1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
#!/usr/bin/env python
# Author: Samuel Ponc\'e
# Date: 26/06/2013 -- 22/12/2020
# Script to create a corrected electronic bandstructure with lifetime broadening
try:
from rf_final import system
except ImportError:
import warnings
warnings.warn("The system module is missing!")
raise
try:
import numpy as N
except ImportError:
import warnings
warnings.warn("The numpy module is missing!")
raise
from numpy import zeros
try:
import netCDF4 as nc
except ImportError:
import warnings
warnings.warn("The netCDF4 module is missing!")
raise
import matplotlib.pyplot as P
from numpy.linalg import inv
from scipy.interpolate import UnivariateSpline
#############
# Constants #
#############
class VariableContainer:pass
csts = VariableContainer()
csts.hartree2ev = N.float(27.211396132)
csts.ev2hartree = N.float(1/csts.hartree2ev)
csts.sqrtpi = N.float(N.sqrt(N.pi))
csts.invsqrtpi = N.float(1/csts.sqrtpi)
csts.TOLKPTS = N.float(0.00001)
def angle_kpt(vector1,vector2):
dot_prod = N.dot(vector1,vector2.T)
arg = dot_prod/(N.linalg.norm(vector1)*N.linalg.norm(vector2))
if arg > 1: arg=1
if arg < -1: arg=-1
theta = N.arccos(arg)/(N.pi*180)
return theta
class find_special_kpt:
def __init__(self,kpt):
nkpt = len(kpt[:,0])
self.special_kpoints = list()
self.position_special = []
angle = 0
ref = 0
for ikpt in N.arange(nkpt):
if ikpt == 0:
self.special_kpoints.append(kpt[ikpt,:])
self.position_special.append(ikpt)
elif ikpt == 1:
vector2 = kpt[ikpt,:]-kpt[ikpt-1,:]
elif ikpt == nkpt-1:
self.special_kpoints.append(kpt[ikpt,:])
self.position_special.append(ikpt)
else:
vector1 = kpt[ikpt,:]-kpt[ikpt-1,:]
if N.allclose(kpt[ikpt-1,:],[3.0/8,3.0/8,3.0/4],1e-8):
self.special_kpoints.append(kpt[ikpt-1,:])
self.position_special.append(ikpt-1)
else:
if angle_kpt(vector1,vector2) < csts.TOLKPTS:
pass
else:
self.special_kpoints.append(kpt[ikpt-1,:])
self.position_special.append(ikpt-1)
vector2 = vector1
# Interaction with the user
print("""
_____ _ _ ______ _____ ____ _____
| __ \| | | | | ____| __ \ | _ \ / ____|
| |__) | | ___ | |_ ______| |__ | |__) |_____| |_) | (___
| ___/| |/ _ \| __|______| __| | ___/______| _ < \___ \
| | | | (_) | |_ | |____| | | |_) |____) |
|_| |_|\___/ \__| |______|_| |____/|_____/
""")
print("""
This script allows you to plot an electronic bandstructure from en _EP.nc
file. If you computed the file including lifetime you can also plot
"fat-band".
""")
# Read the input file
user_input = input('Enter name of the _EP.nc file\n')
EP_file = user_input.strip()
EP = system(directory='.',filename=EP_file)
gprimd = inv(EP.rprimd)
full_kpt = N.matrix(EP.kpt)*gprimd
#print full_kpt
special = find_special_kpt(EP.kpt)
print("The special k-points are:")
for ikpt in N.arange(len(special.special_kpoints)):
print(str(special.special_kpoints[ikpt]))
user_input = input('Enter the name of the '+str(len(special.special_kpoints))+' special k-points \n')
special_name = user_input.split()
for ii in N.arange(len(special_name)):
special_name[ii] = "$\mathbf{"+str(special_name[ii])+"}$"
user_input = input('Enter energy limit for the plot in eV: e.g. -5 10\n')
user_tmp = user_input.split()
if len(user_tmp) != 2:
raise Exception("You should provide only 2 numbers")
else: # Append and TRIM the input string with STRIP
lower = N.float(user_tmp[0])
upper = N.float(user_tmp[1])
if EP.ntemp > 0:
print("Enter the temperature at which you want to do the Bandstructure plot (in K)")
user_input = input('The possible temperature are:\n'+str(EP.temp[:])+'\n')
if len(user_input.split()) != 1:
raise Exception("You should provide only 1 number")
else: # Append and TRIM the input string with STRIP
temp = N.float(user_input)
for itemp in N.arange(EP.ntemp):
if N.allclose(temp,EP.temp[itemp],csts.TOLKPTS):
temp_index = itemp
break
# Compute the first conduction band
for iband in N.arange(EP.nband):
if (EP.occ[0,0,iband]==0):
cond = iband
print("First Cond band ", cond)
break
# Definie the Fermi level as the highest band before 0 occupations
fermi = -1000000.0
for ikpt in N.arange(EP.nkpt):
for iband in N.arange(cond):
if (EP.eigenvalues[0,ikpt,iband] > fermi):
fermi = EP.eigenvalues[0,ikpt,iband]
xspan = N.arange(0,EP.nkpt,1)
xfine = N.arange(0,(EP.nkpt-1)+0.2,0.2)
fig = P.figure(figsize=(5.196,7.5))
#P.rc('text',usetex = True)
#P.hold('on')
P.grid('on')
yprops = dict(rotation=0, horizontalalignment='right',verticalalignment='center',x=-0.01)
ax = fig.add_subplot(111)
#ax = P.gca()
#ax.set_xticks(special.position_special,special_name)
P.xticks(special.position_special,special_name,fontsize=16)
P.yticks(fontsize=16)
ylabel = ax.set_ylabel('Energy [eV]',fontsize=16,**yprops)
ax.yaxis.set_label_coords(0.17, 1.05)
ax.set_ylim([lower,upper])
# Plot Eigenenergies
for iband in N.arange(EP.nband):
if iband < cond:
eigen =(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev
spl = UnivariateSpline(xspan,eigen,k=1)
eig_fine = spl(xfine)
#P.plot(xfine,eig_fine,linewidth=2,color='k')
P.plot(xspan,(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev,linewidth=2,color='k')
else:
eigen =(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev
spl = UnivariateSpline(xspan,eigen, k=1)
eig_fine = spl(xfine)
#P.plot(xfine,eig_fine,linewidth=2,color='k')
P.plot(xspan,(EP.eigenvalues[0,:,iband]-fermi)*csts.hartree2ev,linewidth=2,color='k')
# Plot renormalization
if EP.ntemp > 0:
for iband in N.arange(EP.nband):
if iband < cond:
#renormalization = real part of zpr
renorm = (EP.eigenvalues[0,:,iband]-fermi + EP.zpm[temp_index,0,:,iband,0])*csts.hartree2ev
bandwith = EP.zpm[temp_index,0,:,iband,1]*csts.hartree2ev
#spl = UnivariateSpline(xspan,renorm)
#renorm_fine = spl(xfine)
#spl = UnivariateSpline(xspan,bandwith)
#bandwith_fine = spl(xfine)
#P.fill_between(xfine,renorm_fine+bandwith_fine/2, renorm_fine-bandwith_fine/2, alpha=.3,color='b')
#P.plot(xfine,renorm_fine,color='b',linestyle='--',linewidth=2)
P.fill_between(xspan, renorm + bandwith / 2, renorm - bandwith / 2, alpha=.3,color='b')
P.plot(xspan, renorm, color='b', linestyle='--', linewidth=2)
else:
#renormalization = real part of zpr
renorm = (EP.eigenvalues[0,:,iband]-fermi + EP.zpm[temp_index,0,:,iband,0])*csts.hartree2ev
bandwith = EP.zpm[temp_index,0,:,iband,1]*csts.hartree2ev
#spl = UnivariateSpline(xspan,renorm)
#renorm_fine = spl(xfine)
#spl = UnivariateSpline(xspan,bandwith)
#bandwith_fine = spl(xfine)
#P.fill_between(xfine,renorm_fine+bandwith_fine/2, renorm_fine-bandwith_fine/2, alpha=.3, color='r')
#P.plot(xfine,renorm_fine,color='r',linestyle='--',linewidth=2)
P.fill_between(xspan, renorm + bandwith / 2, renorm - bandwith / 2, alpha=.3,color='r')
P.plot(xspan, renorm, color='r', linestyle='--', linewidth=2)
bbox_props = dict(boxstyle="square", fc="w", ec="0.5", alpha=1.0)
ax.text(EP.nkpt,upper, "Temperature: "+str(temp)+" K", ha="right", va="top", size=16,
bbox=bbox_props)
P.show()
#P.savefig('plot4.png', bbox_inches='tight')
|