(xspan, renorm, color='b', linestyle='--', linewidth=2)
    else:
      #renormalization = real part of zpr
      renorm = (EP.eigenvalues[0,:,iband]-fermi + EP.zpm[temp_index,0,:,iband,0])*csts.hartree2ev
      bandwith = EP.zpm[temp_index,0,:,iband,1]*csts.hartree2ev
      #spl = UnivariateSpline(xspan,renorm)
      #renorm_fine = spl(xfine)
      #spl = UnivariateSpline(xspan,bandwith)
      #bandwith_fine = spl(xfine)
      #P.fill_between(xfine,renorm_fine+bandwith_fine/2, renorm_fine-bandwith_fine/2, alpha=.3, color='r')
      #P.plot(xfine,renorm_fine,color='r',linestyle='--',linewidth=2)
      P.fill_between(xspan, renorm + bandwith / 2, renorm - bandwith / 2, alpha=.3,color='r')
      P.plot(xspan, renorm, color='r', linestyle='--', linewidth=2)      

  bbox_props = dict(boxstyle="square", fc="w", ec="0.5", alpha=1.0)
  ax.text(EP.nkpt,upper, "Temperature: "+str(temp)+" K", ha="right", va="top", size=16,
        bbox=bbox_props)

P.show()
#P.savefig('plot4.png', bbox_inches='tight')